1
|
Lee BT, Baker LA, Momen M, Terhaar H, Binversie EE, Sample SJ, Muir P. Identification of genetic variants associated with anterior cruciate ligament rupture and AKC standard coat color in the Labrador Retriever. BMC Genom Data 2023; 24:60. [PMID: 37884875 PMCID: PMC10605342 DOI: 10.1186/s12863-023-01164-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Canine anterior cruciate ligament (ACL) rupture is a common complex disease. Prevalence of ACL rupture is breed dependent. In an epidemiological study, yellow coat color was associated with increased risk of ACL rupture in the Labrador Retriever. ACL rupture risk variants may be linked to coat color through genetic selection or through linkage with coat color genes. To investigate these associations, Labrador Retrievers were phenotyped as ACL rupture case or controls and for coat color and were single nucleotide polymorphism (SNP) genotyped. After filtering, ~ 697 K SNPs were analyzed using GEMMA and mvBIMBAM for multivariate association. Functional annotation clustering analysis with DAVID was performed on candidate genes. A large 8 Mb region on chromosome 5 that included ACSF3, as well as 32 additional SNPs, met genome-wide significance at P < 6.07E-7 or Log10(BF) = 3.0 for GEMMA and mvBIMBAM, respectively. On chromosome 23, SNPs were located within or near PCCB and MSL2. On chromosome 30, a SNP was located within IGDCC3. SNPs associated with coat color were also located within ADAM9, FAM109B, SULT1C4, RTDR1, BCR, and RGS7. DZIP1L was associated with ACL rupture. Several significant SNPs on chromosomes 2, 3, 7, 24, and 26 were located within uncharacterized regions or long non-coding RNA sequences. This study validates associations with the previous ACL rupture candidate genes ACSF3 and DZIP1L and identifies novel candidate genes. These variants could act as targets for treatment or as factors in disease prediction modeling. The study highlighted the importance of regulatory SNPs in the disease, as several significant SNPs were located within non-coding regions.
Collapse
Affiliation(s)
- B T Lee
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI, 53706, United States of America
| | - L A Baker
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI, 53706, United States of America
| | - M Momen
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI, 53706, United States of America
| | - H Terhaar
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI, 53706, United States of America
| | - E E Binversie
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI, 53706, United States of America
| | - S J Sample
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI, 53706, United States of America
| | - Peter Muir
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI, 53706, United States of America.
| |
Collapse
|
2
|
Wu CLS, Cioanca AV, Gelmi MC, Wen L, Di Girolamo N, Zhu L, Natoli R, Conway RM, Petsoglou C, Jager MJ, McCluskey PJ, Madigan MC. The multifunctional human ocular melanocortin system. Prog Retin Eye Res 2023; 95:101187. [PMID: 37217094 DOI: 10.1016/j.preteyeres.2023.101187] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023]
Abstract
Immune privilege in the eye involves physical barriers, immune regulation and secreted proteins that together limit the damaging effects of intraocular immune responses and inflammation. The neuropeptide alpha-melanocyte stimulating hormone (α-MSH) normally circulates in the aqueous humour of the anterior chamber and the vitreous fluid, secreted by iris and ciliary epithelium, and retinal pigment epithelium (RPE). α-MSH plays an important role in maintaining ocular immune privilege by helping the development of suppressor immune cells and by activating regulatory T-cells. α-MSH functions by binding to and activating melanocortin receptors (MC1R to MC5R) and receptor accessory proteins (MRAPs) that work in concert with antagonists, otherwise known as the melanocortin system. As well as controlling immune responses and inflammation, a broad range of biological functions is increasingly recognised to be orchestrated by the melanocortin system within ocular tissues. This includes maintaining corneal transparency and immune privilege by limiting corneal (lymph)angiogenesis, sustaining corneal epithelial integrity, protecting corneal endothelium and potentially enhancing corneal graft survival, regulating aqueous tear secretion with implications for dry eye disease, facilitating retinal homeostasis via maintaining blood-retinal barriers, providing neuroprotection in the retina, and controlling abnormal new vessel growth in the choroid and retina. The role of melanocortin signalling in uveal melanocyte melanogenesis however remains unclear compared to its established role in skin melanogenesis. The early application of a melanocortin agonist to downregulate systemic inflammation used adrenocorticotropic hormone (ACTH)-based repository cortisone injection (RCI), but adverse side effects including hypertension, edema, and weight gain, related to increased adrenal gland corticosteroid production, impacted clinical uptake. Compared to ACTH, melanocortin peptides that target MC1R, MC3R, MC4R and/or MC5R, but not adrenal gland MC2R, induce minimal corticosteroid production with fewer amdverse systemic effects. Pharmacological advances in synthesising MCR-specific targeted peptides provide further opportunities for treating ocular (and systemic) inflammatory diseases. Following from these observations and a renewed clinical and pharmacological interest in the diverse biological roles of the melanocortin system, this review highlights the physiological and disease-related involvement of this system within human eye tissues. We also review the emerging benefits and versatility of melanocortin receptor targeted peptides as non-steroidal alternatives for inflammatory eye diseases such as non-infectious uveitis and dry eye disease, and translational applications in promoting ocular homeostasis, for example, in corneal transplantation and diabetic retinopathy.
Collapse
Affiliation(s)
- Chieh-Lin Stanley Wu
- School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia; Save Sight Institute and Ophthalmology, The Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; Department of Optometry, Asia University, Taichung, Taiwan
| | - Adrian V Cioanca
- Save Sight Institute and Ophthalmology, The Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; John Curtin School of Medical Research, The Australian National University, ACT, Australia; ANU Medical School, The Australian National University, ACT, Australia
| | - Maria C Gelmi
- Department of Ophthalmology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Li Wen
- New South Wales Organ and Tissue Donation Service, Sydney Hospital and Sydney Eye Hospital, NSW, 2000, Australia
| | - Nick Di Girolamo
- School of Biomedical Sciences, Mechanisms of Disease and Translational Research, University of New South Wales, Sydney, Australia
| | - Ling Zhu
- Save Sight Institute and Ophthalmology, The Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Riccardo Natoli
- Save Sight Institute and Ophthalmology, The Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; John Curtin School of Medical Research, The Australian National University, ACT, Australia; ANU Medical School, The Australian National University, ACT, Australia
| | - R Max Conway
- Save Sight Institute and Ophthalmology, The Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Constantinos Petsoglou
- Save Sight Institute and Ophthalmology, The Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; New South Wales Organ and Tissue Donation Service, Sydney Hospital and Sydney Eye Hospital, NSW, 2000, Australia
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Peter J McCluskey
- Save Sight Institute and Ophthalmology, The Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Michele C Madigan
- School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia; Save Sight Institute and Ophthalmology, The Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
| |
Collapse
|
3
|
Garrido-Mesa J, Thomas BL, Dodd J, Spana C, Perretti M, Montero-Melendez T. Pro-resolving and anti-arthritic properties of the MC 1 selective agonist PL8177. Front Immunol 2022; 13:1078678. [PMID: 36505403 PMCID: PMC9730523 DOI: 10.3389/fimmu.2022.1078678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Background Melanocortins are peptides endowed with anti-inflammatory and pro-resolving activities. Many of these effects are mediated by the Melanocortin receptor 1 (MC1) as reported in several experimental settings. As such, MC1 can be a viable target for the development of new therapies that mimic endogenous pro-resolving mediators. The aim of this study was to assess the immunopharmacology of a selective MC1 agonist (PL8177) in vitro and in a mouse model of inflammatory arthritis. Methods PL8177 and the natural agonist αMSH were tested for activation of mouse and human Melanocortin receptors (MC1,3,4,5), monitoring cAMP accumulation and ERK1/2 phosphorylation, using transiently transfected HEK293A cells. The anti-inflammatory and pro-resolving effects of PL8177 and αMSH were evaluated using mouse peritoneal Macrophages. Finally, a model of K/BxN serum transfer induced arthritis was used to determine the in vivo potential of PL8177. Results PL8177 activates mouse and human MC1 with apparent EC50 values of 0.01 and 1.49 nM, respectively, using the cAMP accumulation assay. Similar profiles were observed for the induction of ERK phosphorylation (EC50: 0.05 and 1.39 nM). PL8177 displays pro-resolving activity (enhanced Macrophage efferocytosis) and counteracts the inflammatory profile of zymosan-stimulated macrophages, reducing the release of IL-1β, IL-6, TNF-α and CCL-2. In the context of joint inflammation, PL8177 (3mg/kg i.p.) reduces clinical score, paw swelling and incidence of severe disease as well as the recruitment of immune cells into the arthritic joint. Conclusion These results demonstrate that the MC1 agonism with PL8177 affords therapeutic effects in inflammatory conditions including arthritis. Significance Drugs targeting the Melanocortin system have emerged as promising therapeutics for several conditions including inflammation or obesity. Multiple candidates are under clinical development, and some have already reached approval. Here we present the characterization of a novel drug candidate, PL8177, selective for the Melanocortin 1 receptor (MC1), demonstrating its selectivity profile on cAMP and ERK1/2 phosphorylation signaling pathways, of relevance as selective drugs will translate into lesser off-target effect. PL8177 also demonstrated, not only anti-inflammatory activity, but pro-resolving actions due to its ability to enhance efferocytosis (i.e. the phagocytosis of apoptotic cells), endowing this molecule with therapeutic advantages compared to classical anti-inflammatory drugs. Using a mouse model of inflammatory arthritis, the compound demonstrated in vivo efficacy by reducing clinical score, paw swelling and overall disease severity. Taken together, these results present Melanocortin-based therapies, and specifically targeting MC1 receptor, as a promising strategy to manage chronic inflammatory diseases.
Collapse
Affiliation(s)
- Jose Garrido-Mesa
- The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Bethan Lynne Thomas
- The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - John Dodd
- Palatin Technologies, Inc., Cranbury, NJ, United States
| | - Carl Spana
- Palatin Technologies, Inc., Cranbury, NJ, United States
| | - Mauro Perretti
- The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom,Centre for inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| | - Trinidad Montero-Melendez
- The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom,Centre for inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom,*Correspondence: Trinidad Montero-Melendez,
| |
Collapse
|
4
|
Zhao J, Wei K, Jiang P, Chang C, Xu L, Xu L, Shi Y, Guo S, He D. G-Protein-Coupled Receptors in Rheumatoid Arthritis: Recent Insights into Mechanisms and Functional Roles. Front Immunol 2022; 13:907733. [PMID: 35874704 PMCID: PMC9304905 DOI: 10.3389/fimmu.2022.907733] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease that leads to joint damage and even disability. Although there are various clinical therapies for RA, some patients still have poor or no response. Thus, the development of new drug targets remains a high priority. In this review, we discuss the role of G-protein-coupled receptors (GPCRs), including chemokine receptors, melanocortin receptors, lipid metabolism-related receptors, adenosine receptors, and other inflammation-related receptors, on mechanisms of RA, such as inflammation, lipid metabolism, angiogenesis, and bone destruction. Additionally, we summarize the latest clinical trials on GPCR targeting to provide a theoretical basis and guidance for the development of innovative GPCR-based clinical drugs for RA.
Collapse
Affiliation(s)
- Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Cen Chang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Lingxia Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Linshuai Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Shi
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Shicheng Guo, ; Dongyi He,
| | - Dongyi He
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
- *Correspondence: Shicheng Guo, ; Dongyi He,
| |
Collapse
|
5
|
Dinparastisaleh R, Mirsaeidi M. Antifibrotic and Anti-Inflammatory Actions of α-Melanocytic Hormone: New Roles for an Old Player. Pharmaceuticals (Basel) 2021; 14:ph14010045. [PMID: 33430064 PMCID: PMC7827684 DOI: 10.3390/ph14010045] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/16/2022] Open
Abstract
The melanocortin system encompasses melanocortin peptides, five receptors, and two endogenous antagonists. Besides pigmentary effects generated by α-Melanocytic Hormone (α-MSH), new physiologic roles in sexual activity, exocrine secretion, energy homeostasis, as well as immunomodulatory actions, exerted by melanocortins, have been described recently. Among the most common and burdensome consequences of chronic inflammation is the development of fibrosis. Depending on the regenerative capacity of the affected tissue and the quality of the inflammatory response, the outcome is not always perfect, with the development of some fibrosis. Despite the heterogeneous etiology and clinical presentations, fibrosis in many pathological states follows the same path of activation or migration of fibroblasts, and the differentiation of fibroblasts to myofibroblasts, which produce collagen and α-SMA in fibrosing tissue. The melanocortin agonists might have favorable effects on the trajectories leading from tissue injury to inflammation, from inflammation to fibrosis, and from fibrosis to organ dysfunction. In this review we briefly summarized the data on structure, receptor signaling, and anti-inflammatory and anti-fibrotic properties of α-MSH and proposed that α-MSH analogues might be promising future therapeutic candidates for inflammatory and fibrotic diseases, regarding their favorable safety profile.
Collapse
Affiliation(s)
- Roshan Dinparastisaleh
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21218, USA;
| | - Mehdi Mirsaeidi
- Division of Pulmonary and Critical Care, University of Miami, Miami, FL 33146, USA
- Correspondence: ; Tel.: +1-305-243-1377
| |
Collapse
|
6
|
Decker DA, Higgins P, Hayes K, Bollinger C, Becker P, Wright D. Repository corticotropin injection attenuates collagen-induced arthritic joint structural damage and has enhanced effects in combination with etanercept. BMC Musculoskelet Disord 2020; 21:586. [PMID: 32867752 PMCID: PMC7460755 DOI: 10.1186/s12891-020-03609-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 08/24/2020] [Indexed: 12/29/2022] Open
Abstract
Background Melanocortin receptor (MCR) agonists have anti-inflammatory and immunomodulatory properties mediated by receptors expressed on cells relevant to arthritis. Repository corticotropin injection (RCI; Acthar® Gel), an MCR agonist preparation, is approved as adjunctive therapy for rheumatoid arthritis (RA), but its mechanism of action in RA is unclear. This study explored the efficacy of RCI as monotherapy or adjunctive therapy with etanercept (ETN) in an established animal model of collagen-induced arthritis (CIA). Methods After induction of CIA, rats (n = 10 per group) were randomized to receive subcutaneous RCI (40, 160, or 400 U/kg twice daily) alone or in combination with ETN (10 mg/kg 3 times daily), ETN alone, or vehicle (on days 13 through 19). Inflammation was assessed via changes in paw edema. Bone damage was determined by microfocal computed tomography histopathology, and immunohistochemistry. Statistical analyses were performed using a 2-way analysis of variance (ANOVA) followed by the Newman-Keuls, Dunn’s, or Dunnett’s multiple comparisons test or a 1-way ANOVA followed by the Dunnett’s or Holm-Sidak multiple comparisons test. Results RCI administration resulted in dose-dependent decreases in ankle edema and histopathologic measures of inflammation, pannus formation, cartilage damage, bone resorption, and periosteal bone formation. RCI and ETN showed combined benefits on all parameters measured. Radiographic evidence of bone damage was significantly reduced in rats that received RCI alone or in combination with ETN. This reduction in bone density loss correlated with decreases in the number of CD68-positive macrophages and cathepsin K–positive osteoclasts within the lesions. Conclusions As monotherapy or adjunctive therapy with ETN, RCI attenuated CIA-induced joint structural damage in rats. These data support the clinical efficacy of RCI as adjunctive therapy for patients with RA.
Collapse
Affiliation(s)
- Dima A Decker
- Former employee of Mallinckrodt Pharmaceuticals, Bedminster, NJ, USA
| | - Paul Higgins
- Former employee of Mallinckrodt Pharmaceuticals, Bedminster, NJ, USA
| | - Kyle Hayes
- Mallinckrodt Pharmaceuticals, 675 McDonnell Blvd, Bedminster, NJ, 63042, USA
| | - Chris Bollinger
- Mallinckrodt Pharmaceuticals, 675 McDonnell Blvd, Bedminster, NJ, 63042, USA
| | - Patrice Becker
- Former employee of Mallinckrodt Pharmaceuticals, Bedminster, NJ, USA
| | - Dale Wright
- Mallinckrodt Pharmaceuticals, 675 McDonnell Blvd, Bedminster, NJ, 63042, USA.
| |
Collapse
|
7
|
Fleischmann R, Furst DE, Connolly-Strong E, Liu J, Zhu J, Brasington R. Repository Corticotropin Injection for Active Rheumatoid Arthritis Despite Aggressive Treatment: A Randomized Controlled Withdrawal Trial. Rheumatol Ther 2020; 7:327-344. [PMID: 32185745 PMCID: PMC7211215 DOI: 10.1007/s40744-020-00199-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The objective of this study was to assess efficacy and safety of repository corticotropin injection (RCI) in subjects with active rheumatoid arthritis (RA) despite treatment with a corticosteroid and one or two disease-modifying antirheumatic drugs (DMARDs). METHODS All subjects received open-label RCI (80 U) twice weekly for 12 weeks (part 1); only those with low disease activity [LDA; i.e., Disease Activity Score 28 joint count and erythrocyte sedimentation rate (DAS28-ESR) < 3.2] were randomly assigned to receive either RCI (80 U) or placebo twice weekly during the 12-week double-blind period (part 2). The primary efficacy endpoint was the proportion of subjects who achieved LDA at week 12. Secondary efficacy endpoints included proportions of subjects who maintained LDA during weeks 12 through 24 and achieved Clinical Disease Activity Index (CDAI) ≤ 10 at weeks 12 and 24. Safety was assessed via adverse event reports. RESULTS Of the 259 enrolled subjects, 235 completed part 1; 154 subjects (n = 77 each for RCI and placebo) entered part 2, and 127 (RCI, n = 71; placebo, n = 56) completed. At week 12, 163 subjects (62.9%) achieved LDA and 169 (65.3%) achieved CDAI ≤ 10 (both p < 0.0001). At week 24, 47 (61.0%) RCI-treated and 32 (42.1%) placebo-treated subjects maintained LDA (p = 0.019); 66 (85.7%) RCI-treated and 50 (65.8%) placebo-treated subjects maintained CDAI ≤ 10 (p = 0.004). No unexpected safety signals were observed. CONCLUSIONS RCI was effective and generally safe in patients with active RA despite corticosteroid/DMARD therapy. By week 12, > 60% of patients achieved LDA, which was maintained with 12 additional weeks of treatment. Most patients who achieved LDA maintained it for 3 months after RCI discontinuation. TRIAL REGISTRATION Clinicaltrials.gov identifier NCT02919761.
Collapse
Affiliation(s)
- Roy Fleischmann
- University of Texas Southwestern Medical Center, Metroplex Clinical Research Center, 8144 Walnut Hill Lane, Suite 810, Dallas, TX, 75231, USA.
| | - Daniel E Furst
- Division of Rheumatology, David Geffen School of Medicine, University of California Los Angeles, Peter Morton Medical Building, 200, UCLA Medical Plaza, Suite 365-B, Los Angeles, CA, 90095, USA
| | | | - Jingyu Liu
- Mallinckrodt Pharmaceuticals, 1425 US-206, Bedminster, NJ, 07921, USA
| | - Julie Zhu
- Mallinckrodt Pharmaceuticals, 1425 US-206, Bedminster, NJ, 07921, USA
| | - Richard Brasington
- Division of Rheumatology, Washington University School of Medicine, 4921 Parkview Place, Suite C, 5th Floor, St. Louis, MO, 63110, USA
| |
Collapse
|
8
|
Montero-Melendez T, Nagano A, Chelala C, Filer A, Buckley CD, Perretti M. Therapeutic senescence via GPCR activation in synovial fibroblasts facilitates resolution of arthritis. Nat Commun 2020; 11:745. [PMID: 32029712 PMCID: PMC7005314 DOI: 10.1038/s41467-020-14421-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 12/16/2019] [Indexed: 02/08/2023] Open
Abstract
Rheumatoid arthritis affects individuals commonly during the most productive years of adulthood. Poor response rates and high costs associated with treatment mandate the search for new therapies. Here we show that targeting a specific G-protein coupled receptor promotes senescence in synovial fibroblasts, enabling amelioration of joint inflammation. Following activation of the melanocortin type 1 receptor (MC1), synovial fibroblasts acquire a senescence phenotype characterized by arrested proliferation, metabolic re-programming and marked gene alteration resembling the remodeling phase of wound healing, with increased matrix metalloproteinase expression and reduced collagen production. This biological response is attained by selective agonism of MC1, not shared by non-selective ligands, and dependent on downstream ERK1/2 phosphorylation. In vivo, activation of MC1 leads to anti-arthritic effects associated with induction of senescence in the synovial tissue and cartilage protection. Altogether, selective activation of MC1 is a viable strategy to induce cellular senescence, affording a distinct way to control joint inflammation and arthritis.
Collapse
Affiliation(s)
- Trinidad Montero-Melendez
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK. .,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK.
| | - Ai Nagano
- Barts Cancer Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Claude Chelala
- Barts Cancer Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.,Life Sciences Initiative, Queen Mary University of London, London, UK
| | - Andrew Filer
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Institute of Inflammation and Ageing, Birmingham, UK
| | - Christopher D Buckley
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Institute of Inflammation and Ageing, Birmingham, UK.,Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Mauro Perretti
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK. .,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK.
| |
Collapse
|
9
|
Can VC, Locke IC, Kaneva MK, Kerrigan MJP, Merlino F, De Pascale C, Grieco P, Getting SJ. Novel anti-inflammatory and chondroprotective effects of the human melanocortin MC1 receptor agonist BMS-470539 dihydrochloride and human melanocortin MC3 receptor agonist PG-990 on lipopolysaccharide activated chondrocytes. Eur J Pharmacol 2020; 872:172971. [PMID: 32004526 DOI: 10.1016/j.ejphar.2020.172971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 01/15/2020] [Accepted: 01/27/2020] [Indexed: 12/01/2022]
Abstract
Human melanocortin MC1 and MC3 receptors expressed on C-20/A4 chondrocytes exhibit chondroprotective and anti-inflammatory effects when activated by melanocortin peptides. Nearly 9 million people in the UK suffer from osteoarthritis, and bacterial infections play a role in its development. Here, we evaluate the effect of a panel of melanocortin peptides with different selectivity for human melanocortin MC1 (α-MSH, BMS-470539 dihydrochloride) and MC3 ([DTrp8]-γ-MSH, PG-990) receptors and C-terminal peptide α-MSH11-13(KPV), on inhibiting LPS-induced chondrocyte death, pro-inflammatory mediators and induction of anti-inflammatory proteins. C-20/A4 chondrocytes were treated with a panel of melanocortin peptides prophylactically and therapeutically in presence of LPS (0.1 μg/ml). The chondroprotective properties of these peptides determined by cell viability assay, RT-PCR, ELISA for detection of changes in inflammatory markers (IL-6, IL-8 and MMP-1, -3 and -13) and western blotting for expression of the anti-inflammatory protein heme-oxygenase-1. C-20/A4 expressed human melanocortin MC1 and MC3 receptors and melanocortin peptides elevated cAMP. LPS stimulation caused a reduction in C-20/A4 viability, attenuated by the human melanocortin MC1 receptor agonist BMS-470539 dihydrochloride, and MC3 receptor agonists PG-990 and [DTrp8]-γ-MSH. Prophylactic and therapeutic regimes of [DTrp8]-γ-MSH significantly inhibited LPS-induced modulation of cartilage-damaging IL-6, IL-8, MMPs -1,-3 and -13 mediators both prophylactically and therapeutically, whilst human melanocortin MC1 and MC3 receptor agonists promoted an increase in HO-1 production. In the presence of LPS, activation of human melanocortin MC1 and MC3 receptors provided potent chondroprotection, upregulation of anti-inflammatory proteins and downregulation of inflammatory and proteolytic mediators involved in cartilage degradation, suggesting a new avenue for osteoarthritis treatment.
Collapse
Affiliation(s)
- Vedia C Can
- College of Liberal Arts and Sciences, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK
| | - Ian C Locke
- College of Liberal Arts and Sciences, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK
| | - Magdalena K Kaneva
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mark J P Kerrigan
- Plymouth College of Art, Tavistock Place, Plymouth, Devon, PL4 8AT, UK
| | - Francesco Merlino
- Department of Pharmacy, University of Naples, Via D. Montesano, 49 - 80131, Naples, Italy
| | - Clara De Pascale
- College of Liberal Arts and Sciences, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK
| | - Paolo Grieco
- Department of Pharmacy, University of Naples, Via D. Montesano, 49 - 80131, Naples, Italy
| | - Stephen J Getting
- College of Liberal Arts and Sciences, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK.
| |
Collapse
|
10
|
Wang W, Guo DY, Lin YJ, Tao YX. Melanocortin Regulation of Inflammation. Front Endocrinol (Lausanne) 2019; 10:683. [PMID: 31649620 PMCID: PMC6794349 DOI: 10.3389/fendo.2019.00683] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/19/2019] [Indexed: 12/18/2022] Open
Abstract
Adrenocorticotropic hormone (ACTH), and α-, β-, and γ-melanocyte-stimulating hormones (α-, β-, γ-MSH), collectively known as melanocortins, together with their receptors (melanocortin receptors), are components of an ancient modulatory system. The clinical use of ACTH in the treatment of rheumatoid arthritis started in 1949, originally thought that the anti-inflammatory action was through hypothalamus-pituitary-adrenal axis and glucocorticoid-dependent. Subsequent decades have witnessed extensive attempts in unraveling the physiology and pharmacology of the melanocortin system. It is now known that ACTH, together with α-, β-, and γ-MSHs, also possess glucocorticoid-independent anti-inflammatory and immunomodulatory effects by activating the melanocortin receptors expressed in the brain or peripheral immune cells. This review will briefly introduce the melanocortin system and highlight the action of melanocortins in the regulation of immune functions from in vitro, in vivo, preclinical, and clinical studies. The potential therapeutic use of melanocortins are also summarized.
Collapse
Affiliation(s)
- Wei Wang
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
| | - Dong-Yu Guo
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
- *Correspondence: Dong-Yu Guo
| | - Yue-Jun Lin
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Ya-Xiong Tao
| |
Collapse
|
11
|
Do Neuroendocrine Peptides and Their Receptors Qualify as Novel Therapeutic Targets in Osteoarthritis? Int J Mol Sci 2018; 19:ijms19020367. [PMID: 29373492 PMCID: PMC5855589 DOI: 10.3390/ijms19020367] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 01/15/2023] Open
Abstract
Joint tissues like synovium, articular cartilage, meniscus and subchondral bone, are targets for neuropeptides. Resident cells of these tissues express receptors for various neuroendocrine-derived peptides including proopiomelanocortin (POMC)-derived peptides, i.e., α-melanocyte-stimulating hormone (α-MSH), adrenocorticotropin (ACTH) and β-endorphin (β-ED), and sympathetic neuropeptides like vasoactive intestinal peptide (VIP) and neuropeptide y (NPY). Melanocortins attained particular attention due to their immunomodulatory and anti-inflammatory effects in several tissues and organs. In particular, α-MSH, ACTH and specific melanocortin-receptor (MCR) agonists appear to have promising anti-inflammatory actions demonstrated in animal models of experimentally induced arthritis and osteoarthritis (OA). Sympathetic neuropeptides have obtained increasing attention as they have crucial trophic effects that are critical for joint tissue and bone homeostasis. VIP and NPY are implicated in direct and indirect activation of several anabolic signaling pathways in bone and synovial cells. Additionally, pituitary adenylate cyclase-activating polypeptide (PACAP) proved to be chondroprotective and, thus, might be a novel target in OA. Taken together, it appears more and more likely that the anabolic effects of these neuroendocrine peptides or their respective receptor agonists/antagonists may be exploited for the treatment of patients with inflammatory and degenerative joint diseases in the future.
Collapse
|
12
|
Thomas AC, Heux P, Santos C, Arulvasan W, Solanky N, Carey ME, Gerrelli D, Kinsler VA, Etchevers HC. Widespread dynamic and pleiotropic expression of the melanocortin-1-receptor (MC1R) system is conserved across chick, mouse and human embryonic development. Birth Defects Res 2018; 110:443-455. [PMID: 29316344 PMCID: PMC6446732 DOI: 10.1002/bdr2.1183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/17/2017] [Indexed: 12/28/2022]
Abstract
Background MC1R, a G‐protein coupled receptor with high affinity for alpha‐melanocyte stimulating hormone (αMSH), modulates pigment production in melanocytes from many species and is associated with human melanoma risk. MC1R mutations affecting human skin and hair color also have pleiotropic effects on the immune response and analgesia. Variants affecting human pigmentation in utero alter the congenital phenotype of both oculocutaneous albinism and congenital melanocytic naevi, and have a possible effect on birthweight. Methods and Results By in situ hybridization, RT‐PCR and immunohistochemistry, we show that MC1R is widely expressed during human, chick and mouse embryonic and fetal stages in many somatic tissues, particularly in the musculoskeletal and nervous systems, and conserved across evolution in these three amniotes. Its dynamic pattern differs from that of TUBB3, a gene overlapping the same locus in humans and encoding class III β‐tubulin. The αMSH peptide and the transcript for its precursor, pro‐opiomelanocortin (POMC), are similarly present in numerous extra‐cutaneous tissues. MC1R genotyping of variants p.(V60M) and p.(R151C) was undertaken for 867 healthy children from the Avon Longitudinal Study of Parent and Children (ALSPAC) cohort, and birthweight modeled using multiple logistic regression analysis. A significant positive association initially found between R151C and birth weight, independent of known birth weight modifiers, was not reproduced when combined with data from an independent genome‐wide association study of 6,459 additional members of the same cohort. Conclusions These data clearly show a new and hitherto unsuspected role for MC1R in noncutaneous solid tissues before birth.
Collapse
Affiliation(s)
- Anna C Thomas
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, United Kingdom
| | - Pauline Heux
- GMGF, Aix Marseille University, INSERM, UMR_S910, Marseille, France
| | - Chloe Santos
- Birth Defects Research Centre, UCL Institute of Child Health, London, United Kingdom
| | - Wisenave Arulvasan
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, United Kingdom
| | - Nita Solanky
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, United Kingdom
| | - Magalie E Carey
- GMGF, Aix Marseille University, INSERM, UMR_S910, Marseille, France
| | - Dianne Gerrelli
- Birth Defects Research Centre, UCL Institute of Child Health, London, United Kingdom
| | - Veronica A Kinsler
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, United Kingdom.,Department of Paediatric Dermatology, Great Ormond Street Hospital for Children, London, United Kingdom
| | | |
Collapse
|
13
|
Aggarwal R, Marder G, Koontz DC, Nandkumar P, Qi Z, Oddis CV. Efficacy and safety of adrenocorticotropic hormone gel in refractory dermatomyositis and polymyositis. Ann Rheum Dis 2017; 77:720-727. [DOI: 10.1136/annrheumdis-2017-212047] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 01/08/2023]
Abstract
AimTo evaluate the efficacy, safety, tolerability and steroid-sparing effect of repository corticotropin injection (RCI), in an open-label clinical trial, in refractory adult polymyositis (PM) and dermatomyositis (DM).MethodsAdults with refractory PM and DM were enrolled by two centres. Inclusion criteria included refractory disease defined as failing glucocorticoid and/or ≥1 immunosuppressive agent, as well as active disease defined as significant muscle weakness and >2 additional abnormal core set measures (CSMs) or a cutaneous 10 cm Visual Analogue Scale score of ≥3 cm and at least three other abnormal CSMs. All patients received RCI of 80 units subcutaneously twice weekly for 24 weeks. The primary end point for the trial was the International Myositis Assessment and Clinical Studies definition of improvement. Secondary end points included safety, tolerability, steroid-sparing as well as the 2016 American College of Rheumatology (ACR)/European League Against Rheumatism myositis response criteria (EULAR)ResultsTen of the 11 enrolled subjects (6 DM, 4 PM) completed the study. Seven of 10 met the primary end point of efficacy at a median of 8 weeks. There was a significant decrease in prednisone dose from baseline to conclusion (18.5 (15.7) vs 2.3 (3.2); P<0.01). Most individual CSMs improved at week 24 compared with the baseline, with the muscle strength improving by >10% and the physician global by >40%. RCI was considered safe and tolerable. No patient developed significant weight gain or an increase of haemoglobin A1c or cushingoid features.ConclusionTreatment with RCI was effective in 70% of patients, safe and tolerable, and led to a steroid dose reduction in patients with adult myositis refractory to glucocorticoid and traditional immunosuppressive drugs.Trial registration numberNCT01906372; Results.
Collapse
|
14
|
Abstract
The past two decades have witnessed major advancements in the clinical management of inflammatory arthritis, with new treatment strategies in some cases providing a marked improvement in patient outcomes. However, it is widely accepted that current strategies do not provide the 'total therapeutic solution', in view of the proportion of patients who do not respond to therapy, the important incidence of adverse effects and the development of an immune response against antibodies or fusion proteins used therapeutically. Moreover, although some therapeutic approaches can effectively bring about an end to inflammation, mechanisms to promote the recovery and/or repair of damage are required. Harnessing the concepts and mechanisms of the resolution of inflammation is a new approach to the treatment of inflammatory pathologies; this approach could help address the unmet need for new therapeutic approaches that not only control but also revert the course of inflammatory rheumatic diseases.
Collapse
|
15
|
Madeira MFM, Queiroz-Junior CM, Montero-Melendez T, Werneck SMC, Corrêa JD, Soriani FM, Garlet GP, Souza DG, Teixeira MM, Silva TA, Perretti M. Melanocortin agonism as a viable strategy to control alveolar bone loss induced by oral infection. FASEB J 2016; 30:4033-4041. [PMID: 27535487 DOI: 10.1096/fj.201600790r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/08/2016] [Indexed: 11/11/2022]
Abstract
Alveolar bone loss is a result of an aggressive form of periodontal disease (PD) associated with Aggregatibacter actinomycetemcomitans (Aa) infection. PD is often observed with other systemic inflammatory conditions, including arthritis. Melanocortin peptides activate specific receptors to exert antiarthritic properties, avoiding excessing inflammation and modulating macrophage function. Recent work has indicated that melanocortin can control osteoclast development and function, but whether such protection takes place in infection-induced alveolar bone loss has not been investigated. The purpose of this study was to evaluate the role of melanocortin in Aa-induced PD. Mice were orally infected with Aa and treated with the melanocortin analog DTrp8-γMSH or vehicle daily for 30 d. Then, periodontal tissue was collected and analyzed. Aa-infected mice treated with DTrp8-γMSH presented decreased alveolar bone loss and a lower degree of neutrophil infiltration in the periodontium than vehicle-treated animals; these actions were associated with reduced periodontal levels of TNF-α, IFN-γ, and IL-17A. In vitro experiments with cells differentiated into osteoclasts showed that osteoclast formation and resorptive activity were attenuated after treatment with DTrp8-γMSH. Thus, melanocortin agonism could represent an innovative way to tame overexuberant inflammation and, at the same time, preserve bone physiology, as seen after Aa infection.-Madeira, M. F. M., Queiroz-Junior, C. M., Montero-Melendez, T., Werneck, S. M. C., Corrêa, J. D., Soriani, F. M., Garlet, G. P., Souza, D. G., Teixeira, M. M., Silva, T. A., Perretti, M. Melanocortin agonism as a viable strategy to control alveolar bone loss induced by oral infection.
Collapse
Affiliation(s)
- Mila F M Madeira
- Department of Microbiology, Biologic Science Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; .,Department of Oral Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Celso M Queiroz-Junior
- Department of Morphology, Biologic Science Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Trinidad Montero-Melendez
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Silvia M C Werneck
- Department of Microbiology, Biologic Science Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jôice D Corrêa
- Department of Oral Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Frederico M Soriani
- Department of General Biology, Biologic Science Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gustavo P Garlet
- Department of Biological Sciences, School of Dentistry of Bauru, Universidade de São Paulo, Bauru, São Paulo, Brazil; and
| | - Daniele G Souza
- Department of Microbiology, Biologic Science Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mauro M Teixeira
- Department of Biochemistry and Immunology, Biologic Science Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tarcilia A Silva
- Department of Oral Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
16
|
Böhm M, Apel M, Lowin T, Lorenz J, Jenei-Lanzl Z, Capellino S, Dosoki H, Luger TA, Straub RH, Grässel S. α-MSH modulates cell adhesion and inflammatory responses of synovial fibroblasts from osteoarthritis patients. Biochem Pharmacol 2016; 116:89-99. [PMID: 27396757 DOI: 10.1016/j.bcp.2016.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/05/2016] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The synovium is a target for neuropeptides. Melanocortins have attained particular attention as they elicit antiinflammatory effects. Although synovial fluid from patients with rheumatic diseases contains α-melanocyte-stimulating hormone (α-MSH) it is unknown whether synovial fibroblasts generate α-MSH and respond to melanocortins. METHODS Synovial tissue was obtained from osteoarthritis (OA) patients. Cells were isolated and prepared either as primary mixed synoviocytes or propagated as synovial fibroblasts (OASFs). Melanocortin receptor (MC) and proopiomelanocortin (POMC) expression were investigated by endpoint RT-PCR, immunofluorescence and Western immunoblotting. Functional coupling of MC1 was assessed by cAMP and Ca(2+) assays. Cell adhesion was monitored by the xCELLigence system. Secretion of α-MSH, tumour necrosis factor (TNF), interleukin (IL)-6 and IL-8 was determined by ELISA. RESULTS OASFs in vitro expressed MC1. MC1 transcripts were present in synovial tissue and appropriate immunoreactivity was detected in synovial fibroblasts in situ. OASFs contained truncated POMC transcripts but neither full-length POMC mRNA, POMC protein nor α-MSH were detectable. In accordance with this only truncated POMC transcripts were present in synovial tissue. α-MSH increased cAMP dose-dependently but did not alter calcium in OASFs. α-MSH also enhanced adhesion of OASFs to fibronectin and reduced TNF, IL-6 and IL-8 secretion in primary mixed synoviocyte cultures. In OASFs, α-MSH modulated basal and TNF/IL-1β-mediated secretion of IL-6 and IL-8. CONCLUSION Synovial fibroblasts express MC1in vitro and in situ. α-MSH elicits biological effects in these cells suggesting an endogenous immunomodulatory role of melanocortins within the synovium. Our results encourage in vivo studies with melanocortins in OA models.
Collapse
Affiliation(s)
- Markus Böhm
- Dept. of Dermatology, Laboratory for Neuroendocrinology and Interdisciplinary Endocrinology, University of Münster, Münster, Germany.
| | - Mara Apel
- Dept. of Dermatology, Laboratory for Neuroendocrinology and Interdisciplinary Endocrinology, University of Münster, Münster, Germany.
| | - Torsten Lowin
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Dept. of Internal Medicine I, University of Regensburg, Regensburg, Germany.
| | - Julia Lorenz
- Dept. of Orthopaedic Surgery, University of Regensburg, Regensburg, Germany; Centre for Medical Biotechnology, BioPark I, Regensburg, Germany.
| | - Zsuzsa Jenei-Lanzl
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Dept. of Internal Medicine I, University of Regensburg, Regensburg, Germany.
| | - Silvia Capellino
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Dept. of Internal Medicine I, University of Regensburg, Regensburg, Germany.
| | - Heba Dosoki
- Dept. of Dermatology, Laboratory for Neuroendocrinology and Interdisciplinary Endocrinology, University of Münster, Münster, Germany.
| | - Thomas A Luger
- Dept. of Dermatology, Laboratory for Neuroendocrinology and Interdisciplinary Endocrinology, University of Münster, Münster, Germany.
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Dept. of Internal Medicine I, University of Regensburg, Regensburg, Germany.
| | - Susanne Grässel
- Dept. of Orthopaedic Surgery, University of Regensburg, Regensburg, Germany; Centre for Medical Biotechnology, BioPark I, Regensburg, Germany.
| |
Collapse
|
17
|
Qiao Y, Berg AL, Wang P, Ge Y, Quan S, Zhou S, Wang H, Liu Z, Gong R. MC1R is dispensable for the proteinuria reducing and glomerular protective effect of melanocortin therapy. Sci Rep 2016; 6:27589. [PMID: 27270328 PMCID: PMC4897792 DOI: 10.1038/srep27589] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/17/2016] [Indexed: 12/21/2022] Open
Abstract
Melanocortin therapy by using adrenocorticotropic hormone (ACTH) or non-steroidogenic melanocortin peptides attenuates proteinuria and glomerular injury in experimental glomerular diseases and induces remission of nephrotic syndrome in patients with diverse glomerulopathies, even those resistant to steroids. The underlying mechanism remains elusive, but the role of melanocortin 1 receptor (MC1R) has been implicated and was examined here. Four patients with congenital red hair color and nephrotic syndrome caused by idiopathic membranous nephropathy or focal segmental glomerulosclerosis were confirmed by gene sequencing to bear dominant-negative MC1R mutations. Despite prior corticosteroid resistance, all patients responded to ACTH monotherapy and ultimately achieved clinical remission, inferring a steroidogenic-independent and MC1R-dispensable anti-proteinuric effect of melanocortin signaling. In confirmatory animal studies, the protective effect of [Nle4, D-Phe7]-α-melanocyte stimulating hormone (NDP-MSH), a potent non-steroidogenic pan-melanocortin receptor agonist, on the lipopolysaccharide elicited podocytopathy was completely preserved in MC1R-null mice, marked by reduced albuminuria and diminished histologic signs of podocyte injury. Moreover, in complementary in vitro studies, NDP-MSH attenuated the lipopolysaccharide elicited apoptosis, hypermotility and impairment of filtration barrier function equally in primary podocytes derived from MC1R-null and wild-type mice. Collectively, our findings suggest that melanocortin therapy confers a proteinuria reducing and podoprotective effect in proteinuric glomerulopathies via MC1R-independent mechanisms.
Collapse
Affiliation(s)
- Yingjin Qiao
- Institute of Nephrology, Blood Purification Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Division of Kidney Disease and Hypertension, Department of Medicine, Rhode Island Hospital, Brown University School of Medicine, Providence, Rhode Island, USA
| | - Anna-Lena Berg
- Department of Nephrology, Lund University Hospital, Lund, Sweden
| | - Pei Wang
- Division of Kidney Disease and Hypertension, Department of Medicine, Rhode Island Hospital, Brown University School of Medicine, Providence, Rhode Island, USA
| | - Yan Ge
- Division of Kidney Disease and Hypertension, Department of Medicine, Rhode Island Hospital, Brown University School of Medicine, Providence, Rhode Island, USA
| | - Songxia Quan
- Division of Kidney Disease and Hypertension, Department of Medicine, Rhode Island Hospital, Brown University School of Medicine, Providence, Rhode Island, USA
| | - Sijie Zhou
- Division of Kidney Disease and Hypertension, Department of Medicine, Rhode Island Hospital, Brown University School of Medicine, Providence, Rhode Island, USA
| | - Hai Wang
- Department of Pathology, Rhode Island Hospital, Brown University School of Medicine, Providence, Rhode Island, USA
| | - Zhangsuo Liu
- Institute of Nephrology, Blood Purification Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rujun Gong
- Division of Kidney Disease and Hypertension, Department of Medicine, Rhode Island Hospital, Brown University School of Medicine, Providence, Rhode Island, USA
| |
Collapse
|
18
|
Activation of Melanocortin Receptors MC 1 and MC 5 Attenuates Retinal Damage in Experimental Diabetic Retinopathy. Mediators Inflamm 2016; 2016:7368389. [PMID: 26949291 PMCID: PMC4753692 DOI: 10.1155/2016/7368389] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/01/2015] [Accepted: 12/15/2015] [Indexed: 01/11/2023] Open
Abstract
We hypothesize that melanocortin receptors (MC) could activate tissue protective circuit in a model of streptozotocin- (STZ-) induced diabetic retinopathy (DR) in mice. At 12–16 weeks after diabetes induction, fluorescein angiography (FAG) revealed an approximate incidence of 80% microvascular changes, typical of DR, in the animals, without signs of vascular leakage. Occludin progressively decreased in the retina of mice developing retinopathy. qPCR of murine retina revealed expression of two MC receptors, Mc1r and Mc5r. The intravitreal injection (5 μL) of the selective MC1 small molecule agonist BMS-470539 (33 μmol) and the MC5 peptidomimetic agonist PG-901 (7.32 nM) elicited significant protection with regular course and caliber of retinal vessels, as quantified at weeks 12 and 16 after diabetes induction. Mouse retina homogenate settings indicated an augmented release of IL-1α, IL-1β, IL-6, MIP-1α, MIP-2α, MIP-3α, and VEGF from diabetic compared to nondiabetic mice. Application of PG20N or AGRP and MC5 and MC1 antagonist, respectively, augmented the release of cytokines, while the agonists BMS-470539 and PG-901 almost restored normal pattern of these mediators back to nondiabetic values. Similar changes were quantified with respect to Ki-67 staining. Finally, application of MC3-MC4 agonist/antagonists resulted to be inactive with respect to all parameters under assessment.
Collapse
|
19
|
Lewis R, Barrett-Jolley R. Changes in Membrane Receptors and Ion Channels as Potential Biomarkers for Osteoarthritis. Front Physiol 2015; 6:357. [PMID: 26648874 PMCID: PMC4664663 DOI: 10.3389/fphys.2015.00357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/11/2015] [Indexed: 01/01/2023] Open
Abstract
Osteoarthritis (OA), a degenerative joint condition, is currently difficult to detect early enough for any of the current treatment options to be completely successful. Early diagnosis of this disease could increase the numbers of patients who are able to slow its progression. There are now several diseases where membrane protein biomarkers are used for early diagnosis. The numbers of proteins in the membrane is vast and so it is a rich source of potential biomarkers for OA but we need more knowledge of these before they can be considered practical biomarkers. How are they best measured and are they selective to OA or even certain types of OA? The first step in this process is to identify membrane proteins that change in OA. Here, we summarize several ion channels and receptors that change in OA models and/or OA patients, and may thus be considered candidates as novel membrane biomarkers of OA.
Collapse
Affiliation(s)
- Rebecca Lewis
- Faculty of Health and Medical Sciences, School of Veterinary Medicine and Science, University of Surrey Guildford, UK
| | - Richard Barrett-Jolley
- Department of Musculoskeletal Biology, Faculty of Health and Life Sciences, Institute of Ageing and Chronic Disease, University of Liverpool Liverpool, UK
| |
Collapse
|
20
|
Capsoni F, Ongari AM, Lonati C, Accetta R, Gatti S, Catania A. α-Melanocyte-stimulating-hormone (α-MSH) modulates human chondrocyte activation induced by proinflammatory cytokines. BMC Musculoskelet Disord 2015; 16:154. [PMID: 26093672 PMCID: PMC4475285 DOI: 10.1186/s12891-015-0615-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/08/2015] [Indexed: 11/23/2022] Open
Abstract
Background Alpha-melanocyte-stimulating-hormone (α-MSH) has marked anti-inflammatory potential. Proinflammatory cytokines are critical mediators of the disturbed cartilage homeostasis in osteoarthritis, inhibiting anabolic activities and increasing catabolic activities in chondrocytes. Since human chondrocytes express α-MSH receptors, we evaluated the role of the peptide in modulating chondrocyte production of pro-inflammatory cytokines, matrix metalloproteinases (MMPs), tissue inhibitors of MMPs (TIMPs), inducible nitric oxide synthase (iNOS) and nitric oxide (NO) in response to interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Methods Human articular chondrocytes were obtained from osteoarthritic joint cartilage from subjects undergoing hip routine arthroplasty procedures. The cells were cultured with or without α-MSH in the presence of IL-1β or TNF-α. Cell-free supernatants were collected and cells immediately lysed for RNA purification. Expression of cytokines, MMPs, TIMPs, iNOS was determined by Reverse Transcription Real-time Polymerase Chain Reaction and enzyme-linked immunosorbent assay. Griess reaction was used for NO quantification. Results Gene expression and secretion of IL-6, IL-8, MMP-3, MMP-13 were significantly increased in IL-1β or TNF-α-stimulated chondrocytes; α-MSH did not modify the release of IL-6 or IL-8 while the peptide significantly reduced their gene expression on TNF-α-stimulated cells. A significant inhibition of MMP3 gene expression and secretion from IL-1β or TNFα-stimulated chondrocytes was induced by α-MSH. On the other hand, α-MSH did not modify the release of MMP-13 by cytokine-stimulated chondrocyte but significantly decreased gene expression of the molecule on TNF-α-stimulated cells. Detectable amount of TIMP-3 and TIMP-4 were present in the supernatants of resting chondrocytes and a significant increase of TIMP-3 gene expression and release was induced by α-MSH on unstimulated cells. TIMP-3 secretion and gene expression were significantly increased in IL-1β-stimulated chondrocytes and α-MSH down-regulated gene expression but not secretion of the molecule. TIMP-4 gene expression (but not secretion) was moderately induced in IL-1β-stimulated chondrocytes with a down-regulation exerted by α-MSH. IL-1β and TNF-α were potent stimuli for NO production and iNOS gene expression by chondrocytes; no inhibition was induced by α-MSH on cytokine-stimulated NO production, while the peptide significantly reduced gene expression of iNOS. Conclusions Our results underscore a potential anti-inflammatory and chondroprotective activity exerted by α-MSH, increasing TIMP-3 gene expression and release on resting cells and down- modulating TNF-α-induced activation of human chondrocytes. However, the discrepancy between the influences exerted by α-MSH on gene expression and protein release as well as the difference in the inhibitory pattern exerted by α-MSH in TNF-α- or IL-1β-stimulated cells leave some uncertainty on the role of the peptide on chondrocyte modulation.
Collapse
Affiliation(s)
- Franco Capsoni
- Allergy, Clinical Immunology & Rheumatology Unit, Istituto Auxologico Italiano, IRCCS, University of Milan, Piazzale Brescia, 20 - 20149, Milano, Italy.
| | - Anna Maria Ongari
- Allergy, Clinical Immunology & Rheumatology Unit, Istituto Auxologico Italiano, IRCCS, University of Milan, Piazzale Brescia, 20 - 20149, Milano, Italy.
| | - Caterina Lonati
- Center for Preclinical Investigation, Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Milan, Italy.
| | - Riccardo Accetta
- Traumatology and First Aid Unit, Istituto Ortopedico Galeazzi, IRCCS, Milan, Italy.
| | - Stefano Gatti
- Center for Preclinical Investigation, Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Milan, Italy.
| | - Anna Catania
- Center for Preclinical Investigation, Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Milan, Italy.
| |
Collapse
|
21
|
Abstract
Although anti-inflammatory drugs are among the most common class of marketed drugs, chronic inflammatory conditions such as rheumatoid arthritis, multiple sclerosis or inflammatory bowel disease still represent unmet needs. New first-in-class drugs might be discovered in the future but the repurpose and further development of old drugs also offers promise for these conditions. This is the case of the melanocortin adrenocorticotropin hormone, ACTH, used in patients since 1952 but regarded as the last therapeutic option when other medications, such as glucocorticoids, cannot be used. Better understanding on its physiological and pharmacological mechanisms of actions and new insights on melanocortin receptors biology have revived the interest on rescuing this old and effective drug. ACTH does not only induce cortisol production, as previously assumed, but it also exerts anti-inflammatory actions by targeting melanocortin receptors present on immune cells. The endogenous agonists for these receptors (ACTH, α-, β-, and γ-melanocyte stimulating hormones), are also produced locally by immune cells, indicating the existence of an endogenous anti-inflammatory tissue-protective circuit involving the melanocortin system. These findings suggested that new ACTH-like melanocortin drugs devoid of steroidogenic actions, and hence side effects, could be developed. This review summarizes the actions of ACTH and melanocortin drugs, their role as endogenous pro-resolving mediators, their current clinical use and provides an overview on how recent advances on GPCR functioning may lead to a novel class of drugs.
Collapse
|
22
|
Kaneva MK, Kerrigan MJ, Grieco P, Curley GP, Locke IC, Getting SJ. Melanocortin peptides protect chondrocytes from mechanically induced cartilage injury. Biochem Pharmacol 2014; 92:336-47. [DOI: 10.1016/j.bcp.2014.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 10/24/2022]
|
23
|
Lorenz J, Seebach E, Hackmayer G, Greth C, Bauer RJ, Kleinschmidt K, Bettenworth D, Böhm M, Grifka J, Grässel S. Melanocortin 1 receptor-signaling deficiency results in an articular cartilage phenotype and accelerates pathogenesis of surgically induced murine osteoarthritis. PLoS One 2014; 9:e105858. [PMID: 25191747 PMCID: PMC4156302 DOI: 10.1371/journal.pone.0105858] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 07/25/2014] [Indexed: 11/18/2022] Open
Abstract
Proopiomelanocortin-derived peptides exert pleiotropic effects via binding to melanocortin receptors (MCR). MCR-subtypes have been detected in cartilage and bone and mediate an increasing number of effects in diathrodial joints. This study aims to determine the role of MC1-receptors (MC1) in joint physiology and pathogenesis of osteoarthritis (OA) using MC1-signaling deficient mice (Mc1re/e). OA was surgically induced in Mc1re/e and wild-type (WT) mice by transection of the medial meniscotibial ligament. Histomorphometry of Safranin O stained articular cartilage was performed with non-operated controls (11 weeks and 6 months) and 4/8 weeks past surgery. µCT-analysis for assessing epiphyseal bone architecture was performed as a longitudinal study at 4/8 weeks after OA-induction. Collagen II, ICAM-1 and MC1 expression was analysed by immunohistochemistry. Mc1re/e mice display less Safranin O and collagen II stained articular cartilage area compared to WT prior to OA-induction without signs of spontaneous cartilage surface erosion. This MC1-signaling deficiency related cartilage phenotype persisted in 6 month animals. At 4/8 weeks after OA-induction cartilage erosions were increased in Mc1re/e knees paralleled by weaker collagen II staining. Prior to OA-induction, Mc1re/e mice do not differ from WT with respect to bone parameters. During OA, Mc1re/e mice developed more osteophytes and had higher epiphyseal bone density and mass. Trabecular thickness was increased while concomitantly trabecular separation was decreased in Mc1re/e mice. Numbers of ICAM-positive chondrocytes were equal in non-operated 11 weeks Mc1re/e and WT whereas number of positive chondrocytes decreased during OA-progression. Unchallenged Mc1re/e mice display smaller articular cartilage covered area without OA-related surface erosions indicating that MC1-signaling is critical for proper cartilage matrix integrity and formation. When challenged with OA, Mc1re/e mice develop a more severe OA-pathology. Our data suggest that MC1-signaling protects against cartilage degradation and subchondral bone sclerosis in OA indicating a beneficial role of the POMC system in joint pathophysiology.
Collapse
Affiliation(s)
- Julia Lorenz
- Experimental Orthopedics, University Hospital of Regensburg, Regensburg, Bavaria, Germany
- Orthopedic Surgery, University Hospital of Regensburg, Bad Abbach, Bavaria, Germany
| | - Elisabeth Seebach
- Research Centre for Experimental Orthopedics, Orthopedic University Hospital Heidelberg, Heidelberg, Baden-Württemberg, Germany
| | - Gerit Hackmayer
- Experimental Orthopedics, University Hospital of Regensburg, Regensburg, Bavaria, Germany
- Dermatology, University Hospital of Münster, Münster, North Rhine-Westphalia, Germany
| | - Carina Greth
- Research Centre for Experimental Orthopedics, Orthopedic University Hospital Heidelberg, Heidelberg, Baden-Württemberg, Germany
| | - Richard J. Bauer
- Oral and Maxillofacial Surgery, University Hospital of Regensburg, Regensburg, Bavaria, Germany
| | - Kerstin Kleinschmidt
- TIP Immunology, Merck Serono Global Research & Development, Darmstadt, Hessen, Germany
| | - Dominik Bettenworth
- Medical Hospital B, University Hospital of Münster, Münster, North Rhine-Westphalia, Germany
| | - Markus Böhm
- Dermatology, University Hospital of Münster, Münster, North Rhine-Westphalia, Germany
| | - Joachim Grifka
- Orthopedic Surgery, University Hospital of Regensburg, Bad Abbach, Bavaria, Germany
| | - Susanne Grässel
- Experimental Orthopedics, University Hospital of Regensburg, Regensburg, Bavaria, Germany
- Orthopedic Surgery, University Hospital of Regensburg, Bad Abbach, Bavaria, Germany
| |
Collapse
|
24
|
Ahmed TJ, Kaneva MK, Pitzalis C, Cooper D, Perretti M. Resolution of inflammation: examples of peptidergic players and pathways. Drug Discov Today 2014; 19:1166-71. [PMID: 24880108 DOI: 10.1016/j.drudis.2014.05.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 05/21/2014] [Indexed: 10/25/2022]
Abstract
Appreciation for the resolution of inflammation has increased in recent years, with the detailing of specific mediators and pathways and the identification of (receptor) targets that could be exploited for innovative anti-inflammatory drug discovery programmes. Thus, acute inflammation resolves by the intervention of endogenous anti-inflammatory mediators that reduce white blood cell recruitment and promote removal of migrated leukocytes by apoptosis and phagocytosis by resident 'cleaners', such as the macrophages, resulting ultimately in the repair of the inflamed or injured tissue. Here, we explore a selection of pro-resolving proteinaceous mediators and targets, such as melanocortins and galectins.
Collapse
Affiliation(s)
- Tazeen J Ahmed
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, UK
| | - Magdalena K Kaneva
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, UK
| | - Costantino Pitzalis
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, UK
| | - Dianne Cooper
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, UK
| | - Mauro Perretti
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
25
|
Association between periodontal disease and inflammatory arthritis reveals modulatory functions by melanocortin receptor type 3. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2333-41. [PMID: 24979595 DOI: 10.1016/j.ajpath.2014.04.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/14/2014] [Accepted: 04/22/2014] [Indexed: 12/21/2022]
Abstract
Because there is clinical evidence for an association between periodontal disease and rheumatoid arthritis, it is important to develop suitable experimental models to explore pathogenic mechanisms and therapeutic opportunities. The K/BxN serum model of inflammatory arthritis was applied using distinct protocols, and modulation of joint disruption afforded by dexamethasone and calcitonin was established in comparison to the melanocortin (MC) receptor agonist DTrp(8)-γ-melanocyte stimulating hormone (MSH; DTrp). Wild-type and MC receptor type 3 (MC3)-null mice of different ages were also used. There was significant association between severity of joint disease, induced with distinct protocols and volumes of the arthritogenic K/BxN serum, and periodontal bone damage. Therapeutic treatment with 10 μg dexamethasone, 30 ng elcatonin, and 20 μg DTrp per mouse revealed unique and distinctive pharmacological properties, with only DTrp protecting both joint and periodontal tissue. Further analyses in nonarthritic animals revealed higher susceptibility to periodontal bone loss in Mc3r(-/-) compared with wild-type mice, with significant exacerbation at 14 weeks of age. These data reveal novel protective properties of endogenous MC3 on periodontal status in health and disease and indicate that MC3 activation could lead to the development of a new genus of anti-arthritic bone-sparing therapeutics.
Collapse
|
26
|
Curbing Inflammation through Endogenous Pathways: Focus on Melanocortin Peptides. Int J Inflam 2013; 2013:985815. [PMID: 23738228 PMCID: PMC3664505 DOI: 10.1155/2013/985815] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/11/2013] [Accepted: 04/14/2013] [Indexed: 12/26/2022] Open
Abstract
The resolution of inflammation is now known to be an active process, armed with a multitude of mediators both lipid and protein in nature. Melanocortins are peptides endowed with considerable promise with their proresolution and anti-inflammatory effects in preclinical models of inflammatory disease, with tissue protective effects. These peptides and their targets are appealing because they can be seen as a natural way of inducing these effects as they harness endogenous pathways of control. Whereas most of the information generated about these mediators derives from several acute models of inflammation (such as zymosan induced peritonitis), there is some indication that these mediators may inhibit chronic inflammation by modulating cytokines, chemokines, and leukocyte apoptosis. In addition, proresolving mediators and their mimics have often been tested alongside therapeutic protocols, hence have been tested in settings more relevant to real life clinical scenarios. We provide here an overview on some of these mediators with a focus on melanocortin peptides and receptors, proposing that they may unveil new opportunities for innovative treatments of inflammatory arthritis.
Collapse
|
27
|
Kaneva MK, Kerrigan MJP, Grieco P, Curley GP, Locke IC, Getting SJ. Chondroprotective and anti-inflammatory role of melanocortin peptides in TNF-α activated human C-20/A4 chondrocytes. Br J Pharmacol 2013; 167:67-79. [PMID: 22471953 DOI: 10.1111/j.1476-5381.2012.01968.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Melanocortin MC(1) and MC(3 ) receptors, mediate the anti-inflammatory effects of melanocortin peptides. Targeting these receptors could therefore lead to development of novel anti-inflammatory therapeutic agents. We investigated the expression of MC(1) and MC(3) receptors on chondrocytes and the role of α-melanocyte-stimulating hormone (α-MSH) and the selective MC(3) receptor agonist, [DTRP(8) ]-γ-MSH, in modulating production of inflammatory cytokines, tissue-destructive proteins and induction of apoptotic pathway(s) in the human chondrocytic C-20/A4 cells. EXPERIMENTAL APPROACH Effects of α-MSH, [DTRP(8) ]-γ-MSH alone or in the presence of the MC(3/4) receptor antagonist, SHU9119, on TNF-α induced release of pro-inflammatory cytokines, MMPs, apoptotic pathway(s) and cell death in C-20/A4 chondrocytes were investigated, along with their effect on the release of the anti-inflammatory cytokine IL-10. KEY RESULTS C-20/A4 chondrocytes expressed functionally active MC(1,3) receptors. α-MSH and [DTRP(8) ]-γ-MSH treatment, for 30 min before TNF-α stimulation, provided a time-and-bell-shaped concentration-dependent decrease in pro-inflammatory cytokines (IL-1β, IL-6 and IL-8) release and increased release of the chondroprotective and anti-inflammatory cytokine, IL-10, whilst decreasing expression of MMP1, MMP3, MMP13 genes.α-MSH and [DTRP(8) ]-γ-MSH treatment also inhibited TNF-α-induced caspase-3/7 activation and chondrocyte death. The effects of [DTRP(8) ]-γ-MSH, but not α-MSH, were abolished by the MC(3/4) receptor antagonist, SHU9119. CONCLUSION AND IMPLICATIONS Activation of MC(1) /MC(3) receptors in C-20/A4 chondrocytes down-regulated production of pro-inflammatory cytokines and cartilage-destroying proteinases, inhibited initiation of apoptotic pathways and promoted release of chondroprotective and anti-inflammatory cytokines. Developing small molecule agonists to MC(1) /MC(3) receptors could be a viable approach for developing chondroprotective and anti-inflammatory therapies in rheumatoid and osteoarthritis.
Collapse
|
28
|
Gruis NA, van Doorn R. Melanocortin 1 receptor function: shifting gears from determining skin and nevus phenotype to fetal growth. J Invest Dermatol 2012; 132:1953-5. [PMID: 22797298 DOI: 10.1038/jid.2012.216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Variants in the MC1R gene influence skin pigmentation and thereby modulate risk of melanoma and basal and squamous cell carcinoma. In this issue, Kinsler et al. report an association between the MC1R genotype and the development of congenital melanocytic nevi. Further, higher birth weight was observed in carriers of MC1R variants, suggesting a role for the melanocortin network in fetal growth.
Collapse
|
29
|
Böhm M, Grässel S. Role of proopiomelanocortin-derived peptides and their receptors in the osteoarticular system: from basic to translational research. Endocr Rev 2012; 33:623-51. [PMID: 22736674 PMCID: PMC3410228 DOI: 10.1210/er.2011-1016] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Proopiomelanocortin (POMC)-derived peptides such as melanocortins and β-endorphin (β-ED) exert their pleiotropic effects via binding to melanocortin receptors (MCR) and opioid receptors (OR). There is now compelling evidence for the existence of a functional POMC system within the osteoarticular system. Accordingly, distinct cell types of the synovial tissue and bone have been identified to generate POMC-derived peptides like β-ED, ACTH, or α-MSH. MCR subtypes, especially MC1R, MC2R (the ACTH receptor), MC3R, and MC4R, but also the μ-OR and δ-OR, have been detected in various cells of the synovium, cartilage, and bone. The respective ligands of these POMC-derived peptide receptors mediate an increasing number of newly recognized biological effects in the osteoarticular system. These include bone mineralization and longitudinal growth, cell proliferation and differentiation, extracellular matrix synthesis, osteoprotection, and immunomodulation. Importantly, bone formation is also regulated by the central melanocortin system via a complex hormonal interplay with other organs and tissues involved in energy metabolism. Among the POMC-derived peptides examined in cell culture systems from osteoarticular tissue and in animal models of experimentally induced arthritis, α-MSH, ACTH, and MC3R-specific agonists appear to have the most promising antiinflammatory actions. The effects of these melanocortin peptides may be exploited in future for the treatment of patients with inflammatory and degenerative joint diseases.
Collapse
Affiliation(s)
- Markus Böhm
- Laboratory for Neuroendocrinology of the Skin and Interdisciplinary Endocrinology, Department of Dermatology, University of Münster, Von Esmarch-Strasse 58, D-48149 Münster, Germany.
| | | |
Collapse
|
30
|
Opioid system and Alzheimer's disease. Neuromolecular Med 2012; 14:91-111. [PMID: 22527793 DOI: 10.1007/s12017-012-8180-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 04/04/2012] [Indexed: 12/15/2022]
Abstract
The opioid system may be involved in the pathogenesis of AD, including cognitive impairment, hyperphosphorylated tau, Aβ production, and neuroinflammation. Opioid receptors influence the regulation of neurotransmitters such as acetylcholine, norepinephrine, GABA, glutamate, and serotonin which have been implicated in the pathogenesis of AD. Opioid system has a close relation with Aβ generation since dysfunction of opioid receptors retards the endocytosis and degradation of BACE1 and γ-secretase and upregulates BACE1 and γ-secretase, and subsequently, the production of Aβ. Conversely, activation of opioid receptors increases the endocytosis of BACE1 and γ-secretase and downregulates BACE1 and γ-secretase, limiting the production of Aβ. The dysfunction of opioid system (opioid receptors and opioid peptides) may contribute to hyperphosphorylation of tau and neuroinflammation, and accounts for the degeneration of cholinergic neurons and cognitive impairment. Thus, the opioid system is potentially related to AD pathology and may be a very attractive drug target for novel pharmacotherapies of AD.
Collapse
|
31
|
Shen PC, Shiau AL, Jou IM, Lee CH, Tai MH, Juan HY, Lin PR, Liu GS, Wu CL, Hsieh JL. Inhibition of cartilage damage by pro-opiomelanocortin prohormone overexpression in a rat model of osteoarthritis. Exp Biol Med (Maywood) 2011; 236:334-40. [DOI: 10.1258/ebm.2010.010319] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pro-opiomelanocortin (POMC) is a precursor of various neuropeptides. POMC-derived neuropeptides are potent inflammation inhibitors and immunosuppressants. Evidence that osteoarthritis (OA) is an inflammatory disease is accumulating. We assessed whether intra-articular gene delivery of POMC ameliorates experimentally induced OA in a rat model. OA was induced in Wistar rats by anterior cruciate ligament-transection (ACLT) in the knee of one hind limb. Adenoviral vector encoding human POMC (AdPOMC) was injected intra-articularly into the knee joints after ACLT. The transgene expression and the inflammatory responses were evaluated using immunoblotting, immunohistochemistry and enzyme-linked immunosorbent assay. The treated joints were assessed histologically for manifestations of the disease. Human POMC was expressed in the chondrocytes and synovial membrane after the intra-articular injection. POMC gene transfer reduced nuclear factor- κB activity and the levels of interleukin-1 β in HTB-94 chondrosarcoma cells and Raw 264.7 macrophages; it also reduced microvessel density in the synovium. Histological examination showed that symptoms of OA in AdPOMC-treated rats were less severe than in rats treated with either empty adenoviral vector (AdNull) or normal saline. Intra-articular injection of adenoviral vectors expressing POMC significantly suppressed the progression and severity of OA, and reduced inflammatory responses and angiogenesis. POMC gene delivery may offer novel therapeutic approach for treating OA.
Collapse
Affiliation(s)
- Po-Chuan Shen
- Department of Orthopedic Surgery, Tainan Hospital, Department of Health, Executive Yuan, Tainan 70043
| | | | - I-Ming Jou
- Department of Orthopedics, National Cheng Kung University Medical College, Tainan 70101
| | - Che-Hsin Lee
- Department of Microbiology, School of Medicine, China Medical University, Taichung 40402
| | - Ming-Hong Tai
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804
| | | | - Pey-Ru Lin
- Department of Microbiology and Immunology
| | - Guei-Sheung Liu
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807
| | - Chao-Liang Wu
- Department of Biochemistry and Molecular Biology, National Cheng Kung University Medical College, 1 University Road, Tainan 70101
| | - Jeng-Long Hsieh
- Department of Nursing, Chung Hwa University of Medical Technology, 89 Wun-Hwa 1st Street, Jen-Te, Tainan Hsien 717, Taiwan
| |
Collapse
|
32
|
|
33
|
Patel HB, Bombardieri M, Sampaio ALF, D’Acquisto F, Gray M, Grieco P, Getting SJ, Pitzalis C, Perretti M. Anti‐inflammatory and antiosteoclastogenesis properties of endogenous melanocortin receptor type 3 in experimental arthritis. FASEB J 2010. [DOI: 10.1096/fj.10.167759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hetal B. Patel
- William Harvey Research InstituteBarts and London School of MedicineQueen Mary University of London London UK
| | - Michele Bombardieri
- William Harvey Research InstituteBarts and London School of MedicineQueen Mary University of London London UK
| | - André L. F. Sampaio
- William Harvey Research InstituteBarts and London School of MedicineQueen Mary University of London London UK
| | - Fulvio D’Acquisto
- William Harvey Research InstituteBarts and London School of MedicineQueen Mary University of London London UK
| | - Mohini Gray
- Medical Research Council Centre for Inflammation, Queen's Building, University of Edinburgh Edinburgh UK
| | - Paolo Grieco
- Department of Pharmaceutical Chemistry and ToxicologyUniversity of Naples Naples Italy
| | | | - Costantino Pitzalis
- William Harvey Research InstituteBarts and London School of MedicineQueen Mary University of London London UK
| | - Mauro Perretti
- William Harvey Research InstituteBarts and London School of MedicineQueen Mary University of London London UK
| |
Collapse
|
34
|
Patel HB, Bombardieri M, Sampaio ALF, D'Acquisto F, Gray M, Grieco P, Getting SJ, Pitzalis C, Perretti M. Anti-inflammatory and antiosteoclastogenesis properties of endogenous melanocortin receptor type 3 in experimental arthritis. FASEB J 2010; 24:4835-43. [DOI: 10.1096/fj.10-167759] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hetal B. Patel
- William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, UK
| | - Michele Bombardieri
- William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, UK
| | - André L. F. Sampaio
- William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, UK
| | - Fulvio D'Acquisto
- William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, UK
| | - Mohini Gray
- Medical Research Council Centre for Inflammation, Queen's Building, University of Edinburgh, Edinburgh, UK
| | - Paolo Grieco
- Department of Pharmaceutical Chemistry and Toxicology, University of Naples, Naples, Italy; and
| | | | - Costantino Pitzalis
- William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, UK
| | - Mauro Perretti
- William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, UK
| |
Collapse
|
35
|
Rickert M, Dreier R, Radons J, Opolka A, Grifka J, Anders S, Grässel S. Interaction of periosteal explants with articular chondrocytes alters expression profile of matrix metalloproteinases. J Orthop Res 2010; 28:1576-85. [PMID: 20973060 DOI: 10.1002/jor.21154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Periosteal tissue is a source of growth factors and of osteochondral progenitor cells which makes it suitable for implantation in chondral defects as known in autologous chondrocyte implantation. The aim of this study was to determine the interaction between periosteal tissue and articular chondrocytes with respect to catabolic effectors such as matrix metalloproteinases (MMPs) and IL-6. Human articular chondrocytes were cultured for up to 28 days as micromass pellets in coculture either with physical contact to periosteal explants or allowing paracrine interactions only. Expression, secretion, and activation of MMPs and IL-6 were analyzed in chondrocytes, periosteum, and culture supernatants. Both coculture conditions influence gene expression levels of MMPs and IL-6 in a time-, culture-, and tissue-dependent manner. Coculturing of periosteum with chondrocytes promotes gene expression and secretion of IL-6. In periosteum, physical contact inhibits MMP-2 and MMP-13 gene expression while paracrine coculture induces expression of IL-6, MMP-2, -7, and -13. Pro-MMP-2, -7, and -13 were detected in supernatants of all culture regimens whereas pro-MMP-9 was secreted from periosteum only. As a balanced amount of MMP activity is likely required to achieve sufficient integration of the regenerate tissue with the surrounding healthy cartilage, an exceeding expression of proteinases might result in degradation, hypertrophy or rejection of the graft.
Collapse
Affiliation(s)
- Matthias Rickert
- Department of Orthopaedic Surgery, Experimental Orthopaedics, University Hospital of Regensburg, 93077 Bad Abbach, Germany
| | | | | | | | | | | | | |
Collapse
|