1
|
Alippe Y, Mbalaviele G. Omnipresence of inflammasome activities in inflammatory bone diseases. Semin Immunopathol 2019; 41:607-618. [PMID: 31520179 PMCID: PMC6814643 DOI: 10.1007/s00281-019-00753-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/29/2019] [Indexed: 12/17/2022]
Abstract
The inflammasomes are intracellular protein complexes that are assembled in response to a variety of perturbations including infections and injuries. Failure of the inflammasomes to rapidly clear the insults or restore tissue homeostasis can result in chronic inflammation. Recurring inflammation is also provoked by mutations that cause the constitutive assembly of the components of these protein platforms. Evidence suggests that chronic inflammation is a shared mechanism in bone loss associated with aging, dysregulated metabolism, autoinflammatory, and autoimmune diseases. Mechanistically, inflammatory mediators promote bone resorption while suppressing bone formation, an imbalance which over time leads to bone loss and increased fracture risk. Thus, while acute inflammation is important for the maintenance of bone integrity, its chronic state damages this tissue. In this review, we discuss the role of the inflammasomes in inflammation-induced osteolysis.
Collapse
Affiliation(s)
- Yael Alippe
- Division of Bone and Mineral Diseases, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8301, St. Louis, MO, 63110, USA
| | - Gabriel Mbalaviele
- Division of Bone and Mineral Diseases, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8301, St. Louis, MO, 63110, USA.
| |
Collapse
|
2
|
Campillo-Gimenez L, Renaudin F, Jalabert M, Gras P, Gosset M, Rey C, Sarda S, Collet C, Cohen-Solal M, Combes C, Lioté F, Ea HK. Inflammatory Potential of Four Different Phases of Calcium Pyrophosphate Relies on NF-κB Activation and MAPK Pathways. Front Immunol 2018; 9:2248. [PMID: 30356764 PMCID: PMC6189479 DOI: 10.3389/fimmu.2018.02248] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022] Open
Abstract
Background: Calcium pyrophosphate (CPP) microcrystal deposition is associated with wide clinical phenotypes, including acute and chronic arthritis, that are interleukin 1β (IL-1β)-driven. Two CPP microcrystals, namely monoclinic and triclinic CPP dihydrates (m- and t-CPPD), have been identified in human tissues in different proportions according to clinical features. m-CPP tetrahydrate beta (m-CPPTβ) and amorphous CPP (a-CPP) phases are considered as m- and t-CPPD crystal precursors in vitro. Objectives: We aimed to decipher the inflammatory properties of the three crystalline phases and one amorphous CPP phase and the intracellular pathways involved. Methods: The four synthesized CPP phases and monosodium urate crystals (MSU, as a control) were used in vitro to stimulate the human monocytic leukemia THP-1 cell line or bone marrow-derived macrophages (BMDM) isolated from WT or NLRP3 KO mice. The gene expression of pro- and anti-inflammatory cytokines was evaluated by quantitative PCR; IL-1β, IL-6 and IL-8 production by ELISA; and mitogen-activated protein kinase (MAPK) activation by immunoblot analysis. NF-κB activation was determined in THP-1 cells containing a reporter plasmid. In vivo, the inflammatory potential of CPP phases was assessed with the murine air pouch model via cell analysis and production of IL-1β and CXCL1 in the exudate. The role of NF-κB was determined by a pharmacological approach, both in vivo and in vitro. Results:In vitro, IL-1β production induced by m- and t-CPPD and m-CPPTβ crystals was NLRP3 inflammasome dependent. m-CPPD crystals were the most inflammatory by inducing a faster and higher production and gene expression of IL-1β, IL-6, and IL-8 than t-CPPD, m-CPPTβ and MSU crystals. The a-CPP phase did not show an inflammatory property. Accordingly, m-CPPD crystals led to stronger activation of NF-κB, p38, extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK) MAPKs. Inhibition of NF-κB completely abrogated IL-1β and IL-8 synthesis and secretion induced by all CPP crystals. Also, inhibition of JNK and ERK1/2 MAPKs decreased both IL-1β secretion and NF-κB activation induced by CPP crystals. In vivo, IL-1β and CXCL1 production and neutrophil infiltration induced by m-CPPD crystals were greatly decreased by NF-κB inhibitor treatment. Conclusion: Our results suggest that the inflammatory potential of different CPP crystals relies on their ability to activate the MAPK-dependent NF-κB pathway. Studies are ongoing to investigate the underlying mechanisms.
Collapse
Affiliation(s)
- Laure Campillo-Gimenez
- INSERM, UMR-S 1132, Université Paris Diderot (UFR Médecine), Sorbonne Paris Cité, Paris, France
| | - Félix Renaudin
- INSERM, UMR-S 1132, Université Paris Diderot (UFR Médecine), Sorbonne Paris Cité, Paris, France
| | - Maud Jalabert
- INSERM, UMR-S 1132, Université Paris Diderot (UFR Médecine), Sorbonne Paris Cité, Paris, France
| | - Pierre Gras
- CIRIMAT, Université de Toulouse, CNRS, INPT-ENSIACET, Toulouse, France
| | - Marjolaine Gosset
- EA2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School Faculty, Université Paris Descartes PRES Sorbonne Paris Cité, Montrouge, France
| | - Christian Rey
- CIRIMAT, Université de Toulouse, CNRS, INPT-ENSIACET, Toulouse, France
| | - Stéphanie Sarda
- CIRIMAT, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Corinne Collet
- INSERM, UMR-S 1132, Université Paris Diderot (UFR Médecine), Sorbonne Paris Cité, Paris, France.,Service de Biochimie, AP-HP, Hôpital Lariboisière, Paris, France
| | - Martine Cohen-Solal
- INSERM, UMR-S 1132, Université Paris Diderot (UFR Médecine), Sorbonne Paris Cité, Paris, France.,Service de Rhumatologie, AP-HP, Hôpital Lariboisière, Paris, France
| | - Christèle Combes
- CIRIMAT, Université de Toulouse, CNRS, INPT-ENSIACET, Toulouse, France
| | - Frédéric Lioté
- INSERM, UMR-S 1132, Université Paris Diderot (UFR Médecine), Sorbonne Paris Cité, Paris, France.,Service de Biochimie, AP-HP, Hôpital Lariboisière, Paris, France
| | - Hang-Korng Ea
- INSERM, UMR-S 1132, Université Paris Diderot (UFR Médecine), Sorbonne Paris Cité, Paris, France.,Service de Rhumatologie, AP-HP, Hôpital Lariboisière, Paris, France
| |
Collapse
|
3
|
Dautova Y, Kapustin AN, Pappert K, Epple M, Okkenhaug H, Cook SJ, Shanahan CM, Bootman MD, Proudfoot D. Calcium phosphate particles stimulate interleukin-1β release from human vascular smooth muscle cells: A role for spleen tyrosine kinase and exosome release. J Mol Cell Cardiol 2018; 115:82-93. [PMID: 29274344 PMCID: PMC5823844 DOI: 10.1016/j.yjmcc.2017.12.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 12/16/2022]
Abstract
AIMS Calcium phosphate (CaP) particle deposits are found in several inflammatory diseases including atherosclerosis and osteoarthritis. CaP, and other forms of crystals and particles, can promote inflammasome formation in macrophages leading to caspase-1 activation and secretion of mature interleukin-1β (IL-1β). Given the close association of small CaP particles with vascular smooth muscle cells (VSMCs) in atherosclerotic fibrous caps, we aimed to determine if CaP particles affected pro-inflammatory signalling in human VSMCs. METHODS AND RESULTS Using ELISA to measure IL-1β release from VSMCs, we demonstrated that CaP particles stimulated IL-1β release from proliferating and senescent human VSMCs, but with substantially greater IL-1β release from senescent cells; this required caspase-1 activity but not LPS-priming of cells. Potential inflammasome agonists including ATP, nigericin and monosodium urate crystals did not stimulate IL-1β release from VSMCs. Western blot analysis demonstrated that CaP particles induced rapid activation of spleen tyrosine kinase (SYK) (increased phospho-Y525/526). The SYK inhibitor R406 reduced IL-1β release and caspase-1 activation in CaP particle-treated VSMCs, indicating that SYK activation occurs upstream of and is required for caspase-1 activation. In addition, IL-1β and caspase-1 colocalised in intracellular endosome-like vesicles and we detected IL-1β in exosomes isolated from VSMC media. Furthermore, CaP particle treatment stimulated exosome secretion by VSMCs in a SYK-dependent manner, while the exosome-release inhibitor spiroepoxide reduced IL-1β release. CONCLUSIONS CaP particles stimulate SYK and caspase-1 activation in VSMCs, leading to the release of IL-1β, at least in part via exosomes. These novel findings in human VSMCs highlight the pro-inflammatory and pro-calcific potential of microcalcification.
Collapse
Affiliation(s)
- Yana Dautova
- Signalling Programme, Babraham Institute, Babraham, Cambridge CB22 3AT, UK
| | - Alexander N Kapustin
- Cardiovascular Division, James Black Centre, King's College London,125 Coldharbour Lane, London SE5 9NU, UK
| | - Kevin Pappert
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Essen-Duisburg, Essen 45117, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Essen-Duisburg, Essen 45117, Germany
| | - Hanneke Okkenhaug
- Signalling Programme, Babraham Institute, Babraham, Cambridge CB22 3AT, UK
| | - Simon J Cook
- Signalling Programme, Babraham Institute, Babraham, Cambridge CB22 3AT, UK
| | - Catherine M Shanahan
- Cardiovascular Division, James Black Centre, King's College London,125 Coldharbour Lane, London SE5 9NU, UK
| | - Martin D Bootman
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK
| | - Diane Proudfoot
- Signalling Programme, Babraham Institute, Babraham, Cambridge CB22 3AT, UK.
| |
Collapse
|
4
|
Mahon OR, O'Hanlon S, Cunningham CC, McCarthy GM, Hobbs C, Nicolosi V, Kelly DJ, Dunne A. Orthopaedic implant materials drive M1 macrophage polarization in a spleen tyrosine kinase- and mitogen-activated protein kinase-dependent manner. Acta Biomater 2018; 65:426-435. [PMID: 29104084 DOI: 10.1016/j.actbio.2017.10.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 12/17/2022]
Abstract
Total joint replacements (TJR) are costly procedures required to relieve pain and restore function in patients suffering from end-stage arthritis. Despite great progress in the development and durability of TJRs, the generation of prosthesis-associated wear particles over time leads to an inflammatory cascade which culminates in periprosthetic osteolysis. Studies suggest that wear particles drive the polarization/differentiation of immature macrophages towards a pro-inflammatory M1 phenotype rather than an anti-inflammatory M2 phenotype associated with normal bone and wound healing. This, in turn, contributes to the initiation of peri-implant inflammation. As a result, modulating M1 macrophage cytokine production has been recognised as a viable therapeutic option. The aim of this study was to examine the impact of hydroxyapatite (HA) and poly(methyl methacrylate) (PMMA) particles on human macrophage polarization by comparing their effect on M1/M2-associated gene expression using real-time PCR. Furthermore, using immunoblotting to assess kinase activation, we sought to identify the intracellular signalling molecules activated by PMMA/HA particles and to determine whether pharmacological blockade of these molecules impacts on macrophage phenotype and cytokine production as measured by ELISA. We report that wear particles preferentially polarize macrophages towards an M1 phenotype, an effect that is dependent on activation of the membrane proximal kinase, Syk and members of the mitogen-activated protein kinase (MAPK) family of signalling molecules. Pre-treatment of macrophages with Syk inhibitors (R788/piceatannol) or MAPK inhibitors (SB203580 and PD98059), not only prevents M1 polarization, but also attenuates production of key pro-inflammatory mediators that have been specifically implicated in periprosthetic osteolysis and osteoclast differentiation. STATEMENT OF SIGNIFICANCE It is now well established that wear-debris particles from implanted materials drive deleterious inflammatory responses which can eventually lead to implant loosening. In this study, we provide further insight into the specific cellular pathways activated by wear particles in primary human immune cells. We demonstrate that PMMA bone cement and hydroxyapatite, a commonly used biomaterial, drive the polarization of macrophages towards an inflammatory phenotype and identify the specific signalling molecules that are activated in this process. Pre-treatment of macrophages with pharmacological inhibitors of these molecules in turn prevents macrophage polarization and dampens inflammatory cytokine production. Hence these signalling molecules represent potential therapeutic targets to treat or possibly prevent particulate induced osteolysis.
Collapse
|
5
|
Corr EM, Cunningham CC, Helbert L, McCarthy GM, Dunne A. Osteoarthritis-associated basic calcium phosphate crystals activate membrane proximal kinases in human innate immune cells. Arthritis Res Ther 2017; 19:23. [PMID: 28173838 PMCID: PMC5296949 DOI: 10.1186/s13075-017-1225-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/06/2017] [Indexed: 12/14/2022] Open
Abstract
Background Osteoarthritis (OA) is a chronic debilitating joint disorder of particularly high prevalence in the elderly population. Intra-articular basic calcium phosphate (BCP) crystals are present in the majority of OA joints and are associated with severe degeneration. They are known to activate macrophages, synovial fibroblasts, and articular chondrocytes, resulting in increased cell proliferation and the production of pro-inflammatory cytokines and matrix metalloproteases (MMPs). This suggests a pathogenic role in OA by causing extracellular matrix degradation and subchondral bone remodelling. There are currently no disease-modifying drugs available for crystal-associated OA; hence, the aim of this study was to explore the inflammatory pathways activated by BCP crystals in order to identify potential therapeutic targets to limit crystal-induced inflammation. Methods Primary human macrophages and dendritic cells were stimulated with BCP crystals, and activation of spleen tyrosine kinase (Syk), phosphoinositide-3 kinase (PI3K), and mitogen-activated protein kinases (MAPKs) was detected by immunoblotting. Lipopolysaccharide (LPS)-primed macrophages were pre-treated with inhibitors of Syk, PI3K, and MAPKs prior to BCP stimulation, and cytokine production was quantified by enzyme-linked immunosorbent assay (ELISA). Aa an alternative, cells were treated with synovial fluid derived from osteoarthritic knees in the presence or absence of BCP crystals, and gene induction was assessed by real-time polymerase chain reaction (PCR). Results We demonstrate that exposure of primary human macrophages and dendritic cells to BCP crystals leads to activation of the membrane-proximal tyrosine kinases Syk and PI3K. Furthermore, we show that production of the pro-inflammatory cytokines interleukin (IL)-1α and IL-1β and phosphorylation of downstream MEK and ERK MAPKs is suppressed following treatment with inhibitors of Syk or PI3K. Finally, we demonstrate that treatment of macrophages with BCP crystals induces the production of the damage-associated molecule S100A8 and MMP1 in a Syk-dependent manner and that synovial fluid from OA patients together with BCP crystals exacerbates these effects. Conclusions We identify Syk and PI3K as key signalling molecules activated by BCP crystals prior to inflammatory cytokine and DAMP expression and therefore propose that Syk and PI3K represent potential targets for the treatment of BCP-related pathologies.
Collapse
Affiliation(s)
- Emma M Corr
- School of Biochemistry & Immunology and School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Clare C Cunningham
- School of Biochemistry & Immunology and School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Laura Helbert
- Mater Misericordiae University Hospital, Dublin, Ireland
| | | | - Aisling Dunne
- School of Biochemistry & Immunology and School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
6
|
Corr EM, Cunningham CC, Dunne A. Cholesterol crystals activate Syk and PI3 kinase in human macrophages and dendritic cells. Atherosclerosis 2016; 251:197-205. [DOI: 10.1016/j.atherosclerosis.2016.06.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 10/21/2022]
|
7
|
Shirasuna K, Karasawa T, Usui F, Kobayashi M, Komada T, Kimura H, Kawashima A, Ohkuchi A, Taniguchi S, Takahashi M. NLRP3 Deficiency Improves Angiotensin II-Induced Hypertension But Not Fetal Growth Restriction During Pregnancy. Endocrinology 2015; 156:4281-92. [PMID: 26360504 DOI: 10.1210/en.2015-1408] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Preeclampsia is a pregnancy-specific syndrome characterized by elevated blood pressure, proteinuria, and intrauterine growth restriction (IUGR). Although sterile inflammation appears to be involved, its pathogenesis remains unclear. Recent evidence indicates that sterile inflammation is mediated through the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasomes, composed of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and caspase-1. Here we investigated the role of the NLRP3 inflammasomes in the pathogenesis of preeclampsia using Nlrp3(-/-) and Asc(-/-) (Nlrp3 and Asc deficient) pregnant mice. During pregnancy in mice, continuous infusion of high-dose angiotensin II (AngII) induced hypertension, proteinuria, and IUGR, whereas infusion of low-dose AngII caused hypertension alone. AngII-induced hypertension was prevented in Nlrp3(-/-) mice but not in Asc(-/-), indicating that NLRP3 contributes to gestational hypertension independently of ASC-mediated inflammasomes. Although NLRP3 deficiency had no effect on IUGR, it restored the IL-6 up-regulation in the placenta and kidney of AngII-infused mice. Furthermore, treatment with hydralazine prevented the development of gestational hypertension but not IUGR or IL-6 expression in the placenta and kidney. These findings demonstrate that NLRP3 contributes to the development of gestational hypertension independently of the inflammasomes and that IUGR and kidney injury can occur independent of blood pressure elevation during pregnancy.
Collapse
Affiliation(s)
- Koumei Shirasuna
- Division of Inflammation Research (K.S., T.Ka., F.U., M.K., T.Ko., H.K., A.K., M.T.), Center for Molecular Medicine, Department of Obstetrics and Gynecology (A.O.), Jichi Medical University, Tochigi 329-0498, Japan; Department of Animal Science (K.S.), Tokyo University of Agriculture, Kanagawa 243-0034, Japan; and Department of Molecular Oncology (S.T.), Shinshu University Graduate School of Medicine, Nagano 390-8621, Japan
| | - Tadayoshi Karasawa
- Division of Inflammation Research (K.S., T.Ka., F.U., M.K., T.Ko., H.K., A.K., M.T.), Center for Molecular Medicine, Department of Obstetrics and Gynecology (A.O.), Jichi Medical University, Tochigi 329-0498, Japan; Department of Animal Science (K.S.), Tokyo University of Agriculture, Kanagawa 243-0034, Japan; and Department of Molecular Oncology (S.T.), Shinshu University Graduate School of Medicine, Nagano 390-8621, Japan
| | - Fumitake Usui
- Division of Inflammation Research (K.S., T.Ka., F.U., M.K., T.Ko., H.K., A.K., M.T.), Center for Molecular Medicine, Department of Obstetrics and Gynecology (A.O.), Jichi Medical University, Tochigi 329-0498, Japan; Department of Animal Science (K.S.), Tokyo University of Agriculture, Kanagawa 243-0034, Japan; and Department of Molecular Oncology (S.T.), Shinshu University Graduate School of Medicine, Nagano 390-8621, Japan
| | - Motoi Kobayashi
- Division of Inflammation Research (K.S., T.Ka., F.U., M.K., T.Ko., H.K., A.K., M.T.), Center for Molecular Medicine, Department of Obstetrics and Gynecology (A.O.), Jichi Medical University, Tochigi 329-0498, Japan; Department of Animal Science (K.S.), Tokyo University of Agriculture, Kanagawa 243-0034, Japan; and Department of Molecular Oncology (S.T.), Shinshu University Graduate School of Medicine, Nagano 390-8621, Japan
| | - Tadanori Komada
- Division of Inflammation Research (K.S., T.Ka., F.U., M.K., T.Ko., H.K., A.K., M.T.), Center for Molecular Medicine, Department of Obstetrics and Gynecology (A.O.), Jichi Medical University, Tochigi 329-0498, Japan; Department of Animal Science (K.S.), Tokyo University of Agriculture, Kanagawa 243-0034, Japan; and Department of Molecular Oncology (S.T.), Shinshu University Graduate School of Medicine, Nagano 390-8621, Japan
| | - Hiroaki Kimura
- Division of Inflammation Research (K.S., T.Ka., F.U., M.K., T.Ko., H.K., A.K., M.T.), Center for Molecular Medicine, Department of Obstetrics and Gynecology (A.O.), Jichi Medical University, Tochigi 329-0498, Japan; Department of Animal Science (K.S.), Tokyo University of Agriculture, Kanagawa 243-0034, Japan; and Department of Molecular Oncology (S.T.), Shinshu University Graduate School of Medicine, Nagano 390-8621, Japan
| | - Akira Kawashima
- Division of Inflammation Research (K.S., T.Ka., F.U., M.K., T.Ko., H.K., A.K., M.T.), Center for Molecular Medicine, Department of Obstetrics and Gynecology (A.O.), Jichi Medical University, Tochigi 329-0498, Japan; Department of Animal Science (K.S.), Tokyo University of Agriculture, Kanagawa 243-0034, Japan; and Department of Molecular Oncology (S.T.), Shinshu University Graduate School of Medicine, Nagano 390-8621, Japan
| | - Akihide Ohkuchi
- Division of Inflammation Research (K.S., T.Ka., F.U., M.K., T.Ko., H.K., A.K., M.T.), Center for Molecular Medicine, Department of Obstetrics and Gynecology (A.O.), Jichi Medical University, Tochigi 329-0498, Japan; Department of Animal Science (K.S.), Tokyo University of Agriculture, Kanagawa 243-0034, Japan; and Department of Molecular Oncology (S.T.), Shinshu University Graduate School of Medicine, Nagano 390-8621, Japan
| | - Shun'ichiro Taniguchi
- Division of Inflammation Research (K.S., T.Ka., F.U., M.K., T.Ko., H.K., A.K., M.T.), Center for Molecular Medicine, Department of Obstetrics and Gynecology (A.O.), Jichi Medical University, Tochigi 329-0498, Japan; Department of Animal Science (K.S.), Tokyo University of Agriculture, Kanagawa 243-0034, Japan; and Department of Molecular Oncology (S.T.), Shinshu University Graduate School of Medicine, Nagano 390-8621, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research (K.S., T.Ka., F.U., M.K., T.Ko., H.K., A.K., M.T.), Center for Molecular Medicine, Department of Obstetrics and Gynecology (A.O.), Jichi Medical University, Tochigi 329-0498, Japan; Department of Animal Science (K.S.), Tokyo University of Agriculture, Kanagawa 243-0034, Japan; and Department of Molecular Oncology (S.T.), Shinshu University Graduate School of Medicine, Nagano 390-8621, Japan
| |
Collapse
|
8
|
Xanthine oxidoreductase regulates macrophage IL1β secretion upon NLRP3 inflammasome activation. Nat Commun 2015; 6:6555. [PMID: 25800347 PMCID: PMC4382995 DOI: 10.1038/ncomms7555] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 02/02/2015] [Indexed: 02/07/2023] Open
Abstract
Activation of the NLRP3 inflammasome by microbial ligands or tissue damage requires intracellular generation of reactive oxygen species (ROS). We present evidence that macrophage secretion of IL1β upon stimulation with ATP, crystals or LPS is mediated by a rapid increase in the activity of xanthine oxidase (XO), the oxidized form of xanthine dehydrogenase, resulting in the formation of uric acid as well as ROS. We show that XO-derived ROS, but not uric acid, is the trigger for IL1β release and that XO blockade results in impaired IL1β and caspase1 secretion. XO is localized to both cytoplasmic and mitochondrial compartments and acts upstream to the PI3K-AKT signalling pathway that results in mitochondrial ROS generation. This pathway represents a mechanism for regulating NLRP3 inflammasome activation that may have therapeutic implications in inflammatory diseases.
Collapse
|
9
|
Chien CH, Lee MJ, Liou HC, Liou HH, Fu WM. Local immunosuppressive microenvironment enhances migration of melanoma cells to lungs in DJ-1 knockout mice. PLoS One 2015; 10:e0115827. [PMID: 25706411 PMCID: PMC4338246 DOI: 10.1371/journal.pone.0115827] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/02/2014] [Indexed: 01/12/2023] Open
Abstract
DJ-1 is an oncoprotein that promotes survival of cancer cells through anti-apoptosis. However, DJ-1 also plays a role in regulating IL-1β expression, and whether inflammatory microenvironment built by dysregulated DJ-1 affects cancer progression is still unclear. This study thus aimed to compare the metastatic abilities of melanoma cells in wild-type (WT) and DJ-1 knockout (KO) mice, and to check whether inflammatory microenvironment built in DJ-1 KO mice plays a role in migration of cancer cells to lungs. First, B16F10 melanoma cells (at 6×104) were injected into the femoral vein of mice, and formation of lung nodules, levels of lung IL-1β and serum cytokines, and accumulation of myeloid-derived suppressor cells (MDSCs) were compared between WT and DJ-1 KO mice. Second, the cancer-bearing mice were treated with an interleukin-1 beta (IL-1β) neutralizing antibody to see whether IL-1β is involved in the cancer migration. Finally, cultured RAW 264.7 macrophage and B16F10 melanoma cells were respectively treated with DJ-1 shRNA and recombinant IL-1β to explore underlying molecular mechanisms. Our results showed that IL-1β enhanced survival and colony formation of cultured melanoma cells, and that IL-1β levels were elevated both in DJ-1 KO mice and in cultured macrophage cells with DJ-1 knockdown. The elevated IL-1β correlated with higher accumulation of immunosuppressive MDSCs and formation of melanoma module in the lung of DJ-1 KO mice, and both can be decreased by treating mice with IL-1β neutralizing antibodies. Taken together, these results indicate that immunosuppressive tissue microenvironment built in DJ-1 KO mice can enhance lung migration of cancer, and IL-1β plays an important role in promoting the cancer migration.
Collapse
Affiliation(s)
- Chia-Hung Chien
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ming-Jen Lee
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Houng-Chi Liou
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Horng-Huei Liou
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Mei Fu
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
10
|
Shirasuna K, Usui F, Karasawa T, Kimura H, Kawashima A, Mizukami H, Ohkuchi A, Nishimura S, Sagara J, Noda T, Ozawa K, Taniguchi S, Takahashi M. Nanosilica-induced placental inflammation and pregnancy complications: Different roles of the inflammasome components NLRP3 and ASC. Nanotoxicology 2014; 9:554-67. [PMID: 25211550 DOI: 10.3109/17435390.2014.956156] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Despite the increasing commercial use of nanoparticles, little is known about their effects on placental inflammation and pregnancy complications. In this study, nanosilica (NS) particles upregulated the inflammasome component nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) and induced placental inflammation and reactive oxygen species (ROS) generation, resulting in pregnancy complications. Furthermore, NS-induced pregnancy complications were markedly improved in Nlrp3(-/-) mice but not in component apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC)-deficient (Asc(-/-)) mice, indicating the independence of NLRP3 inflammasomes. Pregnancy complications in Nlrp3(-/-) and Asc(-/-) mice phenotypes were dependent on the balance between interleukin (IL)-1α and IL-10. NS-induced pregnancy complications were completely prevented by either inhibition of ROS generation or forced expression of IL-10. Our findings provide important information about NS-induced placental inflammation and pregnancy complications and the novel pathophysiological roles of NLRP3 and ASC in pregnancy.
Collapse
|
11
|
Pele L, Haas CT, Hewitt R, Faria N, Brown A, Powell J. Artefactual nanoparticle activation of the inflammasome platform: in vitro evidence with a nano-formed calcium phosphate. Nanomedicine (Lond) 2014; 10:1379-90. [PMID: 24991724 DOI: 10.2217/nnm.14.58] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
AIM To determine whether in vitro experimental conditions dictate cellular activation of the inflammasome by apatitic calcium phosphate nanoparticles. MATERIAL & METHODS The responses of blood-derived primary human cells to in situ-formed apatite were investigated under different experimental conditions to assess the effect of aseptic culture, cell rest and duration of particle exposure. Cell death and particle uptake were assessed, while IL-1β and caspase 1 responses, with and without lipopolysaccharide prestimulation, were evaluated as markers of inflammasome activation. RESULTS Under carefully addressed experimental conditions, apatitic nanoparticles did not induce cell death or engage the inflammasome platform, although both could be triggered through artefacts of experimentation. CONCLUSION In vitro studies often predict that engineered nanoparticles, such as synthetic apatite, are candidates for inflammasome activation and, hence, are toxic. However, the experimental setting must be very carefully considered as it may promote false-positive outcomes.
Collapse
Affiliation(s)
- Laetitia Pele
- 1Medical Research Council - Human Nutrition Research, Elsie Widdowson Laboratory, Fulbourn Road, Cambridge, CB1 9NL, UK
| | - Carolin T Haas
- 1Medical Research Council - Human Nutrition Research, Elsie Widdowson Laboratory, Fulbourn Road, Cambridge, CB1 9NL, UK
| | - Rachel Hewitt
- 1Medical Research Council - Human Nutrition Research, Elsie Widdowson Laboratory, Fulbourn Road, Cambridge, CB1 9NL, UK
| | - Nuno Faria
- 1Medical Research Council - Human Nutrition Research, Elsie Widdowson Laboratory, Fulbourn Road, Cambridge, CB1 9NL, UK
| | - Andy Brown
- 2Institute for Materials Research, SPEME, University of Leeds, Leeds, LS2 9JT, UK
| | - Jonathan Powell
- 1Medical Research Council - Human Nutrition Research, Elsie Widdowson Laboratory, Fulbourn Road, Cambridge, CB1 9NL, UK
| |
Collapse
|
12
|
Durcan L, Bolster F, Kavanagh EC, McCarthy GM. The structural consequences of calcium crystal deposition. Rheum Dis Clin North Am 2014; 40:311-28. [PMID: 24703349 DOI: 10.1016/j.rdc.2014.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Calcium pyrophosphate dihydrate and basic calcium phosphate (BCP) crystals are the most common calcium-containing crystals associated with rheumatic disease. Clinical manifestations of calcium crystal deposition include acute or chronic inflammatory and degenerative arthritides and certain forms of periarthritis. The intra-articular presence of BCP crystals correlates with the degree of radiographic degeneration. Calcium crystal deposition contributes directly to joint degeneration. Vascular calcification is caused by the deposition of calcium hydroxyapatite crystals in the arterial intima. These deposits may contribute to local inflammation and promote further calcification, thus aggravating the atherosclerotic process. Calcium crystal deposition results in substantial structural consequence in humans.
Collapse
Affiliation(s)
- Laura Durcan
- Division of Rheumatology, Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland
| | - Ferdia Bolster
- Department of Radiology, Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland
| | - Eoin C Kavanagh
- Department of Radiology, Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland
| | - Geraldine M McCarthy
- Division of Rheumatology, Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland.
| |
Collapse
|
13
|
Duarte Campos DF, Vogt M, Lindner M, Kirsten A, Weber M, Megens RTA, Pyta J, Zenke M, Van Zandvoort M, Fischer H. Two-photon laser scanning microscopy as a useful tool for imaging and evaluating macrophage-, IL-4 activated macrophage- and osteoclast-basedIn Vitrodegradation of beta-tricalcium phosphate bone substitute material. Microsc Res Tech 2013; 77:143-52. [DOI: 10.1002/jemt.22321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/24/2013] [Accepted: 11/11/2013] [Indexed: 02/01/2023]
Affiliation(s)
- Daniela F. Duarte Campos
- Department of Dental Materials and Biomaterials Research; RWTH Aachen University Hospital; Pauwelsstrasse 30 52074 Aachen Germany
| | - Michael Vogt
- Interdisciplinary Centre for Clinical Research (IZKF Aachen), RWTH Aachen University Hospital; Pauwelsstrasse 30 52074 Aachen Germany
| | - Markus Lindner
- Department of Dental Materials and Biomaterials Research; RWTH Aachen University Hospital; Pauwelsstrasse 30 52074 Aachen Germany
| | - Armin Kirsten
- Department of Dental Materials and Biomaterials Research; RWTH Aachen University Hospital; Pauwelsstrasse 30 52074 Aachen Germany
| | - Michael Weber
- Department of Dental Materials and Biomaterials Research; RWTH Aachen University Hospital; Pauwelsstrasse 30 52074 Aachen Germany
| | - Remco T. A. Megens
- Interdisciplinary Centre for Clinical Research (IZKF Aachen), RWTH Aachen University Hospital; Pauwelsstrasse 30 52074 Aachen Germany
- Institute for Molecular Cardiovascular Research; RWTH Aachen University Hospital; Pauwelsstrasse 30 52074 Aachen Germany
- Institute for Cardiovascular Prevention; Ludwig-Maximilians University; Munich 80336 Germany
| | - Jürgen Pyta
- Institute for Molecular Cardiovascular Research; RWTH Aachen University Hospital; Pauwelsstrasse 30 52074 Aachen Germany
- Institute for Cardiovascular Prevention; Ludwig-Maximilians University; Munich 80336 Germany
| | - Martin Zenke
- Institute for Biomedical Engineering; Department of Cell Biology; Helmholtz Institute for Biomedical Engineering; RWTH Aachen University Hospital; Pauwelsstrasse 30 52074 Aachen Germany
| | - Marc Van Zandvoort
- Institute for Molecular Cardiovascular Research; RWTH Aachen University Hospital; Pauwelsstrasse 30 52074 Aachen Germany
- Department of Genetics and Cell Biology, Sector Molecular Cell Biology, CARIM; Maastricht University; Universiteitssingel 50; 6229 ER Maastricht The Netherlands
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research; RWTH Aachen University Hospital; Pauwelsstrasse 30 52074 Aachen Germany
| |
Collapse
|
14
|
Abstract
Calcific aortic valve disease (CAVD) increasingly afflicts our aging population. One third of our elderly have echocardiographic or radiological evidence of calcific aortic valve sclerosis, an early and subclinical form of CAVD. Age, sex, tobacco use, hypercholesterolemia, hypertension, and type II diabetes mellitus all contribute to the risk of disease that has worldwide distribution. On progression to its most severe form, calcific aortic stenosis, CAVD becomes debilitating and devastating, and 2% of individuals >60 years are affected by calcific aortic stenosis to the extent that surgical intervention is required. No effective pharmacotherapies exist for treating those at risk for clinical progression. It is becoming increasingly apparent that a diverse spectrum of cellular and molecular mechanisms converge to regulate valvular calcium load; this is evidenced not only in histopathologic heterogeneity of CAVD, but also from the multiplicity of cell types that can participate in valve biomineralization. In this review, we highlight our current understanding of CAVD disease biology, emphasizing molecular and cellular aspects of its regulation. We end by pointing to important biological and clinical questions that must be answered to enable sophisticated disease staging and the development of new strategies to treat CAVD medically.
Collapse
Affiliation(s)
- Dwight A Towler
- Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute at Lake Nona, Orlando, FL 32827, USA.
| |
Collapse
|
15
|
Fann DYW, Lee SY, Manzanero S, Chunduri P, Sobey CG, Arumugam TV. Pathogenesis of acute stroke and the role of inflammasomes. Ageing Res Rev 2013; 12:941-66. [PMID: 24103368 DOI: 10.1016/j.arr.2013.09.004] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 09/12/2013] [Accepted: 09/19/2013] [Indexed: 12/20/2022]
Abstract
Inflammation is an innate immune response to infection or tissue damage that is designed to limit harm to the host, but contributes significantly to ischemic brain injury following stroke. The inflammatory response is initiated by the detection of acute damage via extracellular and intracellular pattern recognition receptors, which respond to conserved microbial structures, termed pathogen-associated molecular patterns or host-derived danger signals termed damage-associated molecular patterns. Multi-protein complexes known as inflammasomes (e.g. containing NLRP1, NLRP2, NLRP3, NLRP6, NLRP7, NLRP12, NLRC4, AIM2 and/or Pyrin), then process these signals to trigger an effector response. Briefly, signaling through NLRP1 and NLRP3 inflammasomes produces cleaved caspase-1, which cleaves both pro-IL-1β and pro-IL-18 into their biologically active mature pro-inflammatory cytokines that are released into the extracellular environment. This review will describe the molecular structure, cellular signaling pathways and current evidence for inflammasome activation following cerebral ischemia, and the potential for future treatments for stroke that may involve targeting inflammasome formation or its products in the ischemic brain.
Collapse
|
16
|
So A, Ives A, Joosten LAB, Busso N. Targeting inflammasomes in rheumatic diseases. Nat Rev Rheumatol 2013; 9:391-9. [DOI: 10.1038/nrrheum.2013.61] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Fetuin-A-containing calciprotein particles reduce mineral stress in the macrophage. PLoS One 2013; 8:e60904. [PMID: 23577176 PMCID: PMC3620111 DOI: 10.1371/journal.pone.0060904] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/05/2013] [Indexed: 12/14/2022] Open
Abstract
The formation of fetuin-A-containing calciprotein particles (CPP) may facilitate the clearance of calcium phosphate nanocrystals from the extracellular fluid. These crystals may otherwise seed extra-osseous mineralization. Fetuin-A is a partially phosphorylated glycoprotein that plays a critical role in stabilizing these particles, inhibiting crystal growth and aggregation. CPP removal is thought to be predominantly mediated by cells of the reticuloendothelial system via type I and type II class A scavenger receptor (SR-AI/II). Naked calcium phosphate crystals are known to stimulate macrophages and other cell types in vitro, but little is known of the effect of CPP on these cells. We report here, for the first time, that CPP induce expression and secretion of tumour necrosis factor (TNF)-α, interleukin (IL)-1β in murine RAW 264.7 macrophages. Importantly, however, CPP induced significantly lower cytokine secretion than hydroxyapatite (HAP) crystals of equivalent size and calcium content. Furthermore, CPP only had a modest effect on macrophage viability and apoptosis, even at very high levels, compared to HAP crystals, which were strongly pro-apoptotic at much lower levels. Fetuin-A phosphorylation was found to modulate the effect of CPP on cytokine secretion and apoptosis, but not uptake via SR-AI/II. Prolonged exposure of macrophages to CPP was found to result in up-regulated expression of SR-AI/II. CPP formation may help protect against some of the pro-inflammatory and harmful effects of calcium phosphate nanocrystals, perhaps representing a natural defense system for calcium mineral stress. However, in pathological states where production exceeds clearance capacity, these particles may still stimulate pro-inflammatory and pro-apoptotic cascades in macrophages, which may be important in the pathogenesis of vascular calcification.
Collapse
|
18
|
Ea HK, Chobaz V, Nguyen C, Nasi S, van Lent P, Daudon M, Dessombz A, Bazin D, McCarthy G, Jolles-Haeberli B, Ives A, Van Linthoudt D, So A, Lioté F, Busso N. Pathogenic role of basic calcium phosphate crystals in destructive arthropathies. PLoS One 2013; 8:e57352. [PMID: 23468973 PMCID: PMC3585350 DOI: 10.1371/journal.pone.0057352] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 01/21/2013] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND basic calcium phosphate (BCP) crystals are commonly found in osteoarthritis (OA) and are associated with cartilage destruction. BCP crystals induce in vitro catabolic responses with the production of metalloproteases and inflammatory cytokines such as interleukin-1 (IL-1). In vivo, IL-1 production induced by BCP crystals is both dependant and independent of NLRP3 inflammasome. We aimed to clarify 1/ the role of BCP crystals in cartilage destruction and 2/ the role of IL-1 and NLRP3 inflammasome in cartilage degradation related to BCP crystals. METHODOLOGY PRINCIPAL FINDINGS synovial membranes isolated from OA knees were analysed by alizarin Red and FTIR. Pyrogen free BCP crystals were injected into right knees of WT, NLRP3 -/-, ASC -/-, IL-1α -/- and IL-1β-/- mice and PBS was injected into left knees. To assess the role of IL-1, WT mice were treated by intra-peritoneal injections of anakinra, the IL-1Ra recombinant protein, or PBS. Articular destruction was studied at d4, d17 and d30 assessing synovial inflammation, proteoglycan loss and chondrocyte apoptosis. BCP crystals were frequently found in OA synovial membranes including low grade OA. BCP crystals injected into murine knee joints provoked synovial inflammation characterized by synovial macrophage infiltration that persisted at day 30, cartilage degradation as evidenced by loss of proteoglycan staining by Safranin-O and concomitant expression of VDIPEN epitopes, and increased chondrocyte apoptosis. BCP crystal-induced synovitis was totally independent of IL-1α and IL-1β signalling and no alterations of inflammation were observed in mice deficient for components of the NLRP3-inflammasome, IL-1α or IL-1β. Similarly, treatment with anakinra did not prevent BCP crystal effects. In vitro, BCP crystals elicited enhanced transcription of matrix degrading and pro-inflammatory genes in macrophages. CONCLUSIONS SIGNIFICANCE intra-articular BCP crystals can elicit synovial inflammation and cartilage degradation suggesting that BCP crystals have a direct pathogenic role in OA. The effects are independent of IL-1 and NLRP3 inflammasome.
Collapse
Affiliation(s)
- Hang-Korng Ea
- INSERM, UMR-S 606, Hospital Lariboisière,Paris, France
- University Paris Diderot (UFR de Médecine), Sorbonne Paris Cité, Paris, France
| | - Véronique Chobaz
- Department of Musculoskeletal Medicine, Service of Rheumatology, CHUV and University of Lausanne, Lausanne, Switzerland
| | | | - Sonia Nasi
- Department of Musculoskeletal Medicine, Service of Rheumatology, CHUV and University of Lausanne, Lausanne, Switzerland
| | - Peter van Lent
- Department of Rheumatology, Rheumatology Research and Advanced Therapeutics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Michel Daudon
- Service des Explorations Fonctionnelles, Hôpital Tenon, AP-HP, Paris, France
| | - Arnaud Dessombz
- Laboratoire de Physique des Solides, Université Paris Sud, Orsay, France
| | - Dominique Bazin
- Laboratoire de Physique des Solides, Université Paris Sud, Orsay, France
| | | | - Brigitte Jolles-Haeberli
- Service de chirurgie orthopédique et traumatologique de l'appareil moteur, Department of Musculoskeletal Medicine, CHUV and University of Lausanne, Lausanne, Switzerland
| | - Annette Ives
- Department of Musculoskeletal Medicine, Service of Rheumatology, CHUV and University of Lausanne, Lausanne, Switzerland
| | - Daniel Van Linthoudt
- Department of Musculoskeletal Medicine, Service of Rheumatology, CHUV and University of Lausanne, Lausanne, Switzerland
| | - Alexander So
- Department of Musculoskeletal Medicine, Service of Rheumatology, CHUV and University of Lausanne, Lausanne, Switzerland
| | - Frédéric Lioté
- INSERM, UMR-S 606, Hospital Lariboisière,Paris, France
- University Paris Diderot (UFR de Médecine), Sorbonne Paris Cité, Paris, France
| | - Nathalie Busso
- Department of Musculoskeletal Medicine, Service of Rheumatology, CHUV and University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
19
|
Artlett CM. Inflammasomes in wound healing and fibrosis. J Pathol 2012; 229:157-67. [DOI: 10.1002/path.4116] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/17/2012] [Accepted: 09/18/2012] [Indexed: 12/12/2022]
Affiliation(s)
- Carol M Artlett
- Department of Microbiology and Immunology; Drexel University College of Medicine; Philadelphia PA USA
| |
Collapse
|
20
|
Abstract
Significant scientific advances have been made over the last five years in the pathogenesis of hyperuricemia and understanding how monosodium urate (MSU) crystals provoke gout. New detection methods using ultrasound (US) have been evaluated and may become part of our routine diagnostic approach in a patient presenting with gout. This review will concentrate on the latest developments in the field, and discuss how these data may impact on clinical practice. Finally, a brief review of the therapeutic implications and new therapies that have become available will be presented.
Collapse
Affiliation(s)
- Alexander So
- Service de Rhumatologie, Département de l'Appareil Locomoteur, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| | | |
Collapse
|
21
|
Ludigs K, Parfenov V, Du Pasquier RA, Guarda G. Type I IFN-mediated regulation of IL-1 production in inflammatory disorders. Cell Mol Life Sci 2012; 69:3395-418. [PMID: 22527721 PMCID: PMC11115130 DOI: 10.1007/s00018-012-0989-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 03/14/2012] [Accepted: 04/03/2012] [Indexed: 02/07/2023]
Abstract
Although contributing to inflammatory responses and to the development of certain autoimmune pathologies, type I interferons (IFNs) are used for the treatment of viral, malignant, and even inflammatory diseases. Interleukin-1 (IL-1) is a strongly pyrogenic cytokine and its importance in the development of several inflammatory diseases is clearly established. While the therapeutic use of IL-1 blocking agents is particularly successful in the treatment of innate-driven inflammatory disorders, IFN treatment has mostly been appreciated in the management of multiple sclerosis. Interestingly, type I IFNs exert multifaceted immunomodulatory effects, including the reduction of IL-1 production, an outcome that could contribute to its efficacy in the treatment of inflammatory diseases. In this review, we summarize the current knowledge on IL-1 and IFN effects in different inflammatory disorders, the influence of IFNs on IL-1 production, and discuss possible therapeutic avenues based on these observations.
Collapse
Affiliation(s)
- Kristina Ludigs
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland.
| | | | | | | |
Collapse
|
22
|
Abstract
Uric acid is a waste product of purine catabolism. This molecule comes to clinical attention when it nucleates to form crystals of monosodium urate (MSU) in joints or other tissues, and thereby causes the inflammatory disease of gout. Patients with gout frequently suffer from a number of comorbid conditions including hypertension, diabetes mellitus and cardiovascular disease. Why MSU crystals trigger inflammation and are associated with comorbidities of gout has been unclear, but recent studies provide new insights into these issues. Rather than simply being a waste product, uric acid could serve a pathophysiological role as a local alarm signal that alerts the immune system to cell injury and helps to trigger both innate and adaptive immune responses. The inflammatory component of these immune responses is caused when urate crystals trigger both inflammasome-dependent and independent pathways to generate the proinflammatory cytokine IL-1. The resulting bioactive IL-1 stimulates the inflammation of gout and might contribute to the development of other comorbidities. Surprisingly, the same mechanisms underlie the inflammatory response to a number of irritant particles, many of which also cause disease. These new insights help to explain the pathogenesis of gout and point to potential new therapeutic targets for this and other sterile inflammatory diseases.
Collapse
|
23
|
Cunningham CC, Mills E, Mielke LA, O'Farrell LK, Lavelle E, Mori A, McCarthy GM, Mills KH, Dunne A. Osteoarthritis-associated basic calcium phosphate crystals induce pro-inflammatory cytokines and damage-associated molecules via activation of Syk and PI3 kinase. Clin Immunol 2012; 144:228-36. [DOI: 10.1016/j.clim.2012.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 06/14/2012] [Accepted: 06/26/2012] [Indexed: 12/20/2022]
|
24
|
Artlett CM. The Role of the NLRP3 Inflammasome in Fibrosis. Open Rheumatol J 2012; 6:80-6. [PMID: 22802905 PMCID: PMC3395884 DOI: 10.2174/1874312901206010080] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 03/27/2012] [Accepted: 04/04/2012] [Indexed: 12/24/2022] Open
Abstract
Fibrosis leads to the deposition of collagens in organs and tissues. The resulting pathology induces a loss of function in the organ it is manifested in and this loss of function modulates the morbidity and mortality in that individual. Indeed, approximately 45% of all deaths in the Western world can be attributed to fibrosis and there are no FDA approved drugs for the treatment of fibrosis. The recent discovery of the inflammasome has led to a plethora of studies investigating this inflammatory signaling pathway in a wide variety of pathogen associated diseases. Many studies have focused on the NLRP3 inflammasome and this inflammasome is activated by a wide variety of cellular alarm signals. Once activated, caspase-1 is cleaved, inducing the secretion of IL-1β and IL-18 that signal to aid in the clearance of invading organisms. However, as the knowledge of the inflammasome has expanded, it was found that it can directly control collagen synthesis, leading to the increased deposition of collagens in the tissues such as the lung, liver, heart, and skin. Mice lacking the inflammasome adaptor protein, ASC, failed to become fibrotic when exposed to bleomycin. Inhibition of caspase-1 activity in fibroblasts from patients with the fibrotic disease systemic sclerosis, decreased collagen synthesis and reduced α-smooth muscle actin expression in myofibroblasts. Taken together, these observations suggest that the inflammasome can drive the fibrotic response and paves the way for novel therapeutics to be identified.
Collapse
Affiliation(s)
- Carol M Artlett
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia PA 19129, USA
| |
Collapse
|
25
|
|
26
|
Abstract
An inflammasome is a multiprotein complex that serves as a platform for caspase-1 activation and caspase-1-dependent proteolytic maturation and secretion of interleukin-1β (IL-1β). Though a number of inflammasomes have been described, the NLRP3 inflammasome is the most extensively studied but also the most elusive. It is unique in that it responds to numerous physically and chemically diverse stimuli. The potent proinflammatory and pyrogenic activities of IL-1β necessitate that inflammasome activity is tightly controlled. To this end, a priming step is first required to induce the expression of both NLRP3 and proIL-1β. This event renders the cell competent for NLRP3 inflammasome activation and IL-1β secretion, and it is highly regulated by negative feedback loops. Despite the wide array of NLRP3 activators, the actual triggering of NLRP3 is controlled by integration a comparatively small number of signals that are common to nearly all activators. Minimally, these include potassium efflux, elevated levels of reactive oxygen species (ROS), and, for certain activators, lysosomal destabilization. Further investigation of how these and potentially other as yet uncharacterized signals are integrated by the NLRP3 inflammasome and the relevance of these biochemical events in vivo should provide new insight into the mechanisms of host defense and autoinflammatory conditions.
Collapse
Affiliation(s)
- Olaf Gross
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | | | | | | |
Collapse
|
27
|
|
28
|
NLRP3 inflammasome plays a critical role in the pathogenesis of hydroxyapatite-associated arthropathy. Proc Natl Acad Sci U S A 2011; 108:14867-72. [PMID: 21856950 DOI: 10.1073/pnas.1111101108] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The proinflammatory and catabolic cytokine IL-1β has been implicated in the pathogenesis of osteoarthritis (OA) by mediating synovial inflammation and cartilage degeneration. Although synovial macrophages are suggested to be the source of IL-1β, the mechanism remains unclear. Ectopic deposition of hydroxyapatite (HA) crystals in joints is closely associated with OA and other arthropathies, but the precise role of HA in arthritis pathogenesis has not been clearly demonstrated. Here we show that HA crystals of a particular size and shape can stimulate robust secretion of proinflammatory cytokines IL-1β and IL-18 from murine macrophages in a NLRP3 inflammasome-dependent manner. HA-induced inflammasome activation is dependent on potassium efflux, generation of reactive oxygen species (ROS), and lysosomal damage, but independent of cell death. Mice lacking the inflammasome components are protected against HA-induced neutrophilic inflammation in the air-pouch model of synovitis, and they show decreased joint pathology accompanying spontaneous HA deposition in the ank-deficient mouse model of arthritis. Moreover, calcium crystal positive synovial fluids from some OA patients exhibited inflammasome-stimulatory activity in vitro. These results demonstrate that the NLRP3 inflammasome mediates the pathological effect of HA crystals in vitro and in vivo and suggest a critical role for the inflammasome in the pathogenesis of OA.
Collapse
|
29
|
Menu P, Vince JE. The NLRP3 inflammasome in health and disease: the good, the bad and the ugly. Clin Exp Immunol 2011; 166:1-15. [PMID: 21762124 DOI: 10.1111/j.1365-2249.2011.04440.x] [Citation(s) in RCA: 300] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
While interleukin (IL)-1β plays an important role in combating the invading pathogen as part of the innate immune response, its dysregulation is responsible for a number of autoinflammatory disorders. Large IL-1β activating platforms, known as inflammasomes, can assemble in response to the detection of endogenous host and pathogen-associated danger molecules. Formation of these protein complexes results in the autocatalysis and activation of caspase-1, which processes precursor IL-1β into its secreted biologically active form. Inflammasome and IL-1β activity is required to efficiently control viral, bacterial and fungal pathogen infections. Conversely, excess IL-1β activity contributes to human disease, and its inhibition has proved therapeutically beneficial in the treatment of a spectrum of serious, yet relatively rare, heritable inflammasomopathies. Recently, inflammasome function has been implicated in more common human conditions, such as gout, type II diabetes and cancer. This raises the possibility that anti-IL-1 therapeutics may have broader applications than anticipated previously, and may be utilized across diverse disease states that are linked insidiously through unwanted or heightened inflammasome activity.
Collapse
Affiliation(s)
- P Menu
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland.
| | | |
Collapse
|
30
|
Chatrou MLL, Reutelingsperger CP, Schurgers LJ. Role of vitamin K-dependent proteins in the arterial vessel wall. Hamostaseologie 2011; 31:251-7. [PMID: 21713318 DOI: 10.5482/ha-1157] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 06/06/2011] [Indexed: 12/20/2022] Open
Abstract
Vitamin K was discovered early last century at the same time as the vitamin K-antagonists. For many years the role of vitamin K was solely ascribed to coagulation and coagulation was thought to be involved only at the venous blood side. This view has dramatically changed with the discovery of vitamin K-dependent proteins outside the coagulation cascade and the role of coagulation factors at the arterial side. Vitamin K-dependent proteins are involved in the regulation of vascular smooth muscle cell migration, apoptosis, and calcification. Vascular calcification has become an important independent predictor of cardiovascular disease. Vitamin K-antagonists induce inactivity of inhibitors of vascular calcification, leading to accelerated calcification. The involvement of vitamin K-dependent proteins such as MGP in vascular calcification make that calcification is amendable for intervention with high intake of vitamin K. This review focuses on the effect of vitamin K-dependent proteins in vascular disease.
Collapse
Affiliation(s)
- M L L Chatrou
- Dept. of Biochemistry, Maastricht University, Maastricht, The Netherlands
| | | | | |
Collapse
|
31
|
Ea HK. [Mechanisms of gout inflammation]. Presse Med 2011; 40:836-43. [PMID: 21684103 DOI: 10.1016/j.lpm.2011.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Revised: 03/15/2011] [Accepted: 03/22/2011] [Indexed: 01/14/2023] Open
Abstract
Gout inflammation is an acute and self-resolving reaction. MSU crystals can stimulate cells through either crystal-cell membrane interaction or after their phagocytosis. The onset of gout inflammation relies on non-hematopoietic resident cells whereas the amplification of the reaction is driven by phagocytic cells of immune innate system. Interleukin-1β (IL-1β) and polynuclear neutrophils play central role in gout inflammation. In vitro, MSU crystal-induced IL-1β secretion is secondary mainly to NLRP3 inflammasome activation although numerous proteases are also involved. Mechanisms of NLRP3 inflammasome activation remain unclear involving mostly reactive oxygen species production. Gout resolution involves several mechanisms including monocyte differentiation into macrophage, clearance of apoptotic neutrophils by macrophages, production of Transforming Growth Factor (TGF-β) and modification of protein coating on MSU crystal surface.
Collapse
Affiliation(s)
- Hang-Korng Ea
- Assistance-publique-Hôpitaux de Paris, hôpital Lariboisière, fédération de rhumatologie, pôle locomoteur, centre Viggo-Petersen, Inserm U606 (IFR139), Paris, France; Université médecine Paris 7, Paris, France.
| |
Collapse
|
32
|
Joosten LA, Ea HK, Netea MG, Busso N. Interleukin-1β activation during acute joint inflammation: A limited role for the NLRP3 inflammasome in vivo. Joint Bone Spine 2011; 78:107-10. [DOI: 10.1016/j.jbspin.2010.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 11/05/2010] [Indexed: 02/02/2023]
|