1
|
Cassisa A, Cima L. Cutaneous vasculitis: insights into pathogenesis and histopathological features. Pathologica 2024; 116:119-133. [PMID: 38767544 PMCID: PMC11138767 DOI: 10.32074/1591-951x-985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 05/22/2024] Open
Abstract
The mechanisms underlying the onset and progression of vasculitis remain poorly understood. This condition is characterized by damage to the vascular wall, recruitment of inflammatory cells, and subsequent structural remodeling, which are hallmarks of vasculitis. The histopathological classification of vasculitis relies on the size of the affected vessel and the predominant type of inflammatory cell involved - neutrophils in acute cases, lymphocytes in chronic conditions, and histiocytes in granulomatous forms. Pathological changes progress in every context, and a single vasculitic pattern can be associated with various systemic conditions. Conversely, a single causative agent may lead to multiple distinct clinical and pathological manifestations of vasculitis. Moreover, many cases of vasculitis have no identifiable cause. A foundational understanding of the normal structure of the cutaneous vascular network is crucial. Similarly, identifying the cellular and molecular participants and their roles in forming the "dermal microvascular unit" is propedeutical. This review aims to elucidate the complex mechanisms involved in the initiation and progression of vasculitis, offering a comprehensive overview of its histopathological classification, underlying causes, and the significant role of the cutaneous vascular network and cellular dynamics. By integrating the latest insights from studies on NETosis and the implications of lymphocytic infiltration in autoimmune diseases, we seek to bridge gaps in current knowledge and highlight areas for future research. Our discussion extends to the clinical implications of vasculitis, emphasizing the importance of identifying etiological agents and understanding the diverse histopathological manifestations to improve diagnostic accuracy and treatment outcomes.
Collapse
Affiliation(s)
- Angelo Cassisa
- Department of Oncology, Section of Pathology, San Giovanni di Dio Hospital, USL Centro Toscana, Florence, Italy
| | - Luca Cima
- Department of Laboratory Medicine, Pathology Unit, Santa Chiara Hospital, Trento, Italy
| |
Collapse
|
2
|
Peng S, Lin A, Jiang A, Zhang C, Zhang J, Cheng Q, Luo P, Bai Y. CTLs heterogeneity and plasticity: implications for cancer immunotherapy. Mol Cancer 2024; 23:58. [PMID: 38515134 PMCID: PMC10956324 DOI: 10.1186/s12943-024-01972-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Cytotoxic T lymphocytes (CTLs) play critical antitumor roles, encompassing diverse subsets including CD4+, NK, and γδ T cells beyond conventional CD8+ CTLs. However, definitive CTLs biomarkers remain elusive, as cytotoxicity-molecule expression does not necessarily confer cytotoxic capacity. CTLs differentiation involves transcriptional regulation by factors such as T-bet and Blimp-1, although epigenetic regulation of CTLs is less clear. CTLs promote tumor killing through cytotoxic granules and death receptor pathways, but may also stimulate tumorigenesis in some contexts. Given that CTLs cytotoxicity varies across tumors, enhancing this function is critical. This review summarizes current knowledge on CTLs subsets, biomarkers, differentiation mechanisms, cancer-related functions, and strategies for improving cytotoxicity. Key outstanding questions include refining the CTLs definition, characterizing subtype diversity, elucidating differentiation and senescence pathways, delineating CTL-microbe relationships, and enabling multi-omics profiling. A more comprehensive understanding of CTLs biology will facilitate optimization of their immunotherapy applications. Overall, this review synthesizes the heterogeneity, regulation, functional roles, and enhancement strategies of CTLs in antitumor immunity, highlighting gaps in our knowledge of subtype diversity, definitive biomarkers, epigenetic control, microbial interactions, and multi-omics characterization. Addressing these questions will refine our understanding of CTLs immunology to better leverage cytotoxic functions against cancer.
Collapse
Affiliation(s)
- Shengkun Peng
- Department of Radiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Aimin Jiang
- Department of Urology, Changhai hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Cangang Zhang
- Department of Pathogenic Microbiology and ImmunologySchool of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South University, Hunan, China.
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| | - Yifeng Bai
- Department of Oncology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
3
|
Lin YC, Wu CH, Chen PJ, Huang CH, Yang CK, Dutta A, Huang CT, Lin CY. Murine cytotoxic CD4+ T cells in the tumor microenvironment are at a hyper-maturation stage of Th1 CD4+ T cells sustained by IL-12. Int Immunol 2023; 35:387-400. [PMID: 37202206 DOI: 10.1093/intimm/dxad015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 05/16/2023] [Indexed: 05/20/2023] Open
Abstract
The roles of tumor-infiltrating CD4+Foxp3- T cells are not well characterized due to their plasticity of differentiation, and varying levels of activation or exhaustion. To further clarify this issue, we used a model featuring subcutaneous murine colon cancer and analyzed the dynamic changes of phenotype and function of the tumor-associated CD4+ T-cell response. We found that, even at a late stage of tumor growth, the tumor-infiltrating CD4+Foxp3- T cells still expressed effector molecules, inflammatory cytokines and molecules that are expressed at reduced levels in exhausted cells. We used microarrays to examine the gene-expression profiles of different subsets of CD4+ T cells and revealed that the tumor-infiltrating CD4+Foxp3- T cells expressed not only type 1 helper (Th1) cytokines, but also cytolytic granules such as those encoded by Gzmb and Prf1. In contrast to CD4+ regulatory T cells, these cells exclusively co-expressed natural killer receptor markers and cytolytic molecules as shown by flow-cytometry studies. We used an ex vivo killing assay and proved that they could directly suppress CT26 tumor cells through granzyme B and perforin. Finally, we used pathway analysis and ex vivo stimulation to confirm that the CD4+Foxp3- T cells expressed higher levels of IL12rb1 genes and were activated by the IL-12/IL-27 pathway. In conclusion, this work finds that, in late-stage tumors, the tumor-infiltrating lymphocyte population of CD4+ cells harbored a sustained, hyper-maturated Th1 status with cytotoxic function supported by IL-12.
Collapse
Affiliation(s)
- Yung-Chang Lin
- Division of Medical Oncology/Hematology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - Cheng-Heng Wu
- Division of Hepatogastroenterology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Branch, No. 5, Fushin Street, Kweishan, Taoyuan 333423, Taiwan
| | - Pin-Jung Chen
- Division of Hepatogastroenterology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Branch, No. 5, Fushin Street, Kweishan, Taoyuan 333423, Taiwan
| | - Chien-Hao Huang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
- Division of Hepatogastroenterology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Branch, No. 5, Fushin Street, Kweishan, Taoyuan 333423, Taiwan
| | - Chan-Keng Yang
- Division of Medical Oncology/Hematology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan
| | - Avijit Dutta
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - Ching-Tai Huang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan
| | - Chun-Yen Lin
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
- Division of Hepatogastroenterology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Branch, No. 5, Fushin Street, Kweishan, Taoyuan 333423, Taiwan
| |
Collapse
|
4
|
Mueller A, Zhao Y, Cicek H, Paust HJ, Sivayoganathan A, Linke A, Wegscheid C, Wiech T, Huber TB, Meyer-Schwesinger C, Bonn S, Prinz I, Panzer U, Tiegs G, Krebs CF, Neumann K. Transcriptional and Clonal Characterization of Cytotoxic T Cells in Crescentic Glomerulonephritis. J Am Soc Nephrol 2023; 34:1003-1018. [PMID: 36913357 PMCID: PMC10278817 DOI: 10.1681/asn.0000000000000116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/16/2023] [Indexed: 03/14/2023] Open
Abstract
SIGNIFICANCE STATEMENT T-cell infiltration is a hallmark of crescentic GN (cGN), often caused by ANCA-associated vasculitis. Pathogenic T-cell subsets, their clonality, and downstream effector mechanisms leading to kidney injury remain to be fully elucidated. Single-cell RNA sequencing and T-cell receptor sequencing revealed activated, clonally expanded cytotoxic CD4 + and CD8 + T cells in kidneys from patients with ANCA-associated cGN. In experimental cGN, kidney-infiltrating CD8 + T cells expressed the cytotoxic molecule, granzyme B (GzmB), which induced apoptosis in renal tissue cells by activation of procaspase-3, and aggravated disease pathology. These findings describe a pathogenic function of (clonally expanded) cytotoxic T cells in cGN and identify GzmB as a mediator and potential therapeutic target in immune-mediated kidney disease. BACKGROUND Crescentic GN (cGN) is an aggressive form of immune-mediated kidney disease that is an important cause of end stage renal failure. Antineutrophilic cytoplasmic antibody (ANCA)-associated vasculitis is a common cause. T cells infiltrate the kidney in cGN, but their precise role in autoimmunity is not known. METHODS Combined single-cell RNA sequencing and single-cell T-cell receptor sequencing were conducted on CD3 + T cells isolated from renal biopsies and blood of patients with ANCA-associated cGN and from kidneys of mice with experimental cGN. Functional and histopathological analyses were performed with Cd8a-/- and GzmB-/- mice. RESULTS Single-cell analyses identified activated, clonally expanded CD8 + and CD4 + T cells with a cytotoxic gene expression profile in the kidneys of patients with ANCA-associated cGN. Clonally expanded CD8 + T cells expressed the cytotoxic molecule, granzyme B (GzmB), in the mouse model of cGN. Deficiency of CD8 + T cells or GzmB ameliorated the course of cGN. CD8 + T cells promoted macrophage infiltration and GzmB activated procaspase-3 in renal tissue cells, thereby increasing kidney injury. CONCLUSIONS Clonally expanded cytotoxic T cells have a pathogenic function in immune-mediated kidney disease.
Collapse
Affiliation(s)
- Anne Mueller
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yu Zhao
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- bAIome–Center for Biomedical AI, Center for Molecular Neurobiology Hamburg (ZMNH), Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hakan Cicek
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Joachim Paust
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Amirrtavarshni Sivayoganathan
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexandra Linke
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Wegscheid
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B. Huber
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Catherine Meyer-Schwesinger
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- bAIome–Center for Biomedical AI, Center for Molecular Neurobiology Hamburg (ZMNH), Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Immo Prinz
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Systems Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulf Panzer
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gisa Tiegs
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian F. Krebs
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Neumann
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
5
|
Zhang T, Liu X, Zhao Y, Xu X, Liu Y, Wu X. Excessive IL-15 promotes cytotoxic CD4 + CD28- T cell-mediated renal injury in lupus nephritis. Immun Ageing 2022; 19:50. [PMID: 36320075 PMCID: PMC9624042 DOI: 10.1186/s12979-022-00305-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/28/2022] [Accepted: 10/10/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Patients with systemic lupus erythematosus (SLE) are highly susceptible to infection and cardiovascular events, suggesting that chronic antigenic stimulation may accelerate premature aging in SLE patients. Premature aging in SLE is often accompanied with the expansion of cytotoxic CD4 + CD28-T cells. Damage caused by CD4 + CD28- T cells enhances the progressive aging of the tissue function and loss of organism's fitness. The high serum level of IL-15 has been implicated in the pathogenesis of SLE, but its role in CD4 + CD28-T cell-mediated cytotoxicity in nephritic SLE remains unclear. The aim of this study was to investigate the effect of IL-15 on functional properties and associated renal damage of cytotoxic CD4 + CD28- T cell in lupus nephritis (LN). RESULTS Flow cytometry showed that the number of circulating innate-like CD4 + CD28- T cells was increased in patients with nephritic SLE. Immunofluorescence showed CD4 + CD28- T cell infiltration in the kidney of LN patients, which was correlated with multiple clinicopathological features including estimated glomerular filtration rate (eGFR), proteinuria, the proportion of glomerulosclerosis and the degree of renal chronicity. In addition, a high level of IL-15 and IL15-expressing macrophage infiltration was detected in the periglomerular and intraglomerular tissues of LN patients, which enhanced the innate features, cytokine secretion and migratory capability of CD4 + CD28- T cells, and finally exerted direct TCR-independent cytotoxicity on glomerular endothelial cells in an IL-15-dependent manner in vitro. CONCLUSION Our study demonstrated that excessive IL-15 potentially promoted cytotoxic CD4 + CD28- T cell-mediated renal damage in LN. This finding may provide new insights into the potential association of premature aging and tissue damage in LN.
Collapse
Affiliation(s)
- Ti Zhang
- grid.41156.370000 0001 2314 964XJinling Hospital, National Clinical Research Center of Kidney Diseases, Nanjing University School of Medicine, Nanjing, China
| | - Xin Liu
- grid.73113.370000 0004 0369 1660Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Yue Zhao
- grid.41156.370000 0001 2314 964XJinling Hospital, National Clinical Research Center of Kidney Diseases, Nanjing University School of Medicine, Nanjing, China
| | - Xiaodong Xu
- grid.41156.370000 0001 2314 964XJinling Hospital, National Clinical Research Center of Kidney Diseases, Nanjing University School of Medicine, Nanjing, China
| | - Yaoyang Liu
- grid.73113.370000 0004 0369 1660Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Xin Wu
- grid.73113.370000 0004 0369 1660Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai, China
| |
Collapse
|
6
|
Fuchs S, Scheffschick A, Gunnarsson I, Brauner H. Natural Killer Cells in Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis - A Review of the Literature. Front Immunol 2022; 12:796640. [PMID: 35116030 PMCID: PMC8805084 DOI: 10.3389/fimmu.2021.796640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/20/2021] [Indexed: 01/22/2023] Open
Abstract
Anti-neutrophil cytoplasmic antibody (ANCA)- associated vasculitis (AAV) is a group of systemic autoimmune diseases characterized by inflammation of small- and medium-sized vessels. The three main types of AAV are granulomatosis with polyangiitis (GPA), microscopic polyangiitis (MPA) and eosinophilic granulomatosis with polyangiitis (EGPA). A growing number of studies focus on natural killer (NK) cells in AAV. NK cells are innate lymphoid cells with important roles in anti-viral and anti-tumor defense, but their roles in the pathogenesis of autoimmunity is less well established. In this review, we will present a summary of what is known about the number, phenotype and function of NK cells in patients with AAV. We review the literature on NK cells in the circulation of AAV patients, studies on tissue resident NK cells and how the treatment affects NK cells.
Collapse
Affiliation(s)
- Sina Fuchs
- Division of Rheumatology, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Scheffschick
- Division of Rheumatology, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Iva Gunnarsson
- Division of Rheumatology, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Hanna Brauner
- Division of Rheumatology, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Dermato-Venereology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Néel A, Degauque N, Bruneau S, Braudeau C, Bucchia M, Caristan A, De Mornac D, Genin V, Glemain A, Oriot C, Rimbert M, Brouard S, Josien R, Hamidou M. [Pathogenesis of ANCA-associated vasculitides in 2021: An update]. Rev Med Interne 2022; 43:89-97. [PMID: 35033384 DOI: 10.1016/j.revmed.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022]
Abstract
Anticytoplasmic neutrophil antibodies (ANCA)-associated vasculitis (AAV) are rare systemic immune-mediated diseases characterized by small vessel necrotizing vasculitis and/or respiratory tract inflammation. Over the last 2 decades, anti-MPO vasculitis mouse model has enlightened the role of ANCA, neutrophils, complement activation, T helper cells (Th1, Th17) and microbial agents. In humans, CD4T cells have been extensively studied, while the dramatic efficacy of rituximab demonstrated the key role of B cells. Many areas of uncertainty remain, such as the driving force of GPA extra-vascular granulomatous inflammation and the relapse risk of anti-PR3 AAV pathogenesis. Animal models eventually led to identify complement activation as a promising therapeutic target. New investigation tools, which permit in depth immune profiling of human blood and tissues, may open a new era for the studying of AAV pathogenesis.
Collapse
Affiliation(s)
- A Néel
- Service de médecine interne, CHU de Nantes, Nantes, France; Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France; Centre de référence maladies auto-immunes systémiques Rares, hôpital Cochin, AP-HP, Paris, France.
| | - N Degauque
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France
| | - S Bruneau
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France
| | - C Braudeau
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France; Laboratoire d'immunologie, CHU de Nantes, Nantes, France
| | - M Bucchia
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France; Service de pédiatrie, CHU de Nantes, Nantes, France
| | - A Caristan
- Service de médecine interne, CHD Vendée, La-Roche-Sur-Yon, France
| | - D De Mornac
- Service de médecine interne, CHU de Nantes, Nantes, France; Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France
| | - V Genin
- Service de médecine interne, CHU de Nantes, Nantes, France; Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France
| | - A Glemain
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France
| | - C Oriot
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France; Service de pédiatrie, CHU de Nantes, Nantes, France
| | - M Rimbert
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France; Laboratoire d'immunologie, CHU de Nantes, Nantes, France
| | - S Brouard
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France
| | - R Josien
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France; Laboratoire d'immunologie, CHU de Nantes, Nantes, France
| | - M Hamidou
- Service de médecine interne, CHU de Nantes, Nantes, France; Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France
| |
Collapse
|
8
|
Abstract
Two vasculitides, giant cell arteritis (GCA) and Takayasu arteritis (TAK), are recognized as autoimmune and autoinflammatory diseases that manifest exclusively within the aorta and its large branches. In both entities, the age of the affected host is a critical risk factor. TAK manifests during the 2nd-4th decade of life, occurring while the immune system is at its height of performance. GCA is a disease of older individuals, with infrequent cases during the 6th decade and peak incidence during the 8th decade of life. In both vasculitides, macrophages and T cells infiltrate into the adventitia and media of affected vessels, induce granulomatous inflammation, cause vessel wall destruction, and reprogram vascular cells to drive adventitial and neointimal expansion. In GCA, abnormal immunity originates in an aged immune system and evolves within the aged vascular microenvironment. One hallmark of the aging immune system is the preferential loss of CD8+ T cell function. Accordingly, in GCA but not in TAK, CD8+ effector T cells play a negligible role and anti-inflammatory CD8+ T regulatory cells are selectively impaired. Here, we review current evidence of how the process of immunosenescence impacts the risk for GCA and how fundamental differences in the age of the immune system translate into differences in the granulomatous immunopathology of TAK versus GCA.
Collapse
|
9
|
Żabińska M, Kościelska-Kasprzak K, Krajewska J, Bartoszek D, Augustyniak-Bartosik H, Krajewska M. Immune Cells Profiling in ANCA-Associated Vasculitis Patients-Relation to Disease Activity. Cells 2021; 10:1773. [PMID: 34359942 PMCID: PMC8307495 DOI: 10.3390/cells10071773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/11/2021] [Indexed: 12/05/2022] Open
Abstract
Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAV) are a group of necrotizing multiorgan autoimmune vasculitides that predominantly affect small blood vessels and are associated with the presence of ANCAs. The aim was to assess regulatory and effector cell populations accompanied by the suPAR biomarker level and link the so-defined immune state to the AAV disease activity. The research involved a multicomponent description of an immune state encompassing a range of B and T cell subsets such as transitional/regulatory B cells (CD19+CD24++CD38++), naïve B cells (CD19+CD24INTCD38INT), Th17 cells, T regulatory cells (CD4+CD25+FoxP3+) and cytotoxic CD4+CD28- cells by flow cytometry. The suPAR plasma level was measured by ELISA. The results indicate that AAV is associated with an increased suPAR plasma level and immune fingerprint characterized by an expansion of Th17 cells and T cells lacking the costimulatory molecule CD28, accompanied by a decrease of regulatory populations (Tregs and transitional B cells) and NK cells. Decreased numbers of regulatory T cells and transitional B cells were shown to be linked to activation of the AAV disease while the increased suPAR plasma level-to AAV-related deterioration of kidney function. The observed immune fingerprint might be a reflection of peripheral tolerance failure responsible for development and progression of ANCA-associated vasculitides.
Collapse
Affiliation(s)
- Marcelina Żabińska
- Department of Nephrology and Transplantation Medicine, Faculty of Medicine, Wroclaw Medical University, 50-367 Wrocław, Poland; (K.K.-K.); (D.B.); (H.A.-B.); (M.K.)
| | - Katarzyna Kościelska-Kasprzak
- Department of Nephrology and Transplantation Medicine, Faculty of Medicine, Wroclaw Medical University, 50-367 Wrocław, Poland; (K.K.-K.); (D.B.); (H.A.-B.); (M.K.)
| | - Joanna Krajewska
- Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, Wroclaw Medical University, 50-367 Wrocław, Poland;
| | - Dorota Bartoszek
- Department of Nephrology and Transplantation Medicine, Faculty of Medicine, Wroclaw Medical University, 50-367 Wrocław, Poland; (K.K.-K.); (D.B.); (H.A.-B.); (M.K.)
| | - Hanna Augustyniak-Bartosik
- Department of Nephrology and Transplantation Medicine, Faculty of Medicine, Wroclaw Medical University, 50-367 Wrocław, Poland; (K.K.-K.); (D.B.); (H.A.-B.); (M.K.)
| | - Magdalena Krajewska
- Department of Nephrology and Transplantation Medicine, Faculty of Medicine, Wroclaw Medical University, 50-367 Wrocław, Poland; (K.K.-K.); (D.B.); (H.A.-B.); (M.K.)
| |
Collapse
|
10
|
Müller A, Krause B, Kerstein-Stähle A, Comdühr S, Klapa S, Ullrich S, Holl-Ulrich K, Lamprecht P. Granulomatous Inflammation in ANCA-Associated Vasculitis. Int J Mol Sci 2021; 22:ijms22126474. [PMID: 34204207 PMCID: PMC8234846 DOI: 10.3390/ijms22126474] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022] Open
Abstract
ANCA-associated vasculitis (AAV) comprises granulomatosis with polyangiitis (GPA), microscopic polyangiitis (MPA), and eosinophilic granulomatosis with polyangiitis (EGPA). While systemic vasculitis is a hallmark of all AAV, GPA is characterized by extravascular granulomatous inflammation, preferentially affecting the respiratory tract. The mechanisms underlying the emergence of neutrophilic microabscesses; the appearance of multinucleated giant cells; and subsequent granuloma formation, finally leading to scarred or destroyed tissue in GPA, are still incompletely understood. This review summarizes findings describing the presence and function of molecules and cells contributing to granulomatous inflammation in the respiratory tract and to renal inflammation observed in GPA. In addition, factors affecting or promoting the development of granulomatous inflammation such as microbial infections, the nasal microbiome, and the release of damage-associated molecular patterns (DAMP) are discussed. Further, on the basis of numerous results, we argue that, in situ, various ways of exposure linked with a high number of infiltrating proteinase 3 (PR3)- and myeloperoxidase (MPO)-expressing leukocytes lower the threshold for the presentation of an altered PR3 and possibly also of MPO, provoking the local development of ANCA autoimmune responses, aided by the formation of ectopic lymphoid structures. Although extravascular granulomatous inflammation is unique to GPA, similar molecular and cellular patterns can be found in both the respiratory tract and kidney tissue of GPA and MPA patients; for example, the antimicrobial peptide LL37, CD163+ macrophages, or regulatory T cells. Therefore, we postulate that granulomatous inflammation in GPA or PR3-AAV is intertwined with autoimmune and destructive mechanisms also seen at other sites.
Collapse
Affiliation(s)
- Antje Müller
- Department of Rheumatology & Clinical Immunology, University of Luebeck, 23562 Luebeck, Germany; (B.K.); (A.K.-S.); (S.C.); (S.K.); (P.L.)
- Correspondence: ; Tel.: +49-451-5005-0867
| | - Bettina Krause
- Department of Rheumatology & Clinical Immunology, University of Luebeck, 23562 Luebeck, Germany; (B.K.); (A.K.-S.); (S.C.); (S.K.); (P.L.)
- Institute of Anatomy & Experimental Morphology, University Hospital Hamburg-Eppendorf, University of Hamburg, 20251 Hamburg, Germany;
| | - Anja Kerstein-Stähle
- Department of Rheumatology & Clinical Immunology, University of Luebeck, 23562 Luebeck, Germany; (B.K.); (A.K.-S.); (S.C.); (S.K.); (P.L.)
| | - Sara Comdühr
- Department of Rheumatology & Clinical Immunology, University of Luebeck, 23562 Luebeck, Germany; (B.K.); (A.K.-S.); (S.C.); (S.K.); (P.L.)
| | - Sebastian Klapa
- Department of Rheumatology & Clinical Immunology, University of Luebeck, 23562 Luebeck, Germany; (B.K.); (A.K.-S.); (S.C.); (S.K.); (P.L.)
- Institute of Experimental Medicine c/o German Naval Medical Institute, Carl-Albrechts University of Kiel, 24119 Kronshagen, Germany
| | - Sebastian Ullrich
- Institute of Anatomy & Experimental Morphology, University Hospital Hamburg-Eppendorf, University of Hamburg, 20251 Hamburg, Germany;
- Municipal Hospital Kiel, 24116 Kiel, Germany
| | | | - Peter Lamprecht
- Department of Rheumatology & Clinical Immunology, University of Luebeck, 23562 Luebeck, Germany; (B.K.); (A.K.-S.); (S.C.); (S.K.); (P.L.)
| |
Collapse
|
11
|
Schwartz DM, Burma AM, Kitakule MM, Luo Y, Mehta NN. T Cells in Autoimmunity-Associated Cardiovascular Diseases. Front Immunol 2020; 11:588776. [PMID: 33117403 PMCID: PMC7576936 DOI: 10.3389/fimmu.2020.588776] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/21/2020] [Indexed: 12/24/2022] Open
Abstract
T cells are indisputably critical mediators of atherosclerotic cardiovascular disease (CVD), where they secrete pro-inflammatory cytokines that promote vascular pathology. Equally well-established is the fact that autoimmune diseases, which are mediated by autoreactive T cells, substantially increase the risk of developing CVD. Indeed, as immunomodulatory treatments have become more effective at treating end-organ pathology, CVD has become a leading cause of death in patients with autoimmune diseases. Despite this, investigators have only recently begun to probe the mechanisms by which autoreactive T cells promote CVD in the context of autoimmune diseases. T cells are best-studied in the pathogenesis of systemic vasculitides, where they react to self-antigen in the vessel wall. However, newer studies indicate that T cells also contribute to the increased CVD risk associated with lupus and rheumatoid arthritis. Given the central role of T-cell-derived cytokines in the pathogenesis of psoriasis, the role of these factors in psoriatic CVD is also under investigation. In the future, T cells are likely to represent major targets for the prevention and treatment of CVD in patients with autoimmune diseases.
Collapse
Affiliation(s)
- Daniella Muallem Schwartz
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Aarohan M. Burma
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Moses M. Kitakule
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Yiming Luo
- Rheumatology Fellowship Program, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Nehal N. Mehta
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
12
|
Han S, Lin Z, Wen J, Wu K, Xu Y, Zhang Y, Lu G, Xiao W, Ding Y, Jia X, Deng B, Gong W. Astilbin promotes the induction of regulatory NK1.1 - CD4 + NKG2D + T cells through the PI3K, STAT3, and MAPK signaling pathways. Int Immunopharmacol 2020; 81:106143. [PMID: 32062080 DOI: 10.1016/j.intimp.2019.106143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 02/05/2023]
Abstract
Astilbin is a potential agent for autoimmune and inflammatory diseases and has a protective effect in mice with DSS-induced colitis. NK1.1- CD4+ NKG2D+ T cells are a subpopulation of regulatory T cells that produce TGF-β1 and IL-10. Whether astilbin directly promotes the induction of NK1.1- CD4+ NKG2D+ T cells and whether these astilbin-stimulated T cells exert an immune-regulatory role remain unclear. Here, we show that astilbin efficiently induces the production of NK1.1- CD4+ NKG2D+ T cells with high expressions of TGF-β1, IL-10, CCR6, and CCR9 in a dose-dependent manner ex vivo. These regulatory T cells also substantially inhibit the activities of CD8+ T cells and macrophages. Intraperitoneal injection of astilbin ameliorates the severity of colitis with an increase in the frequency of NK1.1- CD4+ NKG2D+ T cells in the colon tissue of DSS-treated mice. Moreover, adoptive transfer of NK1.1- CD4+ NKG2D+ T cells induced by astilbin remarkably protects against the onset of DSS-induced colitis. Finally, the PI3K, STAT3, and MAPK signaling pathways are involved in the induction of NK1.1- CD4+ NKG2D+ T cells by astilbin. Taken together, our study elucidates a new immune-regulatory mechanism of astilbin by inducing the regulatory NK1.1- CD4+ NKG2D+ T cells and indicates a potential clinical use of astilbin for patients with inflammatory bowel diseases.
Collapse
Affiliation(s)
- Sen Han
- Department of Immunology, Medical College, Yangzhou University, Yangzhou, PR China
| | - Zhijie Lin
- Department of Immunology, Medical College, Yangzhou University, Yangzhou, PR China
| | - Jianqiang Wen
- Department of Immunology, Medical College, Yangzhou University, Yangzhou, PR China
| | - Keyan Wu
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou, PR China
| | - Yemin Xu
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou, PR China
| | - Yu Zhang
- Department of Nursing, School of Nursing, Yangzhou University, Yangzhou, PR China
| | - Guotao Lu
- Department of Immunology, Medical College, Yangzhou University, Yangzhou, PR China; Department of Nursing, School of Nursing, Yangzhou University, Yangzhou, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou, PR China
| | - Weiming Xiao
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou, PR China; Department of Nursing, School of Nursing, Yangzhou University, Yangzhou, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou, PR China
| | - Yanbing Ding
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou, PR China; Department of Nursing, School of Nursing, Yangzhou University, Yangzhou, PR China
| | - Xiaoqin Jia
- Department of Immunology, Medical College, Yangzhou University, Yangzhou, PR China; Department of Nursing, School of Nursing, Yangzhou University, Yangzhou, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou, PR China
| | - Bin Deng
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou, PR China.
| | - Weijuan Gong
- Department of Immunology, Medical College, Yangzhou University, Yangzhou, PR China; Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou, PR China; Department of Nursing, School of Nursing, Yangzhou University, Yangzhou, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou, PR China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, PR China.
| |
Collapse
|
13
|
Immune-Mediated Systemic Vasculitis as the Proposed Cause of Sudden-Onset Sensorineural Hearing Loss following Lassa Virus Exposure in Cynomolgus Macaques. mBio 2018; 9:mBio.01896-18. [PMID: 30377282 PMCID: PMC6212830 DOI: 10.1128/mbio.01896-18] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Lassa virus (LASV) causes a severe, often fatal hemorrhagic disease in regions in Africa where the disease is endemic, and approximately 30% of patients develop sudden-onset sensorineural hearing loss after recovering from acute disease. The causal mechanism of hearing loss in LASV-infected patients remains elusive. Here, we report findings after closely examining the chronic disease experienced by surviving macaques assigned to LASV exposure control groups in two different studies. All nonhuman primates (NHPs) developed typical signs and symptoms of Lassa fever, and seven succumbed during the acute phase of disease. Three NHPs survived beyond the acute phase and became chronically ill but survived to the study endpoint, 45 days postexposure. All three of these survivors displayed continuous disease symptoms, and apparent hearing loss was observed using daily subjective measurements, including response to auditory stimulation and tuning fork tests. Objective measurements of profound unilateral or bilateral sensorineural hearing loss were confirmed for two of the survivors by brainstem auditory evoked response (BAER) analysis. Histologic examination of inner ear structures and other tissues revealed the presence of severe vascular lesions consistent with systemic vasculitides. These systemic immune-mediated vascular disorders have been associated with sudden hearing loss. Other vascular-specific damage was also observed to be present in many of the sampled tissues, and we were able to identify persistent virus in the perivascular tissues in the brain tissue of survivors. Serological analyses of two of the three survivors revealed the presence of autoimmune disease markers. Our findings point toward an immune-mediated etiology for Lassa fever-associated sudden-onset hearing loss and lay the foundation for developing potential therapies to prevent and/or cure Lassa fever-associated sudden-onset hearing loss.IMPORTANCE Lassa virus is one of the most common causes of viral hemorrhagic fever. A frequent, but as yet unexplained, consequence of infection with Lassa virus is acute, sudden-onset sensorineural hearing loss in one or both ears. Deafness is observed in approximately 30% of surviving Lassa fever patients, an attack rate that is approximately 300% higher than mumps virus infection, which was previously thought to be the most common cause of virus-induced deafness. Here, we provide evidence from Lassa virus-infected cynomolgus macaques implicating an immune-mediated vasculitis syndrome underlying the pathology of Lassa fever-associated deafness. These findings could change the way human Lassa fever patients are medically managed in order to prevent deafness by including diagnostic monitoring of human survivors for onset of vasculitides via available imaging methods and/or other diagnostic markers of immune-mediated vascular disease.
Collapse
|
14
|
Chanouzas D, Sagmeister M, Dyall L, Sharp P, Powley L, Johal S, Bowen J, Nightingale P, Ferro CJ, Morgan MD, Moss P, Harper L. The host cellular immune response to cytomegalovirus targets the endothelium and is associated with increased arterial stiffness in ANCA-associated vasculitis. Arthritis Res Ther 2018; 20:194. [PMID: 30157919 PMCID: PMC6116544 DOI: 10.1186/s13075-018-1695-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/01/2018] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Cardiovascular disease is a leading cause of death in ANCA-associated vasculitis (AAV). An expansion of CD4+CD28null T cells is seen mainly in cytomegalovirus (CMV)-seropositive individuals and has been linked to increased cardiovascular disease risk in other conditions. The aims of this study were to phenotype CD4+CD28null T cells in AAV with respect to their pro-inflammatory capacity and ability to target and damage the endothelium and to investigate their relationship to arterial stiffness, a marker of cardiovascular mortality. METHODS CD4+CD28null T cells were phenotyped in 53 CMV-seropositive AAV patients in stable remission and 30 age-matched CMV-seropositive healthy volunteers by flow cytometry following stimulation with CMV lysate. The expression of endothelial homing markers and cytotoxic molecules was evaluated in unstimulated CD4+CD28null T cells. Arterial stiffness was measured by carotid-to-femoral pulse wave velocity (PWV) in patients with AAV. RESULTS CD4+CD28null T cells were CMV-specific and expressed a T helper 1 (Th1) phenotype with high levels of interferon-gamma (IFN-γ) and tumour necrosis factor-alpha (TNF-α) secretion. They also co-expressed the endothelial homing markers CX3CR1, CD49d and CD11b and cytotoxic molecules perforin and granzyme B. CD4+CD28null T cells were phenotypically similar in patients with AAV and healthy volunteers but their proportion was almost twice as high in patients with AAV (11.3% [3.7-19.7] versus 6.7 [2.4-8.8]; P = 0.022). The size of the CD4+CD28null T-cell subset was independently linked to increased PWV in AAV (0.66 m/s increase per 10% increase in CD4+CD28null cells, 95% confidence interval 0.13-1.19; P = 0.016). CONCLUSION The host cellular immune response to CMV leads to the expansion of cytotoxic CD4+CD28null T cells that express endothelial homing markers and are independently linked to increased arterial stiffness, a marker of cardiovascular mortality. Suppression of CMV in AAV may be of therapeutic value in reducing the risk of cardiovascular disease.
Collapse
Affiliation(s)
- Dimitrios Chanouzas
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT UK
- Renal Unit, University Hospitals Birmingham NHS Foundation Trust, Mindelsohn Way, Edgbaston, Birmingham, B15 2TH UK
| | - Michael Sagmeister
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT UK
- Renal Unit, University Hospitals Birmingham NHS Foundation Trust, Mindelsohn Way, Edgbaston, Birmingham, B15 2TH UK
| | - Lovesh Dyall
- Renal Unit, University Hospitals Birmingham NHS Foundation Trust, Mindelsohn Way, Edgbaston, Birmingham, B15 2TH UK
| | - Phoebe Sharp
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT UK
- Renal Unit, University Hospitals Birmingham NHS Foundation Trust, Mindelsohn Way, Edgbaston, Birmingham, B15 2TH UK
| | - Lucy Powley
- Renal Unit, University Hospitals Birmingham NHS Foundation Trust, Mindelsohn Way, Edgbaston, Birmingham, B15 2TH UK
| | - Serena Johal
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT UK
- Renal Unit, University Hospitals Birmingham NHS Foundation Trust, Mindelsohn Way, Edgbaston, Birmingham, B15 2TH UK
| | - Jessica Bowen
- Renal Unit, University Hospitals Birmingham NHS Foundation Trust, Mindelsohn Way, Edgbaston, Birmingham, B15 2TH UK
| | - Peter Nightingale
- Institute of Translational Medicine Birmingham, Heritage Building, Mindelsohn Way, Edgbaston, Birmingham, B15 2TH UK
| | - Charles J. Ferro
- Renal Unit, University Hospitals Birmingham NHS Foundation Trust, Mindelsohn Way, Edgbaston, Birmingham, B15 2TH UK
- Institute of Translational Medicine Birmingham, Heritage Building, Mindelsohn Way, Edgbaston, Birmingham, B15 2TH UK
| | - Matthew D. Morgan
- Renal Unit, University Hospitals Birmingham NHS Foundation Trust, Mindelsohn Way, Edgbaston, Birmingham, B15 2TH UK
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT UK
| | - Paul Moss
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT UK
| | - Lorraine Harper
- Renal Unit, University Hospitals Birmingham NHS Foundation Trust, Mindelsohn Way, Edgbaston, Birmingham, B15 2TH UK
- Institute of Translational Medicine Birmingham, Heritage Building, Mindelsohn Way, Edgbaston, Birmingham, B15 2TH UK
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT UK
| |
Collapse
|
15
|
Carvajal Alegria G, Gazeau P, Hillion S, Daïen CI, Cornec DYK. Could Lymphocyte Profiling be Useful to Diagnose Systemic Autoimmune Diseases? Clin Rev Allergy Immunol 2018; 53:219-236. [PMID: 28474288 DOI: 10.1007/s12016-017-8608-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Considering the implications of B, T, and natural killer (NK) cells in the pathophysiology of systemic autoimmune diseases, the assessment of their distribution in the blood could be helpful for physicians in the complex process of determining a precise diagnosis. In primary Sjögren's syndrome, transitional and active naive B cells are increased and memory B cells are decreased compared to healthy controls and other systemic diseases. However, their utility to improve the accuracy of classification criteria has not been proven. In early untreated rheumatoid arthritis, proportions of regulatory T cells are constantly reduced, but other patterns are difficult to determine given the heterogeneity of published studies. In systemic lupus erythematosus, the lack of studies using large cohorts of patients and the diversity of the possible pathological mechanisms involved are also important impediments. Nevertheless, transitional B cell and plasma cell proportions are increased in most of the studies, the CD4/CD8 ratio is decreased, and the number of NK cells is reduced. Despite the low number of studies, anomalies of lymphocyte subset distribution was also described in ANCA-associated vasculitis, systemic scleroderma, and myositis. For now, flow cytometric analysis of lymphocyte subsets has focused mainly on specific subpopulations and is more useful for basic and translational research than for diagnostics in clinical practice. However, new modern methods such as mass cytometry and bioinformatics analyses may offer the possibility to simultaneously account for the relative proportions of multiple lymphocyte subsets and define a global profile in homogeneous groups of patients. The years to come will certainly incorporate such global lymphocyte profiling in reclassification of systemic autoimmune diseases.
Collapse
Affiliation(s)
- Guillermo Carvajal Alegria
- Service de Rhumatologie, Hôpital de la Cavale Blanche, CHRU Brest, BP 824, 29609, Brest cedex, France.,INSERM U1227, European University of Brest, Brest, France
| | - Pierre Gazeau
- Service de Rhumatologie, Hôpital de la Cavale Blanche, CHRU Brest, BP 824, 29609, Brest cedex, France
| | - Sophie Hillion
- INSERM U1227, European University of Brest, Brest, France.,Laboratoire d'Immunologie et Immunothérapie, CHRU Morvan, Brest, France
| | - Claire I Daïen
- Rheumatology Department, Lapeyronie Hospital and Montpellier I University, Montpellier, France.,UMR5535, CNRS, Institute of molecular genetic, Montpellier, France
| | - Divi Y K Cornec
- Service de Rhumatologie, Hôpital de la Cavale Blanche, CHRU Brest, BP 824, 29609, Brest cedex, France. .,INSERM U1227, European University of Brest, Brest, France.
| |
Collapse
|
16
|
Lin Z, Han S, Qian X, Hu C, Xiao W, Qian L, Zhang Y, Ding Y, Jia X, Zhu G, Gong W. Regulatory NK1.1 -CD4 +NKG2D + subset induced by NKG2DL + cells promotes tumor evasion in mice. Cancer Immunol Immunother 2018; 67:1159-1173. [PMID: 29802426 PMCID: PMC11028319 DOI: 10.1007/s00262-018-2172-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 05/12/2018] [Indexed: 12/24/2022]
Abstract
Regulatory T cells play critical roles in self-tolerance and tumor evasion. CD4+NKG2D+ cells with regulatory activity are present in patients with NKG2DL+ tumors and juvenile systemic lupus erythematosus. We previously showed that TGF-β-producing CD4+NKG2D+ T cells are present in pCD86-Rae-1ε transgenic mice. Here, we performed both ex vivo and in vivo studies on pCD86-Rae-1ε transgenic mice and an MC38 tumor-bearing mouse model and show that NK1.1-CD4+NKG2D+ T cells have regulatory activity in pCD86-Rae-1ε transgenic mice. Furthermore, this T-cell subset was induced in mice transplanted with NKG2DL+ tumor cells and produced TGF-β and FasL, and secreted low amounts of IFN-γ. This T-cell subset downregulated the function of effector T cells and dendritic cells, which were abolished by anti-TGF-β antibody. In vivo, adoptive transfer of NK1.1-CD4+NKG2D+ T cells promoted TGF-β-dependent tumor growth in mice. We further found that ex vivo induction of NK1.1-CD4+NKG2D+ T cells was dependent on both anti-CD3 and NKG2DL stimulation. Furthermore, regulatory NK1.1-CD4+NKG2D+ T cells did not express Foxp3 or CD25 and expressed intermediate levels of T-bet. Western-blotting showed that STAT3 signaling was activated in NK1.1-CD4+NKG2D+ T cells of MC38 tumor-bearing and pCD86-Rae-1ε transgenic mice. In conclusion, we describe a regulatory NK1.1-CD4+NKG2D+ T-cell population, different from other regulatory T cells and abnormally elevated in pCD86-Rae-1ε transgenic and MC38 tumor-bearing mice.
Collapse
Affiliation(s)
- Zhijie Lin
- Department of Immunology, Institute of Translational Medicine, Medical College, Yangzhou University, 11 Huaihai Road, Yangzhou, 225001, People's Republic of China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 E. Wenhui Road, Yangzhou, 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
| | - Sen Han
- Department of Immunology, Institute of Translational Medicine, Medical College, Yangzhou University, 11 Huaihai Road, Yangzhou, 225001, People's Republic of China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, People's Republic of China
| | - Xingxing Qian
- Department of Immunology, Institute of Translational Medicine, Medical College, Yangzhou University, 11 Huaihai Road, Yangzhou, 225001, People's Republic of China
| | - Chunxia Hu
- Department of Immunology, Institute of Translational Medicine, Medical College, Yangzhou University, 11 Huaihai Road, Yangzhou, 225001, People's Republic of China
| | - Weiming Xiao
- Department of Gastroenterology, Affiliated Hospital, Yangzhou University, Yangzhou, People's Republic of China
| | - Li Qian
- Department of Immunology, Institute of Translational Medicine, Medical College, Yangzhou University, 11 Huaihai Road, Yangzhou, 225001, People's Republic of China
| | - Yu Zhang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 E. Wenhui Road, Yangzhou, 225009, People's Republic of China
| | - Yanbing Ding
- Department of Gastroenterology, Affiliated Hospital, Yangzhou University, Yangzhou, People's Republic of China
| | - Xiaoqin Jia
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, People's Republic of China
| | - Guoqiang Zhu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 E. Wenhui Road, Yangzhou, 225009, People's Republic of China.
| | - Weijuan Gong
- Department of Immunology, Institute of Translational Medicine, Medical College, Yangzhou University, 11 Huaihai Road, Yangzhou, 225001, People's Republic of China.
- Department of Gastroenterology, Affiliated Hospital, Yangzhou University, Yangzhou, People's Republic of China.
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, People's Republic of China.
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 E. Wenhui Road, Yangzhou, 225009, People's Republic of China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China.
| |
Collapse
|
17
|
Stojanovic A, Correia MP, Cerwenka A. The NKG2D/NKG2DL Axis in the Crosstalk Between Lymphoid and Myeloid Cells in Health and Disease. Front Immunol 2018; 9:827. [PMID: 29740438 PMCID: PMC5924773 DOI: 10.3389/fimmu.2018.00827] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022] Open
Abstract
Natural killer group 2, member D (NKG2D) receptor is a type II transmembrane protein expressed by both innate and adaptive immune cells, including natural killer (NK) cells, CD8+ T cells, invariant NKT cells, γδ T cells, and some CD4+ T cells under certain pathological conditions. NKG2D is an activating NK receptor that induces cytotoxicity and production of cytokines by effector cells and supports their proliferation and survival upon engagement with its ligands. In both innate and T cell populations, NKG2D can costimulate responses induced by other receptors, such as TCR in T cells or NKp46 in NK cells. NKG2D ligands (NKG2DLs) are remarkably diverse. Initially, NKG2DL expression was typically attributed to stressed, infected, or transformed cells, thus signaling “dysregulated-self.” However, many reports indicated their expression under homeostatic conditions, usually in the context of cell activation and/or proliferation. Myeloid cells, including macrophages and dendritic cells (DCs), are among the first cells sensing and responding to pathogens and tissue damage. By secreting a plethora of soluble mediators, by presenting antigens to T cells and by expressing costimulatory molecules, myeloid cells play vital roles in inducing and supporting responses of other immune cells in lymphoid organs and tissues. When activated, both macrophages and DCs upregulate NKG2DLs, thereby enabling them with additional mechanisms for regulating lymphocyte responses. In this review, we will focus on the expression of NKG2D by innate and adaptive lymphocytes, the regulation of NKG2DL expression on myeloid cells, and the contribution of the NKG2D/NKG2DL axis to the crosstalk of myeloid cells with NKG2D-expressing lymphocytes. In addition, we will highlight pathophysiological conditions associated with NKG2D/NKG2DL dysregulation and discuss the putative involvement of the NKG2D/NKG2DL axis in the lymphocyte/myeloid cell crosstalk in these diseases.
Collapse
Affiliation(s)
- Ana Stojanovic
- Innate Immunity (D080), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Immunobiochemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Margareta P Correia
- Innate Immunity (D080), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Immunobiochemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Adelheid Cerwenka
- Innate Immunity (D080), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Immunobiochemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
18
|
NKG2D +CD4 + T Cells Kill Regulatory T Cells in a NKG2D-NKG2D Ligand- Dependent Manner in Systemic Lupus Erythematosus. Sci Rep 2017; 7:1288. [PMID: 28455530 PMCID: PMC5430709 DOI: 10.1038/s41598-017-01379-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/27/2017] [Indexed: 11/09/2022] Open
Abstract
Systemic lupus erythematosus (SLE) features a decreased pool of CD4+CD25+Foxp3+ T regulatory (Treg) cells. We had previously observed NKG2D+CD4+ T cell expansion in contrast to a decreased pool of Treg cells in SLE patients, but whether NKG2D+CD4+ T cells contribute to the decreased Treg cells remains unclear. In the present study, we found that the NKG2D+CD4+ T cells efficiently killed NKG2D ligand (NKG2DL)+ Treg cells in vitro, whereby the surviving Treg cells in SLE patients showed no detectable expression of NKG2DLs. It was further found that MRL/lpr lupus mice have significantly increased percentage of NKG2D+CD4+ T cells and obvious decreased percentage of Treg cells, as compared with wild-type mice. Adoptively transferred NKG2DL+ Treg cells were found to be efficiently killed in MRL/lpr lupus mice, with NKG2D neutralization remarkably attenuating this killing. Anti-NKG2D or anti-interferon-alpha receptor (IFNAR) antibodies treatment in MRL/lpr mice restored Treg cells numbers and markedly ameliorated the lupus disease. These results suggest that NKG2D+CD4+ T cells are involved in the pathogenesis of SLE by killing Treg cells in a NKG2D-NKG2DL-dependent manner. Targeting the NKG2D-NKG2DL interaction might be a potential therapeutic strategy by which Treg cells can be protected from cytolysis in SLE patients.
Collapse
|
19
|
Kerstein A, Schüler S, Cabral-Marques O, Fazio J, Häsler R, Müller A, Pitann S, Moosig F, Klapa S, Haas C, Kabelitz D, Riemekasten G, Wolters S, Lamprecht P. Environmental factor and inflammation-driven alteration of the total peripheral T-cell compartment in granulomatosis with polyangiitis. J Autoimmun 2017; 78:79-91. [DOI: 10.1016/j.jaut.2016.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/19/2016] [Accepted: 12/24/2016] [Indexed: 10/20/2022]
|
20
|
Szczeklik W, Jakieła B, Wawrzycka-Adamczyk K, Sanak M, Hubalewska-Mazgaj M, Padjas A, Surmiak M, Szczeklik K, Sznajd J, Musiał J. Skewing toward Treg and Th2 responses is a characteristic feature of sustained remission in ANCA-positive granulomatosis with polyangiitis. Eur J Immunol 2017; 47:724-733. [PMID: 28155222 DOI: 10.1002/eji.201646810] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/27/2016] [Accepted: 02/01/2017] [Indexed: 12/31/2022]
Abstract
The objective of our study was to evaluate the T-helper (Th) and regulatory T (Treg) cell profile in ANCA-positive granulomatosis with polyangiitis (GPA) and its relation to disease activity. In a prospective study, we studied two groups of GPA patients: (i) disease flare (active-GPA, BVAS>6, n = 19), (ii) sustained remission (≥ 1-year prior enrollment, inactive-GPA, BVAS = 0, n = 18). 24 age-sex matched healthy subjects served as controls. Active-GPA patients were followed for 6 months and reevaluated during remission (early remission; n = 13). We analyzed subsets of Th-cells (flow cytometry), production of signature cytokines by in vitro stimulated lymphocytes, and broad spectrum of serum cytokines (Luminex). In all GPA patients we observed expansion of effector Th17 cells, and increased production of IL-17A by in vitro stimulated T cells, as compared to controls. Disease flare was characterized by marked reduction in Treg cells, whereas in sustained remission we showed expansion of both Treg and Th2 subset. Finally, analyzing the cytokine profile, we identified CCL23 and LIGHT, as potential biomarkers of active disease. We conclude that in GPA, expansion of Treg and Th2 lymphocytes in parallel to increased Th17 response is a characteristic feature of sustained remission. In contrast, Treg cells are markedly decreased in disease flare.
Collapse
Affiliation(s)
- Wojciech Szczeklik
- Department of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Bogdan Jakieła
- Department of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | | | - Marek Sanak
- Department of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | | | - Agnieszka Padjas
- Department of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Marcin Surmiak
- Department of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Katarzyna Szczeklik
- Department of Integrated Dentistry, Jagiellonian University Medical College, Krakow, Poland
| | - Jan Sznajd
- Department of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Jacek Musiał
- Department of Medicine, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
21
|
Qian X, Hu C, Han S, Lin Z, Xiao W, Ding Y, Zhang Y, Qian L, Jia X, Zhu G, Gong W. NK1.1 - CD4 + NKG2D + T cells suppress DSS-induced colitis in mice through production of TGF-β. J Cell Mol Med 2017; 21:1431-1444. [PMID: 28224733 PMCID: PMC5487917 DOI: 10.1111/jcmm.13072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/25/2016] [Indexed: 12/23/2022] Open
Abstract
CD4+NKG2D+ T cells are associated with tumour, infection and autoimmune diseases. Some CD4+NKG2D+ T cells secrete IFN‐γ and TNF‐α to promote inflammation, but others produce TGF‐β and FasL to facilitate tumour evasion. Here, murine CD4+NKG2D+ T cells were further classified into NK1.1−CD4+NKG2D+ and NK1.1+CD4+NKG2D+ subpopulations. The frequency of NK1.1−CD4+NKG2D+ cells decreased in inflamed colons, whereas more NK1.1+CD4+NKG2D+ cells infiltrated into colons of mice with DSS‐induced colitis. NK1.1−CD4+NKG2D+ cells expressed TGF‐β and FasL without secreting IFN‐γ, IL‐21 and IL‐17 and displayed no cytotoxicity. The adoptive transfer of NK1.1−CD4+NKG2D+ cells suppressed DSS‐induced colitis largely dependent on TGF‐β. NK1.1−CD4+NKG2D+ cells did not expressed Foxp3, CD223 (LAG‐3) and GITR. The subpopulation was distinct from NK1.1+CD4+NKG2D+ cells in terms of surface markers and RNA transcription. NK1.1−CD4+NKG2D+ cells also differed from Th2 or Th17 cells because the former did not express GATA‐3 and ROR‐γt. Thus, NK1.1−CD4+NKG2D+ cells exhibited immune regulatory functions, and this T cell subset could be developed to suppress inflammation in clinics.
Collapse
Affiliation(s)
- Xingxing Qian
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Chunxia Hu
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Sen Han
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Zhijie Lin
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, China
| | - Weiming Xiao
- Department of Gastroenterology, The Second Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yanbing Ding
- Department of Gastroenterology, The Second Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yu Zhang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, China
| | - Li Qian
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Xiaoqing Jia
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, China
| | - Guoqiang Zhu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Weijuan Gong
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, China.,Department of Gastroenterology, The Second Clinical Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
22
|
Merkt W, Claus M, Blank N, Hundemer M, Cerwenka A, Lorenz HM, Watzl C. Active but not inactive granulomatosis with polyangiitis is associated with decreased and phenotypically and functionally altered CD56(dim) natural killer cells. Arthritis Res Ther 2016; 18:204. [PMID: 27624647 PMCID: PMC5022237 DOI: 10.1186/s13075-016-1098-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/22/2016] [Indexed: 01/16/2023] Open
Abstract
Background The role of natural killer (NK) cells in granulomatosis with polyangiitis (GPA) is poorly understood. We recently reported that peripheral blood NK cell percentages correlate with the suppression of GPA activity (cohort I). The purpose of the current study was to further characterize NK cell subsets, phenotype and function in a second GPA cohort (cohort II). Methods Peripheral blood lymphocyte subsets were analyzed at a clinical diagnostic laboratory. Clinical data were extracted from medical records and patients were grouped according to their activity state (remission vs. active/non-remission). Separate analysis (cohort II, n = 22) and combined analysis (cohorts I and II, n = 34/57) of NK cell counts/percentages was performed. NK cell subsets and phenotypes were analyzed by multicolor flow cytometry. Cytotoxicity assays were performed using 51Cr-labeled K562 target cells. Results In cohort II, NK cell counts were lower than the lower limit of normal in active GPA, despite normal percentages due to lymphopenia. NK cell counts, but not other lymphocyte counts, were significantly higher in remission. Combined analysis of cohorts I and II confirmed decreased NK cell counts in active GPA and increased percentages in long-term remission. Follow-up measurements of six patients revealed increasing NK cell percentages during successful induction therapy. Multicolor analysis from cohort II revealed that in active GPA, the CD56dim subset was responsible for decreased NK cell counts, expressed more frequently CD69, downregulated the Fc-receptor CD16 and upregulated the adhesion molecule CD54, the chemokine receptor CCR5 and the activating receptor NKG2C. In remission, these markers were unaltered or marginally altered. All other receptors investigated (NKp30, NKp44, NKp46, NKG2D, DNAM1, 2B4, CRACC, 41BB) remained unchanged. Natural cytotoxicity was not detectable in most patients with active GPA, but was restored in remission. Conclusions NK cell numbers correlate inversely with GPA activity. Reduced CD56dim NK cells in active GPA have an activated phenotype, which intriguingly is associated with profound deficiency in cytotoxicity. These data suggest a function for NK cells in the pathogenesis and/or modulation of inflammation in GPA. NK cell numbers, phenotype (CD16, CD69, NKG2C) or overall natural cytotoxicity are promising candidates to serve as clinical biomarkers to determine GPA activity. Electronic supplementary material The online version of this article (doi:10.1186/s13075-016-1098-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wolfgang Merkt
- Department of Hematology, Oncology and Rheumatology, Internal Medicine V, University Hospital of Heidelberg, Heidelberg, Germany. .,Leibniz Research Center for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystraße 67, Dortmund, 44139, Germany.
| | - Maren Claus
- Leibniz Research Center for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystraße 67, Dortmund, 44139, Germany
| | - Norbert Blank
- Department of Hematology, Oncology and Rheumatology, Internal Medicine V, University Hospital of Heidelberg, Heidelberg, Germany
| | - Michael Hundemer
- Department of Hematology, Oncology and Rheumatology, Internal Medicine V, University Hospital of Heidelberg, Heidelberg, Germany
| | - Adelheid Cerwenka
- Innate Immunity Group, German Cancer Research Center, Heidelberg, Germany
| | - Hanns-Martin Lorenz
- Department of Hematology, Oncology and Rheumatology, Internal Medicine V, University Hospital of Heidelberg, Heidelberg, Germany
| | - Carsten Watzl
- Leibniz Research Center for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystraße 67, Dortmund, 44139, Germany.
| |
Collapse
|
23
|
Shabir S, Smith H, Kaul B, Pachnio A, Jham S, Kuravi S, Ball S, Chand S, Moss P, Harper L, Borrows R. Cytomegalovirus-Associated CD4(+) CD28(null) Cells in NKG2D-Dependent Glomerular Endothelial Injury and Kidney Allograft Dysfunction. Am J Transplant 2016; 16:1113-28. [PMID: 26603521 DOI: 10.1111/ajt.13614] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 09/17/2015] [Accepted: 09/17/2015] [Indexed: 01/25/2023]
Abstract
Emerging data suggest that expansion of a circulating population of atypical, cytotoxic CD4(+) T cells lacking costimulatory CD28 (CD4(+) CD28(null) cells) is associated with latent cytomegalovirus (CMV) infection. The purpose of the current study was to increase the understanding of the relevance of these cells in 100 unselected kidney transplant recipients followed prospectively for a median of 54 months. Multicolor flow cytometry of peripheral blood mononuclear cells before transplantation and serially posttransplantation was undertaken. CD4(+) CD28(null) cells were found predominantly in CMV-seropositive patients and expanded in the posttransplantation period. These cells were predominantly effector-memory phenotype and expressed markers of endothelial homing (CX3CR1) and cytotoxicity (NKG2D and perforin). Isolated CD4(+) CD27(-) CD28(null) cells proliferated in response to peripheral blood mononuclear cells previously exposed to CMV-derived (but not HLA-derived) antigens and following such priming incubation with glomerular endothelium resulted in signs of endothelial damage and apoptosis (release of fractalkine and von Willebrand factor; increased caspase 3 expression). This effect was mitigated by NKG2D-blocking antibody. Increased CD4(+) CD28(null) cell frequencies were associated with delayed graft function and lower estimated glomerular filtration rate at end follow-up. This study suggests an important role for this atypical cytotoxic CD4(+) CD28(null) cell subset in kidney transplantation and points to strategies that may minimize the impact on clinical outcomes.
Collapse
Affiliation(s)
- S Shabir
- Department of Nephrology and Kidney Transplantation, Queen Elizabeth Hospital Birmingham, Birmingham, UK.,Centre for Translational Inflammation Research, University of Birmingham, Birmingham, UK
| | - H Smith
- Centre for Translational Inflammation Research, University of Birmingham, Birmingham, UK
| | - B Kaul
- Centre for Translational Inflammation Research, University of Birmingham, Birmingham, UK.,School of Cancer Sciences, University of Birmingham, Birmingham, UK
| | - A Pachnio
- School of Cancer Sciences, University of Birmingham, Birmingham, UK
| | - S Jham
- Department of Nephrology and Kidney Transplantation, Queen Elizabeth Hospital Birmingham, Birmingham, UK.,Centre for Translational Inflammation Research, University of Birmingham, Birmingham, UK
| | - S Kuravi
- Clinical and Experimental Medicine, University of Birmingham, Birmingham, UK
| | - S Ball
- Department of Nephrology and Kidney Transplantation, Queen Elizabeth Hospital Birmingham, Birmingham, UK.,Centre for Translational Inflammation Research, University of Birmingham, Birmingham, UK
| | - S Chand
- Department of Nephrology and Kidney Transplantation, Queen Elizabeth Hospital Birmingham, Birmingham, UK.,Centre for Translational Inflammation Research, University of Birmingham, Birmingham, UK
| | - P Moss
- School of Cancer Sciences, University of Birmingham, Birmingham, UK
| | - L Harper
- Centre for Translational Inflammation Research, University of Birmingham, Birmingham, UK
| | - R Borrows
- Department of Nephrology and Kidney Transplantation, Queen Elizabeth Hospital Birmingham, Birmingham, UK.,Centre for Translational Inflammation Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
24
|
Jabri B, Abadie V. IL-15 functions as a danger signal to regulate tissue-resident T cells and tissue destruction. Nat Rev Immunol 2015; 15:771-83. [PMID: 26567920 PMCID: PMC5079184 DOI: 10.1038/nri3919] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this Opinion article, we discuss the function of tissues as a crucial checkpoint for the regulation of effector T cell responses, and the notion that interleukin-15 (IL-15) functions as a danger molecule that communicates to the immune system that the tissue is under attack and poises it to mediate tissue destruction. More specifically, we propose that expression of IL-15 in tissues promotes T helper 1 cell-mediated immunity and provides co-stimulatory signals to effector cytotoxic T cells to exert their effector functions and drive tissue destruction. Therefore, we think that IL-15 contributes to tissue protection by promoting the elimination of infected cells but that when its expression is chronically dysregulated, it can promote the development of complex T cell-mediated disorders associated with tissue destruction, such as coeliac disease and type 1 diabetes.
Collapse
Affiliation(s)
- Bana Jabri
- Departments of Medicine, Pathology and Pediatrics, University of Chicago, Knapp Center for Biomedical Discovery (KCBD), Chicago, Illinois 60637, USA
| | - Valérie Abadie
- Department of Microbiology, Infectious Diseases, and Immunology, University of Montreal, and the Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada
| |
Collapse
|
25
|
Merkt W, Sturm P, Lasitschka F, Tretter T, Watzl C, Saure D, Hundemer M, Schwenger V, Blank N, Lorenz HM, Cerwenka A. Peripheral blood natural killer cell percentages in granulomatosis with polyangiitis correlate with disease inactivity and stage. Arthritis Res Ther 2015; 17:337. [PMID: 26589807 PMCID: PMC4654817 DOI: 10.1186/s13075-015-0851-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/05/2015] [Indexed: 12/29/2022] Open
Abstract
Introduction The role of CD3−CD56+ natural killer (NK) cells in granulomatosis with polyangiitis (GPA) is poorly understood. Recently, it has been shown that peripheral blood NK cells can kill renal microvascular endothelial cells, suggesting a pathogenic role of NK cells in this disease. So far, subset distribution, phenotype, and function of peripheral blood NK cells in relation to GPA disease activity have not been elucidated. Moreover, it is not known whether NK cells infiltrate GPA tissue lesions. Methods Paraffin sections of GPA granulomas and controls were stained with anti-CD56 and anti-CD3 antibodies. Peripheral blood lymphocyte subsets were analyzed by flow cytometry. NK cell degranulation was analyzed using cocultures of patient PBMCs with target cells and surface expression of CD107a. Clinical data were extracted from medical records. Statistical analysis was performed in an exploratory way. Results CD56+ cells were not detectable in active granulomatous GPA lesions but were found frequently in granulomas from tuberculosis and sarcoidosis patients. In GPA, the proportion of NK cells among peripheral blood lymphocytes correlated negatively with the Birmingham Vasculitis Activity Score (BVAS) (n = 28). Accordingly, NK cell percentages correlated positively with the duration of remission (n = 28) and were significantly higher in inactive GPA (BVAS = 0, n = 17) than in active GPA, healthy controls (n = 29), and inactive control diseases (n = 12). The highest NK cell percentages were found in patients with long-term remission and tapered immunosuppressive therapy. NK cell percentages >18.5 % of peripheral blood lymphocytes (n = 12/28) determined GPA inactivity with a specificity of 100 %. The differentiation into CD56dim and CD56bright NK cell subsets was unchanged in GPA (n = 28), irrespective of disease activity. Similar surface expression of the activating NK cell-receptors (NKp30, NKp46, and NKG2D) was determined. Like in healthy controls, GPA NK cells degranulated in the presence of NK cell receptor ligand bearing epithelial and lymphatic target cells. Conclusions NK cells were not detectable in GPA granulomas. Peripheral blood NK cell percentages positively correlate with the suppression of GPA activity and could serve as a biomarker for GPA activity. Peripheral blood NK cells in GPA patients are mature NK cells with preserved immune recognition.
Collapse
Affiliation(s)
- Wolfgang Merkt
- Department of Hematology, Oncology and Rheumatology, Internal Medicine V, University Hospital of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany. .,Innate Immunity Group, German Cancer Research Center, Heidelberg, Germany.
| | - Prisca Sturm
- Innate Immunity Group, German Cancer Research Center, Heidelberg, Germany.
| | - Felix Lasitschka
- Department of Pathology, University Hospital Heidelberg, Heidelberg, Germany.
| | - Theresa Tretter
- Department of Hematology, Oncology and Rheumatology, Internal Medicine V, University Hospital of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| | - Carsten Watzl
- Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany.
| | - Daniel Saure
- Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany.
| | - Michael Hundemer
- Department of Hematology, Oncology and Rheumatology, Internal Medicine V, University Hospital of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| | - Vedat Schwenger
- Department of Nephrology, University Hospital of Heidelberg, Heidelberg, Germany.
| | - Norbert Blank
- Department of Hematology, Oncology and Rheumatology, Internal Medicine V, University Hospital of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| | - Hanns-Martin Lorenz
- Department of Hematology, Oncology and Rheumatology, Internal Medicine V, University Hospital of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| | - Adelheid Cerwenka
- Innate Immunity Group, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
26
|
Glial influences on BBB functions and molecular players in immune cell trafficking. Biochim Biophys Acta Mol Basis Dis 2015; 1862:472-82. [PMID: 26454208 DOI: 10.1016/j.bbadis.2015.10.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 09/29/2015] [Accepted: 10/05/2015] [Indexed: 02/06/2023]
Abstract
The blood-brain barrier (BBB) constitutes an elaborate structure formed by specialized capillary endothelial cells, which together with pericytes and perivascular glial cells regulates the exchanges between the central nervous system (CNS) and the periphery. Intricate interactions between the different cellular constituents of the BBB are crucial in establishing a functional BBB and maintaining the delicate homeostasis of the CNS microenvironment. In this review, we discuss the role of astrocytes and microglia in inducing and maintaining barrier properties under physiological conditions as well as their involvement during neuroinflammatory pathologies. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger.
Collapse
|
27
|
Shrestha D, Jenei A, Nagy P, Vereb G, Szöllősi J. Understanding FRET as a research tool for cellular studies. Int J Mol Sci 2015; 16:6718-56. [PMID: 25815593 PMCID: PMC4424985 DOI: 10.3390/ijms16046718] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/18/2015] [Indexed: 01/06/2023] Open
Abstract
Communication of molecular species through dynamic association and/or dissociation at various cellular sites governs biological functions. Understanding these physiological processes require delineation of molecular events occurring at the level of individual complexes in a living cell. Among the few non-invasive approaches with nanometer resolution are methods based on Förster Resonance Energy Transfer (FRET). FRET is effective at a distance of 1-10 nm which is equivalent to the size of macromolecules, thus providing an unprecedented level of detail on molecular interactions. The emergence of fluorescent proteins and SNAP- and CLIP- tag proteins provided FRET with the capability to monitor changes in a molecular complex in real-time making it possible to establish the functional significance of the studied molecules in a native environment. Now, FRET is widely used in biological sciences, including the field of proteomics, signal transduction, diagnostics and drug development to address questions almost unimaginable with biochemical methods and conventional microscopies. However, the underlying physics of FRET often scares biologists. Therefore, in this review, our goal is to introduce FRET to non-physicists in a lucid manner. We will also discuss our contributions to various FRET methodologies based on microscopy and flow cytometry, while describing its application for determining the molecular heterogeneity of the plasma membrane in various cell types.
Collapse
Affiliation(s)
- Dilip Shrestha
- Department of Biophysics and Cell Biology, University of Debrecen, Egyetem tér 1, Nagyerdei Krt. 98, Debrecen 4032, Hungary.
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen 4032, Hungary.
| | - Attila Jenei
- Department of Biophysics and Cell Biology, University of Debrecen, Egyetem tér 1, Nagyerdei Krt. 98, Debrecen 4032, Hungary.
| | - Péter Nagy
- Department of Biophysics and Cell Biology, University of Debrecen, Egyetem tér 1, Nagyerdei Krt. 98, Debrecen 4032, Hungary.
| | - György Vereb
- Department of Biophysics and Cell Biology, University of Debrecen, Egyetem tér 1, Nagyerdei Krt. 98, Debrecen 4032, Hungary.
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen 4032, Hungary.
| | - János Szöllősi
- Department of Biophysics and Cell Biology, University of Debrecen, Egyetem tér 1, Nagyerdei Krt. 98, Debrecen 4032, Hungary.
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen 4032, Hungary.
| |
Collapse
|
28
|
Broux B, Mizee MR, Vanheusden M, van der Pol S, van Horssen J, Van Wijmeersch B, Somers V, de Vries HE, Stinissen P, Hellings N. IL-15 Amplifies the Pathogenic Properties of CD4+CD28−T Cells in Multiple Sclerosis. THE JOURNAL OF IMMUNOLOGY 2015; 194:2099-109. [DOI: 10.4049/jimmunol.1401547] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Lintermans LL, Stegeman CA, Heeringa P, Abdulahad WH. T cells in vascular inflammatory diseases. Front Immunol 2014; 5:504. [PMID: 25352848 PMCID: PMC4196542 DOI: 10.3389/fimmu.2014.00504] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/28/2014] [Indexed: 12/12/2022] Open
Abstract
Inflammation of the human vasculature is a manifestation of many different diseases ranging from systemic autoimmune diseases to chronic inflammatory diseases, in which multiple types of immune cells are involved. For both autoimmune diseases and chronic inflammatory diseases several observations support a key role for T lymphocytes in these disease pathologies, but the underlying mechanisms are poorly understood. Previous studies in several autoimmune diseases have demonstrated a significant role for a specific subset of CD4+ T cells termed effector memory T (TEM) cells. This expanded population of TEM cells may contribute to tissue injury and disease progression. These cells exert multiple pro-inflammatory functions through the release of effector cytokines. Many of these cytokines have been detected in the inflammatory lesions and participate in the vasculitic reaction, contributing to recruitment of macrophages, neutrophils, dendritic cells, natural killer cells, B cells, and T cells. In addition, functional impairment of regulatory T cells paralyzes anti-inflammatory effects in vasculitic disorders. Interestingly, activation of TEM cells is uniquely dependent on the voltage-gated potassium Kv1.3 channel providing an anchor for specific drug targeting. In this review, we focus on the CD4+ T cells in the context of vascular inflammation and describe the evidence supporting the role of different T cell subsets in vascular inflammation. Selective targeting of pathogenic TEM cells might enable a more tailored therapeutic approach that avoids unwanted adverse side effects of generalized immunosuppression by modulating the effector functions of T cell responses to inhibit the development of vascular inflammation.
Collapse
Affiliation(s)
- Lucas L Lintermans
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen , Groningen , Netherlands
| | - Coen A Stegeman
- Department of Nephrology, University of Groningen, University Medical Center Groningen , Groningen , Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen , Groningen , Netherlands
| | - Wayel H Abdulahad
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen , Groningen , Netherlands
| |
Collapse
|
30
|
Audemard A, Lamy T, Bareau B, Sicre F, Suarez F, Truquet F, Salaun V, Macro M, Verneuil L, Lobbedez T, Castrale C, Boutemy J, Cheze S, Geffray L, Schleinitz N, Rey J, Lazaro E, Guillevin L, Bienvenu B. Vasculitis associated with large granular lymphocyte (LGL) leukemia: presentation and treatment outcomes of 11 cases. Semin Arthritis Rheum 2014; 43:362-6. [PMID: 24326032 DOI: 10.1016/j.semarthrit.2013.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/01/2013] [Accepted: 07/08/2013] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The association between vasculitis and large granular lymphocyte (LGL) leukemia has rarely been reported or investigated. Thus, we assessed the clinical and biological phenotypes of LGL leukemia associated with vasculitis. RESULTS We studied a series of 11 patients displaying LGL leukemia associated with vasculitis (LAV). The mean age at diagnosis of LGL leukemia was 60.3 years; there were nine women and two men. The mean follow-up period was 45 months. The main LGL lineage was T-LGL (10 patients), and only one NK-LGL was identified. Clinical and biological features of T-LGL leukemia were compared with those from the 2009 French T-LGL registry. We did not find any relevant differences except that patients with LAV were predominantly female (p < 0.05). The most frequently observed vasculitis was cryoglobulinemia (n = 5). Three patients presented with cutaneous leukocytoclastic angiitis, two patients had ANCA-negative microscopic polyangiitis, and one patient had giant cell arteritis. The main clinical features involved the skin, e.g., purpura (91%), arthralgia (37%), peripheral neuritis (27%), and renal glomerulonephritis (18%). The most frequent histologic finding was leucocytoclastic vasculitis (54%). The rate of complete remission was high; i.e., 80%. A minority of patients had a vasculitis relapse (27%). Three patients (27%) died; one death was related to LGL leukemia (acute infection) and the two other deaths were related to vasculitis (both with heart failure). CONCLUSION We conclude that vasculitis is overrepresented in the population of LGL patients, LAV predominantly affects women, vasculitis preferentially affects the small vessels, and LAV has high rate of complete response.
Collapse
|
31
|
Traitanon O, Gorbachev A, Bechtel JJ, Keslar KS, Baldwin WM, Poggio ED, Fairchild RL. IL-15 induces alloreactive CD28(-) memory CD8 T cell proliferation and CTLA4-Ig resistant memory CD8 T cell activation. Am J Transplant 2014; 14:1277-89. [PMID: 24842641 PMCID: PMC6083870 DOI: 10.1111/ajt.12719] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/07/2014] [Accepted: 02/20/2014] [Indexed: 01/25/2023]
Abstract
The presence of CD28(-) memory CD8 T cells in the peripheral blood of renal transplant patients is a risk factor for graft rejection and resistance to CTLA-4Ig induction therapy. In vitro analyses have indicated poor alloantigen-induced CD28(-) memory CD8 T cell proliferation, raising questions about mechanisms mediating their clonal expansion in kidney grafts to mediate injury. Candidate proliferative cytokines were tested for synergy with alloantigen in stimulating CD28(-) memory CD8 T cell proliferation. Addition of IL-15, but not IL-2 or IL-7, to co-cultures of CD28(-) or CD28(+) memory CD8 T cells and allogeneic B cells rescued proliferation of the CD28(-) and enhanced CD28(+) memory T cell proliferation. Proliferating CD28(-) memory CD8 T cells produced high amounts of interferon gamma and tumor necrosis factor alpha and expressed higher levels of the cytolytic marker CD107a than CD28(+) memory CD8 T cells. CTLA-4Ig inhibited alloantigen-induced proliferation of CD28(+) memory CD8 T cell proliferation but had no effect on alloantigen plus IL-15-induced proliferation of either CD28(-) or CD28(+) memory CD8 T cells. These results indicate the ability of IL-15, a cytokine produced by renal epithelial during inflammation, to provoke CD28(-) memory CD8 T cell proliferation and to confer memory CD8 T cell resistance to CTLA-4Ig-mediated costimulation blockade.
Collapse
Affiliation(s)
- Opas Traitanon
- Department of Nephrology and Hypertension, Cleveland Clinic, Cleveland, OH 44195,Division of Nephrology, Department of Internal Medicine, Thammasart University, Pathumthani, Thailand
| | - Anton Gorbachev
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Jennifer J. Bechtel
- Department of Nephrology and Hypertension, Cleveland Clinic, Cleveland, OH 44195
| | - Karen S. Keslar
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - William M. Baldwin
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195,Glickman Urological Institute, Cleveland Clinic, Cleveland, OH 44195,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Emilio D. Poggio
- Department of Nephrology and Hypertension, Cleveland Clinic, Cleveland, OH 44195,Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195,Glickman Urological Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Robert L. Fairchild
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195,Glickman Urological Institute, Cleveland Clinic, Cleveland, OH 44195,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| |
Collapse
|
32
|
Tognarelli S, Gayet J, Lambert M, Dupuy S, Karras A, Cohen P, Guillevin L, de Menthon M, Caillat-Zucman S. Tissue-specific microvascular endothelial cells show distinct capacity to activate NK cells: implications for the pathophysiology of granulomatosis with polyangiitis. THE JOURNAL OF IMMUNOLOGY 2014; 192:3399-408. [PMID: 24600034 DOI: 10.4049/jimmunol.1301508] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The relevance of tissue specificity of microvascular endothelial cells (MECs) in the response to inflammatory stimuli and sensitivity to immune cell-mediated injury is not well defined. We hypothesized that such MEC characteristics might shape their interaction with NK cells through the use of different adhesion molecules and NK cell receptor ligands or the release of different soluble factors and render them more or less vulnerable to NK cell injury during autoimmune vasculitis, such as granulomatosis with polyangiitis (GPA). To generate a comprehensive expression profile of human MECs of renal, lung, and dermal tissue origin, we characterized, in detail, their response to inflammatory cytokines and to proteinase 3, a major autoantigen in GPA, and analyzed the effects on NK cell activation. In this study, we show that renal MECs were more susceptible than lung and dermal MECs to the effect of inflammatory signals, showing upregulation of ICAM-1 and VCAM-1 on their surface, as well as release of CCL2, soluble fractalkine, and soluble VCAM-1. Proteinase 3-stimulated renal and lung MECs triggered CD107a degranulation in control NK cell. Notably, NK cells from GPA patients expressed markers of recent in vivo activation (CD69, CD107a), degranulated more efficiently than did control NK cells in the presence of renal MECs, and induced direct killing of renal MECs in vitro. These results suggest that, upon inflammatory conditions in GPA, renal MECs may contribute to the recruitment and activation of NK cells in the target vessel wall, which may participate in the necrotizing vasculitis of the kidney during this disease.
Collapse
Affiliation(s)
- Sara Tognarelli
- INSERM, U1016 Hôpital Saint-Vincent de Paul, 75014 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Isa H, Lightman S, Pusey CD, Taylor SRJ. Ocular manifestations of Wegener’s granulomatosis. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.11.62] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
34
|
Garcia-Chagollan M, Jave-Suarez LF, Haramati J, Sanchez-Hernandez PE, Aguilar-Lemarroy A, Bueno-Topete MR, Pereira-Suarez AL, Fafutis-Morris M, Cid-Arregui A, del Toro-Arreola S. Substantial increase in the frequency of circulating CD4+NKG2D+ T cells in patients with cervical intraepithelial neoplasia grade 1. J Biomed Sci 2013; 20:60. [PMID: 23947399 PMCID: PMC3751941 DOI: 10.1186/1423-0127-20-60] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 08/15/2013] [Indexed: 01/13/2023] Open
Abstract
Background The NKG2D receptor confers important activating signals to NK cells via ligands expressed during cellular stress and viral infection. This receptor has generated great interest because not only is it expressed on NK cells, but it is also seen in virtually all CD8+ cytotoxic T cells and is classically considered absent in CD4+ T cells. However, recent studies have identified a distinctive population of CD4+ T cells that do express NKG2D, which could represent a particular cytotoxic effector population involved in viral infections and chronic diseases. On the other hand, increased incidence of human papillomavirus-associated lesions in CD4+ T cell-immunocompromised individuals suggests that CD4+ T cells play a key role in controlling the viral infection. Therefore, this study was focused on identifying the frequency of NKG2D-expressing CD4+ T cells in patients with cervical intraepithelial neoplasia (CIN) 1. Additionally, factors influencing CD4+NKG2D+ T cell expansion were also measured. Results Close to 50% of patients with CIN 1 contained at least one of the 37 HPV types detected by our genotyping system. A tendency for increased CD4+ T cells and CD8+ T cells and decreased NK cells was found in CIN 1 patients. The percentage of circulating CD4+ T cells co-expressing the NKG2D receptor significantly increased in women with CIN 1 versus control group. Interestingly, the increase of CD4+NKG2D+ T cells was seen in patients with CIN 1, despite the overall levels of CD4+ T cells did not significantly increase. We also found a significant increase of soluble MICB in CIN 1 patients; however, no correlation with the presence of CD4+NKG2D+ T cells was seen. While TGF-beta was significantly decreased in the group of CIN 1 patients, both TNF-alpha and IL-15 showed a tendency to increase in this group. Conclusions Taken together, our results suggest that the significant increase within the CD4+NKG2D+ T cell population in CIN 1 patients might be the result of a chronic exposure to viral and/or pro-inflammatory factors, and concomitantly might also influence the clearance of CIN 1-type lesion.
Collapse
Affiliation(s)
- Mariel Garcia-Chagollan
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, Guadalajara, Jalisco CP 44340, México
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abdulahad WH, De Souza AWS, Kallenberg CGM. L3. Are mononuclear cells predominant actors of endothelial damage in vasculitis? Presse Med 2013; 42:499-503. [PMID: 23477715 DOI: 10.1016/j.lpm.2013.02.305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Wayel H Abdulahad
- University of Groningen, University Medical Center Groningen, Department of Rheumatology, Groningen, Netherlands.
| | | | | |
Collapse
|
36
|
Affiliation(s)
- Peter Lamprecht
- University of Lübeck, Department of Rheumatology, Vasculitis Center UKSH & Clinical Center Bad Bramstedt, Lübeck, Germany.
| |
Collapse
|
37
|
Fernández-Sánchez A, Baragaño Raneros A, Carvajal Palao R, Sanz AB, Ortiz A, Ortega F, Suárez-Álvarez B, López-Larrea C. DNA demethylation and histone H3K9 acetylation determine the active transcription of the NKG2D gene in human CD8+ T and NK cells. Epigenetics 2012; 8:66-78. [PMID: 23235109 DOI: 10.4161/epi.23115] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The human activating receptor NKG2D is mainly expressed by NK, NKT, γδ T and CD8(+) T cells and, under certain conditions, by CD4(+) T cells. This receptor recognizes a diverse family of ligands (MICA, MICB and ULBPs 1-6) leading to the activation of effector cells and triggering the lysis of target cells. The NKG2D receptor-ligand system plays an important role in the immune response to infections, tumors, transplanted graft and autoantigens. Elucidation of the regulatory mechanisms of NKG2D is therefore essential for therapeutic purposes. In this study, we speculate whether epigenetic mechanisms, such as DNA methylation and histone acetylation, participate in NKG2D gene regulation in T lymphocytes and NK cells. DNA methylation in the NKG2D gene was observed in CD4(+) T lymphocytes and T cell lines (Jurkat and HUT78), while this gene was unmethylated in NKG2D-positive cells (CD8(+) T lymphocytes, NK cells and NKL cell line) and associated with high levels of histone H3 lysine 9 acetylation (H3K9Ac). Treatment with the histone acetyltransferase (HAT) inhibitor curcumin reduces H3K9Ac levels in the NKG2D gene, downregulates NKG2D transcription and leads to a marked reduction in the lytic capacity of NKG2D-mediated NKL cells. These findings suggest that differential NKG2D expression in the different cell subsets is regulated by epigenetic mechanisms and that its modulation by epigenetic treatments might provide a new strategy for treating several pathologies.
Collapse
|
38
|
Lepse N, Abdulahad WH, Kallenberg CG, Heeringa P. Immune regulatory mechanisms in ANCA-associated vasculitides. Autoimmun Rev 2011; 11:77-83. [PMID: 21856453 DOI: 10.1016/j.autrev.2011.08.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 08/05/2011] [Indexed: 01/09/2023]
|
39
|
|
40
|
Vasculitis syndromes: T cells turned killer by IL-15 attack the endothelium in GPA. Nat Rev Rheumatol 2011; 7:314. [PMID: 21637315 DOI: 10.1038/nrrheum.2011.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|