1
|
Brylka LJ, Alimy AR, Tschaffon-Müller MEA, Jiang S, Ballhause TM, Baranowsky A, von Kroge S, Delsmann J, Pawlus E, Eghbalian K, Püschel K, Schoppa A, Haffner-Luntzer M, Beech DJ, Beil FT, Amling M, Keller J, Ignatius A, Yorgan TA, Rolvien T, Schinke T. Piezo1 expression in chondrocytes controls endochondral ossification and osteoarthritis development. Bone Res 2024; 12:12. [PMID: 38395992 PMCID: PMC10891122 DOI: 10.1038/s41413-024-00315-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/18/2023] [Accepted: 01/01/2024] [Indexed: 02/25/2024] Open
Abstract
Piezo proteins are mechanically activated ion channels, which are required for mechanosensing functions in a variety of cell types. While we and others have previously demonstrated that the expression of Piezo1 in osteoblast lineage cells is essential for bone-anabolic processes, there was only suggestive evidence indicating a role of Piezo1 and/or Piezo2 in cartilage. Here we addressed the question if and how chondrocyte expression of the mechanosensitive proteins Piezo1 or Piezo2 controls physiological endochondral ossification and pathological osteoarthritis (OA) development. Mice with chondrocyte-specific inactivation of Piezo1 (Piezo1Col2a1Cre), but not of Piezo2, developed a near absence of trabecular bone below the chondrogenic growth plate postnatally. Moreover, all Piezo1Col2a1Cre animals displayed multiple fractures of rib bones at 7 days of age, which were located close to the growth plates. While skeletal growth was only mildly affected in these mice, OA pathologies were markedly less pronounced compared to littermate controls at 60 weeks of age. Likewise, when OA was induced by anterior cruciate ligament transection, only the chondrocyte inactivation of Piezo1, not of Piezo2, resulted in attenuated articular cartilage degeneration. Importantly, osteophyte formation and maturation were also reduced in Piezo1Col2a1Cre mice. We further observed increased Piezo1 protein abundance in cartilaginous zones of human osteophytes. Finally, we identified Ptgs2 and Ccn2 as potentially relevant Piezo1 downstream genes in chondrocytes. Collectively, our data do not only demonstrate that Piezo1 is a critical regulator of physiological and pathological endochondral ossification processes, but also suggest that Piezo1 antagonists may be established as a novel approach to limit osteophyte formation in OA.
Collapse
Affiliation(s)
- Laura J Brylka
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Assil-Ramin Alimy
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Miriam E A Tschaffon-Müller
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Baden-Württemberg, 89081, Ulm, Germany
| | - Shan Jiang
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Tobias Malte Ballhause
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Anke Baranowsky
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Simon von Kroge
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Julian Delsmann
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Eva Pawlus
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Kian Eghbalian
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Klaus Püschel
- Department Legal Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Astrid Schoppa
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Baden-Württemberg, 89081, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Baden-Württemberg, 89081, Ulm, Germany
| | - David J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, LS2 9JT, Leeds, UK
| | - Frank Timo Beil
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Johannes Keller
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Baden-Württemberg, 89081, Ulm, Germany
| | - Timur A Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Tim Rolvien
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| |
Collapse
|
2
|
Sun Q, Zhang Y, Ding Y, Xie W, Li H, Li S, Li Y, Cai M. Inhibition of PGE2 in Subchondral Bone Attenuates Osteoarthritis. Cells 2022; 11:cells11172760. [PMID: 36078169 PMCID: PMC9454853 DOI: 10.3390/cells11172760] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Aberrant subchondral bone architecture is a crucial driver of the pathological progression of osteoarthritis, coupled with increased sensory innervation. The sensory PGE2/EP4 pathway is involved in the regulation of bone mass accrual by the induction of differentiation of mesenchymal stromal cells. This study aimed to clarify whether the sensory PGE2/EP4 pathway induces aberrant structural alteration of subchondral bone in osteoarthritis. Destabilization of the medial meniscus (DMM) using a mouse model was combined with three approaches: the treatment of celecoxib, capsaicin, and sensory nerve-specific prostaglandin E2 receptor 4 (EP4)-knockout mice. Cartilage degeneration, subchondral bone architecture, PGE2 levels, distribution of sensory nerves, the number of osteoprogenitors, and pain-related behavior in DMM mice were assessed. Serum and tissue PGE2 levels and subchondral bone architecture in a human sample were measured. Increased PGE2 is closely related to subchondral bone’s abnormal microstructure in humans and mice. Elevated PGE2 concentration in subchondral bone that is mainly derived from osteoblasts occurs in early-stage osteoarthritis, preceding articular cartilage degeneration in mice. The decreased PGE2 levels by the celecoxib or sensory denervation by capsaicin attenuate the aberrant alteration of subchondral bone architecture, joint degeneration, and pain. Selective EP4 receptor knockout of the sensory nerve attenuates the aberrant formation of subchondral bone and facilitates the prevention of cartilage degeneration in DMM mice. Excessive PGE2 in subchondral bone caused a pathological alteration to subchondral bone in osteoarthritis and maintaining the physiological level of PGE2 could potentially be used as an osteoarthritis treatment.
Collapse
Affiliation(s)
- Qi Sun
- Department of Orthopaedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yuanzhen Zhang
- Department of Orthopaedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yilan Ding
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hengzhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shaohua Li
- Department of Orthopaedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Correspondence: (Y.L.); (M.C.); Tel.: +86-13975889696 (Y.L.); +86-13816147208 (M.C.); Fax: +86-073184327332 (Y.L.); +86-010-59367999 (M.C.)
| | - Ming Cai
- Department of Orthopaedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Correspondence: (Y.L.); (M.C.); Tel.: +86-13975889696 (Y.L.); +86-13816147208 (M.C.); Fax: +86-073184327332 (Y.L.); +86-010-59367999 (M.C.)
| |
Collapse
|
3
|
Haartmans MJ, Timur UT, Emanuel KS, Caron MM, Jeuken RM, Welting TJ, van Osch GJ, Heeren RM, Cillero-Pastor B, Emans PJ. Evaluation of the Anti-Inflammatory and Chondroprotective Effect of Celecoxib on Cartilage Ex Vivo and in a Rat Osteoarthritis Model. Cartilage 2022; 13:19476035221115541. [PMID: 35932105 PMCID: PMC9364198 DOI: 10.1177/19476035221115541] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE The potential chondroprotective effect of celecoxib, a nonsteroidal anti-inflammatory drug and selective cyclooxygenase-2 inhibitor used to reduce pain and inflammation in knee osteoarthritis patients, is disputed. This study aimed at investigating the chondroprotective effects of celecoxib on (1) human articular cartilage explants and (2) in an in vivo osteoarthritis rat model. DESIGN Articular cartilage explants from 16 osteoarthritis patients were cultured for 24 hours with celecoxib or vehicle. Secreted prostaglandins (prostaglandin E2, prostaglandin F2α, prostaglandin D2) and thromboxane B2 (TXB2) concentrations were determined in medium by ELISA, and protein regulation was measured with label-free proteomics. Cartilage samples from 7 of these patients were analyzed for gene expression using real-time quantitative polymerase chain reaction. To investigate the chondroprotective effect of celecoxib in vivo, 14 rats received an intra-articular injection of celecoxib or 0.9% NaCl after osteoarthritis induction by anterior cruciate ligament transection and partial medial meniscectomy (ACLT/pMMx model). Histopathological scoring was used to evaluate osteoarthritis severity 12 weeks after injection. RESULTS Secretion of prostaglandins, target of Nesh-SH3 (ABI3BP), and osteonectin proteins decreased, whereas tissue inhibitor of metalloproteinase 2 (TIMP-2) increased significantly after celecoxib treatment in the human (ex vivo) explant culture. Gene expression of a disintegrin and metalloproteinase with thrombospondin motifs 4 and 5 (ADAMTS4/5) and metalloproteinase 13 (MMP13) was significantly reduced after celecoxib treatment in human cartilage explants. Cartilage degeneration was reduced significantly in an in vivo osteoarthritis knee rat model. CONCLUSIONS Our data demonstrated that celecoxib acts chondroprotective on cartilage ex vivo and a single intra-articular bolus injection has a chondroprotective effect in vivo.
Collapse
Affiliation(s)
- Mirella J.J. Haartmans
- Laboratory for Experimental
Orthopedics, Department of Orthopaedic Surgery, Maastricht University, Maastricht,
The Netherlands,Maastricht MultiModal Molecular Imaging
Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University,
Maastricht, The Netherlands
| | - Ufuk Tan Timur
- Laboratory for Experimental
Orthopedics, Department of Orthopaedic Surgery, Maastricht University, Maastricht,
The Netherlands
| | - Kaj S. Emanuel
- Laboratory for Experimental
Orthopedics, Department of Orthopaedic Surgery, Maastricht University, Maastricht,
The Netherlands,Department of Orthopaedic Surgery,
Amsterdam Movement Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The
Netherlands
| | - Marjolein M.J. Caron
- Laboratory for Experimental
Orthopedics, Department of Orthopaedic Surgery, Maastricht University, Maastricht,
The Netherlands
| | - Ralph M. Jeuken
- Laboratory for Experimental
Orthopedics, Department of Orthopaedic Surgery, Maastricht University, Maastricht,
The Netherlands
| | - Tim J.M. Welting
- Laboratory for Experimental
Orthopedics, Department of Orthopaedic Surgery, Maastricht University, Maastricht,
The Netherlands
| | - Gerjo J.V.M. van Osch
- Department of Orthopaedics and Sports
Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The
Netherlands,Department of Otorhinolaryngology,
Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ron M.A. Heeren
- Maastricht MultiModal Molecular Imaging
Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University,
Maastricht, The Netherlands
| | - Berta Cillero-Pastor
- Maastricht MultiModal Molecular Imaging
Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University,
Maastricht, The Netherlands,MERLN Institute for Technology-Inspired
Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering,
Maastricht University, Maastricht, The Netherlands,Dr. Berta Cillero-Pastor, Maastricht
MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass
Spectrometry, Maastricht University, Maastricht, The Netherlands; MERLN
Institute for Technology-Inspired Regenerative Medicine, Department of Cell
Biology-Inspired Tissue Engineering, Maastricht University, Universiteitssingel
40, 6229 ER, Maastricht, PO Box 616, Maastricht, 6200 MD, The Netherlands.
| | - Pieter J. Emans
- Laboratory for Experimental
Orthopedics, Joint Preserving Clinic, Department of Orthopaedic Surgery, Maastricht
University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
4
|
Fan WJ, Liu D, Pan LY, Wang WY, Ding YL, Zhang YY, Ye RX, Zhou Y, An SB, Xiao WF. Exosomes in osteoarthritis: Updated insights on pathogenesis, diagnosis, and treatment. Front Cell Dev Biol 2022; 10:949690. [PMID: 35959489 PMCID: PMC9362859 DOI: 10.3389/fcell.2022.949690] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/04/2022] [Indexed: 01/09/2023] Open
Abstract
Osteoarthritis (OA) has remained a prevalent public health problem worldwide over the past decades. OA is a global challenge because its specific pathogenesis is unclear, and no effective disease-modifying drugs are currently available. Exosomes are small and single-membrane vesicles secreted via the formation of endocytic vesicles and multivesicular bodies (MVBs), which are eventually released when MVBs fuse with the plasma membrane. Exosomes contain various integral surface proteins derived from cells, intercellular proteins, DNAs, RNAs, amino acids, and metabolites. By transferring complex constituents and promoting macrophages to generate chemokines and proinflammatory cytokines, exosomes function in pathophysiological processes in OA, including local inflammation, cartilage calcification and degradation of osteoarthritic joints. Exosomes are also detected in synovial fluid and plasma, and their levels continuously change with OA progression. Thus, exosomes, specifically exosomal miRNAs and lncRNAs, potentially represent multicomponent diagnostic biomarkers for OA. Exosomes derived from various types of mesenchymal stem cells and other cell or tissue types affect angiogenesis, inflammation, and bone remodeling. These exosomes exhibit promising capabilities to restore OA cartilage, attenuate inflammation, and balance cartilage matrix formation and degradation, thus demonstrating therapeutic potential in OA. In combination with biocompatible and highly adhesive materials, such as hydrogels and cryogels, exosomes may facilitate cartilage tissue engineering therapies for OA. Based on numerous recent studies, we summarized the latent mechanisms and clinical value of exosomes in OA in this review.
Collapse
Affiliation(s)
- Wen-Jin Fan
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Di Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Lin-Yuan Pan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Wei-Yang Wang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yi-Lan Ding
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yue-Yao Zhang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Rui-Xi Ye
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yang Zhou
- Department of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Yang Zhou, ; Sen-Bo An, ; Wen-Feng Xiao,
| | - Sen-Bo An
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,*Correspondence: Yang Zhou, ; Sen-Bo An, ; Wen-Feng Xiao,
| | - Wen-Feng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Yang Zhou, ; Sen-Bo An, ; Wen-Feng Xiao,
| |
Collapse
|
5
|
Ou D, Liu S, Tong C, Tan H, Yang Y, He C. LIM mineralization protein-1 inhibits IL-1β-induced human chondrocytes injury by altering the NF-κB and MAPK/JNK pathways. Exp Ther Med 2021; 23:61. [PMID: 34934432 PMCID: PMC8649850 DOI: 10.3892/etm.2021.10983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/26/2021] [Indexed: 11/05/2022] Open
Abstract
Osteoarthritis (OA) is a common degenerative disease that is associated with the degradation of articular cartilage. Accumulating evidence has confirmed that LIM mineralization protein-1 (LMP-1) is an important agent of bone formation and has been shown to be osteoinductive in various types of disease. However, the underlying mechanisms of LMP-1 in the pathogenesis of OA remain unknown. The present study aimed to evaluate the role and potential mechanism of LMP-1 in IL-1β-stimulated OA chondrocytes. CHON-001 cells were transfected with pcDNA3.1-LMP-1, pcDNA3.1, negative control-small interfering (si)RNA or LMP-1 siRNA for 24 h and then induced by IL-1β for 12 h to establish an OA model in vitro. Cell viability, apoptosis and inflammatory cytokine (IL-6, IL-8 and TNF-α) release were assessed using MTT assay, flow cytometry and ELISA, respectively. The expression levels of LMP-1, cleaved-caspase 3, phosphorylated (p)-p65, p65, p-JNK and JNK were analyzed using reverse transcription-quantitative PCR and western blotting. Overexpression of LMP-1 notably alleviated the IL-1β-induced inflammatory response in CHON-001 cells, as shown by increased cell viability, decreased apoptosis, suppressed expression of cleaved-caspase 3 and a decreased cleaved-caspase 3/caspase 3 ratio. Moreover, IL-1β-induced secretion of IL-6, IL-8 and TNF-α in CHON-001 cells; this was reversed by pcDNA3.1-LMP-1. However, knocking down LMP-1 expression exert opposite effects on the IL-1β-induced inflammatory response in CHON-001 cells, as evidenced by the decreased cell viability, increased apoptosis, enhanced expression of cleaved-caspase 3 and cleaved-caspase 3/caspase 3 ratio and enhanced secretion of IL-6, IL-8 and TNF-α observed. The present data demonstrated that LMP-1 siRNA notably inhibited LMP-1 expression, suppressed cell viability, promoted apoptosis and enhanced cleaved-caspase 3 expression and cleaved-caspase 3/caspase 3 ratio. In addition, LMP-1 siRNA promoted the release of inflammatory factors in CHON-001 cells. It was also found that pcDNA3.1-LMP-1 inhibited p-p65 and p-JNK expression, as well as decreasing the p-p65/p65 and p-JNK/JNK ratio. Nevertheless, there was no significant difference in the mRNA expression levels of p65 and JNK between the groups. Taken together, these findings indicated that overexpression of LMP-1 alleviated IL-1β-induced chondrocytes injury by regulating the NF-κB and MAPK/JNK pathways, suggesting that LMP-1 may be a valuable therapeutic agent for OA treatment.
Collapse
Affiliation(s)
- Dijun Ou
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Sheng Liu
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Changjun Tong
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Hezhong Tan
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Yadong Yang
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Chunlei He
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
6
|
Identification of the Resveratrol Potential Targets in the Treatment of Osteoarthritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9911286. [PMID: 34917160 PMCID: PMC8670923 DOI: 10.1155/2021/9911286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 10/13/2021] [Accepted: 11/20/2021] [Indexed: 11/17/2022]
Abstract
Objectives Osteoarthritis (OA) is a chronic joint degenerative disease and has become an important health problem for the elderly. However, there is still a lack of effective drugs for the treatment of OA. Our research combines bioinformatics and experimental strategies to determine the target of resveratrol for OA treatment. Methods First, the differentially expressed genes (DEGs) of OA joint tissues were obtained from the related microarray gene expression data. Second, resveratrol, a natural polyphenol compound, was used to screen the drug treatment target genes. Third, the drug-disease network was established, and the resveratrol target genes for OA treatment were obtained and verified through experimental verification. Results A total of 300 differentially expressed genes with 246 upregulated and 54 downregulated were found in OA joint tissues, and 310 resveratrol potential target genes were obtained. Finally, six genes, namely, CXCL1, HIF1A, IL-6, MMP3, NOX4, and PTGS2, were selected to validate the treatment effects of the resveratrol. The results showed that all six genes in human OA chondrocytes were significantly increased. In addition, in these chondrocytes, CXCL1, HIF1A, IL-6, MMP3, NOX4, and PTGS2 were reduced considerably, but HIF1A was significantly increased after resveratrol treatment. Conclusions Our data indicates that CXCL1, HIF1A, IL-6, MMP3, NOX4, and PTGS2 are all targets of resveratrol therapy. Our findings may provide valuable information for the mechanism and therapeutic of OA.
Collapse
|
7
|
Chao J, Jing Z, Xuehua B, Peilei Y, Qi G. Effect of Systematic Exercise Rehabilitation on Patients With Knee Osteoarthritis: A Randomized Controlled Trial. Cartilage 2021; 13:1734S-1740S. [PMID: 32037857 PMCID: PMC8808852 DOI: 10.1177/1947603520903443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVES We aimed to compare the outcomes of exercise rehabilitation and conventional treatment in patients with knee osteoarthritis. METHODS This trial included a total of 166 patients diagnosed with knee osteoarthritis; they were randomly divided into groups. The experimental group underwent systematic exercise rehabilitation, while the control group received naproxen (n = 28), diclofenac (n = 27), or celecoxib (n = 19). Improvement in symptoms, knee function, and quality of life were compared. SPSS Statistics 24.0 was used for the data analysis. RESULTS The mean age of patients was 56.0 ± 10.5 years, and the average follow-up time was 12 ± 2.3 weeks. No statistically significant differences were seen in age, body mass index, and sex (P > 0.05) between the groups. The average Western Ontario and MacMaster Universities (WOMAC) scores after treatment were 84.4 ± 15.2, 108.3 ± 3.9, 107.4 ± 5.4, and 107 ± 6.0 in the exercise rehabilitation, diclofenac, naproxen, and celecoxib groups, respectively. The mean Lysholm scores were 60.3 ± 14.9, 41.0 ± 0.1, 43.5 ± 5.3, and 41.7 ± 3.6 in the exercise rehabilitation, diclofenac, naproxen, and celecoxib groups, respectively. The mean SF-36 (Short Form-36 Survey) scores were 105.4 ± 21.5, 82.5 ± 3.7, 84.2 ± 3.5, and 83.7 ± 5.0 in the exercise rehabilitation, naproxen, celecoxib, and diclofenac groups, respectively. The average ranges of knee motion were 125.0 ± 6.2°, 116.4 ± 1.4°, 114.7 ± 1.1°, and 115.7 ± 0.8° after exercise rehabilitation, diclofenac, naproxen, and celecoxib treatments, respectively. These data presented statistical differences between the groups. CONCLUSION Exercise better improved symptoms and quality of life in patients with knee osteoarthritis over a 12-week follow-up period than that achieved with nonsteroidal anti-inflammatory drugs and COX-2 inhibitors.
Collapse
Affiliation(s)
- Jing Chao
- The Second Hospital of Hebei Medical
University, Shijiazhuang, China,Jing Chao, The Second Hospital of Hebei
Medical University, Shijiazhuang 050000, China.
| | - Zhang Jing
- The Second Hospital of Hebei Medical
University, Shijiazhuang, China
| | - Bai Xuehua
- Hebei Normal University Sports
Rehabilitation Department, Shijiazhuang, China
| | - Yang Peilei
- Peking University Health Science Center,
Beijing, China
| | - Gong Qi
- Wuhan Sports University, Wuhan,
China
| |
Collapse
|
8
|
Arabiyat AS, Chen H, Erndt-Marino J, Burkhard K, Scola L, Fleck A, Wan LQ, Hahn MS. Hyperosmolar Ionic Solutions Modulate Inflammatory Phenotype and sGAG Loss in a Cartilage Explant Model. Cartilage 2021; 13:713S-721S. [PMID: 32975437 PMCID: PMC8804856 DOI: 10.1177/1947603520961167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE The objective of this study was to compare the effects of hyperosmolar sodium (Na+), lithium (Li+) and potassium (K+) on catabolic and inflammatory osteoarthritis (OA) markers and sulfated glycosaminoglycan (sGAG) loss in TNF-α-stimulated cartilage explants. METHODS Explants from bovine stifle joints were stimulated with TNF-α for 1 day to induce cartilage degradation followed by supplementation with 50 mM potassium chloride (KCl), 50 mM lithium chloride (LiCl), 50 mM sodium chloride (NaCl), or 100 nM dexamethasone for an additional 6 days. We assessed the effect of TNF-α stimulation and hyperosmolar ionic treatment on sGAG loss and expression of OA-associated proteins: ADAMTS-5, COX-2, MMP-1, MMP-13, and VEGF. RESULTS TNF-α treatment increased sGAG loss (P < 0.001) and expression of COX-2 (P = 0.018), MMP-13 (P < 0.001), and VEGF (P = 0.017) relative to unstimulated controls. Relative to activated controls, LiCl and dexamethasone treatment attenuated sGAG loss (P = 0.008 and P = 0.042, respectively) and expression of MMP-13 (P = 0.005 and P = 0.036, respectively). In contrast, KCl treatment exacerbated sGAG loss (P = 0.032) and MMP-1 protein expression (P = 0.010). NaCl treatment, however, did not alter sGAG loss or expression of OA-related proteins. Comparing LiCl and KCl treatment shows a potent reduction (P < 0.05) in catabolic and inflammatory mediators following LiCl treatment. CONCLUSION These results suggest that these ionic species elicit varying responses in TNF-α-stimulated explants. Cumulatively, these findings support additional studies of hyperosmolar ionic solutions for potential development of novel intraarticular injections targeting OA.
Collapse
Affiliation(s)
- Ahmad S. Arabiyat
- Department of Biomedical Engineering,
Rensselaer Polytechnic Institute (RPI), Troy, NY, USA
- Center for Biotechnology and
Interdisciplinary Studies, Rensselaer Polytechnic Institute (RPI), Troy, NY,
USA
| | - Hongyu Chen
- Department of Biomedical Engineering,
Rensselaer Polytechnic Institute (RPI), Troy, NY, USA
- Center for Biotechnology and
Interdisciplinary Studies, Rensselaer Polytechnic Institute (RPI), Troy, NY,
USA
| | - Josh Erndt-Marino
- Department of Biomedical Engineering,
Tufts University, Medford, MA, USA
| | - Katie Burkhard
- Department of Biomedical Engineering,
Rensselaer Polytechnic Institute (RPI), Troy, NY, USA
| | - Lisa Scola
- Department of Biomedical Engineering,
Rensselaer Polytechnic Institute (RPI), Troy, NY, USA
| | - Allison Fleck
- Department of Biomedical Engineering,
Rensselaer Polytechnic Institute (RPI), Troy, NY, USA
- Center for Biotechnology and
Interdisciplinary Studies, Rensselaer Polytechnic Institute (RPI), Troy, NY,
USA
| | - Leo Q. Wan
- Department of Biomedical Engineering,
Rensselaer Polytechnic Institute (RPI), Troy, NY, USA
- Center for Biotechnology and
Interdisciplinary Studies, Rensselaer Polytechnic Institute (RPI), Troy, NY,
USA
| | - Mariah S. Hahn
- Department of Biomedical Engineering,
Rensselaer Polytechnic Institute (RPI), Troy, NY, USA
- Center for Biotechnology and
Interdisciplinary Studies, Rensselaer Polytechnic Institute (RPI), Troy, NY,
USA
| |
Collapse
|
9
|
Vincent TL. Post-traumatic OA - are we any closer to prevention? Osteoarthritis Cartilage 2021; 29:1630-1631. [PMID: 34903334 DOI: 10.1016/j.joca.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 02/02/2023]
Affiliation(s)
- T L Vincent
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, London OX37FY, United Kingdom.
| |
Collapse
|
10
|
Paglia DN, Kanjilal D, Kadkoy Y, Moskonas S, Wetterstrand C, Lin A, Galloway J, Tompson J, Culbertson MD, O’Connor JP. Naproxen treatment inhibits articular cartilage loss in a rat model of osteoarthritis. J Orthop Res 2021; 39:2252-2259. [PMID: 33274763 PMCID: PMC8175455 DOI: 10.1002/jor.24937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/27/2020] [Accepted: 12/01/2020] [Indexed: 02/04/2023]
Abstract
The effects of naproxen, a nonsteroidal anti-inflammatory drug (NSAID), on articular cartilage degeneration in female Sprague-Dawley rats was examined. Osteoarthritis (OA) was induced by destabilization of the medial meniscus (DMM) in each knee. Rats were treated with acetaminophen (60 mg/kg), naproxen (8 mg/kg), or 1% carboxymethylcellulose (placebo) by oral gavage twice daily for 3 weeks, beginning 2 weeks after surgery. OA severity was assessed by histological Osteoarthritis Research Society International (OARSI) scoring and by measuring proximal tibia cartilage depth using contrast enhanced µCT (n = 6 per group) in specimens collected at 2, 5, and 7 weeks after surgery as well as on pristine knees. Medial cartilage OARSI scores from the DMM knees of naproxen-treated rats were statistically lower (i.e., better) than the medial cartilage OARSI scores from the DMM knees of placebo-treated rats at 5-weeks (8.7 ± 3.6 vs. 13.2 ± 2.4, p = 0.025) and 7-weeks (9.5 ± 1.2 vs. 12.5 ± 2.5, p = 0.024) after surgery. At 5 weeks after DMM surgery, medial articular cartilage depth in the proximal tibia specimens was significantly greater in the naproxen (1.78 ± 0.26 mm, p = 0.005) and acetaminophen (1.94 ± 0.12 mm, p < 0.001) treated rats as compared with placebo-treated rats (1.34 ± 0.24 mm). However, at 7 weeks (2 weeks after drug withdrawal), medial articular cartilage depth for acetaminophen-treated rats (1.36 ± 0.29 mm) was significantly reduced compared with specimens from the naproxen-treated rats (1.88 ± 0.14 mm; p = 0.004). The results indicate that naproxen treatment reduced articular cartilage degradation in the rat DMM model during and after naproxen treatment.
Collapse
Affiliation(s)
| | | | - Yazan Kadkoy
- Rutgers-New Jersey Medical School, Newark, NJ, USA
| | | | | | - Anthony Lin
- Rutgers-New Jersey Medical School, Newark, NJ, USA
| | | | | | | | - J. Patrick O’Connor
- Rutgers-New Jersey Medical School, Newark, NJ, USA
- School of Graduate Studies, Newark, NJ, USA
| |
Collapse
|
11
|
Xu L, Li Y. A Molecular Cascade Underlying Articular Cartilage Degeneration. Curr Drug Targets 2021; 21:838-848. [PMID: 32056522 DOI: 10.2174/1389450121666200214121323] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/11/2020] [Accepted: 01/14/2020] [Indexed: 12/12/2022]
Abstract
Preserving of articular cartilage is an effective way to protect synovial joints from becoming osteoarthritic (OA) joints. Understanding of the molecular basis of articular cartilage degeneration will provide valuable information in the effort to develop cartilage preserving drugs. There are currently no disease-modifying OA drugs (DMOADs) available to prevent articular cartilage destruction during the development of OA. Current drug treatments for OA focus on the reduction of joint pain, swelling, and inflammation at advanced stages of the disease. However, based on discoveries from several independent research laboratories and our laboratory in the past 15 to 20 years, we believe that we have a functional molecular understanding of articular cartilage degeneration. In this review article, we present and discuss experimental evidence to demonstrate a sequential chain of the molecular events underlying articular cartilage degeneration, which consists of transforming growth factor beta 1, high-temperature requirement A1 (a serine protease), discoidin domain receptor 2 (a cell surface receptor tyrosine kinase for native fibrillar collagens), and matrix metalloproteinase 13 (an extracellularmatrix degrading enzyme). If, as we strongly suspect, this molecular pathway is responsible for the initiation and acceleration of articular cartilage degeneration, which eventually leads to progressive joint failure, then these molecules may be ideal therapeutic targets for the development of DMOADs.
Collapse
Affiliation(s)
- Lin Xu
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave. Boston, MA 02115 & Faculty of Medicine, Harvard Medical School 25 Shattuck St. Boston, MA 02115, United States
| | - Yefu Li
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave. Boston, MA 02115 & Faculty of Medicine, Harvard Medical School 25 Shattuck St. Boston, MA 02115, United States
| |
Collapse
|
12
|
Chen Z, Zheng R, Chen J, Fu C, Lin J, Wu G. Anti-inflammatory activity of Radix Angelicae biseratae in the treatment of osteoarthritis determined by systematic pharmacology and in vitro experiments. Exp Ther Med 2020; 21:5. [PMID: 33235614 PMCID: PMC7678626 DOI: 10.3892/etm.2020.9437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
Radix Angelicae biseratae is a widely used Chinese traditional herbal medicine for osteoarthritis (OA). Its therapeutic efficacy has been confirmed in clinical practice. However, its mechanisms of action in treating OA have remained elusive. The purpose of the present study was to identify active components with good oral bioavailability and drug-like properties from Radix Angelicae biseratae through systematic pharmacology and in vitro experiments to determine targets of Radix Angelicae biseratae in the treatment of OA. The functional components of Radix Angelicae biseratae were screened from the Traditional Chinese Medicine Systems Pharmacology database based on oral bioavailability and drug-like properties. Subsequently, the databases STITCH, Open Targets Platform and DrugBank were searched and microarray analysis was performed to screen the active components of Radix Angelicae biseratae to treat OA and predict its potential target proteins. The interaction network and protein interaction network were then generated and examined, molecular docking between active components and targets was performed and the enrichment of potential target proteins was analyzed. Finally, reverse transcription-quantitative (RT-q)PCR and western blot analyses were used to verify the therapeutic effect of Radix Angelicae biseratae extract on the expression of OA-associated target proteins. The results provided eight active components in Radix Angelicae biseratae, which were firmly linked to 20 targets of OA. In combination with molecular docking and the analysis of the interaction network between components and targets, it was suggested that sitosterol was a major active component of Radix Angelicae biseratae in the treatment of OA. Protein interaction network analysis suggested that prostaglandin-endoperoxide synthase 2 (PTGS2), nitric oxide synthase 3 and cytochrome P450 2B6 may be critical targets for Radix Angelicae biseratae in the treatment of OA. In addition, RT-qPCR and western blot analyses suggested that Radix Angelicae biseratae extract inhibited the mRNA and protein expression of PTGS2 in degenerative articular cartilage cells in vitro, whilst other targets remain to be verified. Functional enrichment analysis indicated that Radix Angelicae biseratae confers pharmacological efficacy towards OA through exerting anti-inflammatory effects and immune regulation.
Collapse
Affiliation(s)
- Zhenyuan Chen
- Osteopathy Institute of Integrative Medicine, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Department of Clinical Medicine, Fujian Health College, Fuzhou, Fujian 350101, P.R. China
| | - Ruoxi Zheng
- Osteopathy Institute of Integrative Medicine, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jun Chen
- Fujian Provincial Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Changlong Fu
- Osteopathy Institute of Integrative Medicine, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jie Lin
- Osteopathy Institute of Integrative Medicine, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Guangwen Wu
- Osteopathy Institute of Integrative Medicine, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Provincial Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
13
|
Zhu L, Donhou S, Burleigh A, Miotla Zarebska J, Curtinha M, Parisi I, Khan SN, Dell'Accio F, Chanalaris A, Vincent TL. TSG-6 Is Weakly Chondroprotective in Murine OA but Does not Account for FGF2-Mediated Joint Protection. ACR Open Rheumatol 2020; 2:605-615. [PMID: 33029956 PMCID: PMC7571392 DOI: 10.1002/acr2.11176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/11/2020] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE Tumor necrosis factor α-stimulated gene 6 (TSG-6) is an anti-inflammatory protein highly expressed in osteoarthritis (OA), but its influence on the course of OA is unknown. METHODS Cartilage injury was assessed by murine hip avulsion or by recutting rested explants. Forty-two previously validated injury genes were quantified by real-time polymerase chain reaction in whole joints following destabilization of the medial meniscus (DMM) (6 hours and 7 days). Joint pathology was assessed at 8 and 12 weeks following DMM in 10-week-old male and female fibroblast growth factor 2 (FGF2)-/- , TSG-6-/- , TSG-6tg (overexpressing), FGF2-/- ;TSG-6tg (8 weeks only) mice, as well as strain-matched, wild-type controls. In vivo cartilage repair was assessed 8 weeks following focal cartilage injury in TSG-6tg and control mice. FGF2 release following cartilage injury was measured by enzyme-linked immunosorbent assay. RESULTS TSG-6 messenger RNA upregulation was strongly FGF2-dependent upon injury in vitro and in vivo. Fifteeen inflammatory genes were significantly increased in TSG-6-/- joints, including IL1α, Ccl2, and Adamts5 compared with wild type. Six genes were significantly suppressed in TSG-6-/- joints including Timp1, Inhibin βA, and podoplanin (known FGF2 target genes). FGF2 release upon cartilage injury was not influenced by levels of TSG-6. Cartilage degradation was significantly increased at 12 weeks post-DMM in male TSG-6-/- mice, with a nonsignificant 30% reduction in disease seen in TSG-6tg mice. No differences were observed in cartilage repair between genotypes. TSG-6 overexpression was unable to prevent accelerated OA in FGF2-/- mice. CONCLUSION TSG-6 influences early gene regulation in the destabilized joint and exerts a modest late chondroprotective effect. Although strongly FGF2 dependent, TSG-6 does not explain the strong chondroprotective effect of FGF2.
Collapse
Affiliation(s)
- Linyi Zhu
- Kennedy Institute of Rheumatology, Arthritis Research UK Centre for OA Pathogenesis, University of Oxford, UK
| | - Shannah Donhou
- Kennedy Institute of Rheumatology, Arthritis Research UK Centre for OA Pathogenesis, University of Oxford, UK
| | - Annika Burleigh
- Kennedy Institute of Rheumatology, Arthritis Research UK Centre for OA Pathogenesis, University of Oxford, UK
| | - Jadwiga Miotla Zarebska
- Kennedy Institute of Rheumatology, Arthritis Research UK Centre for OA Pathogenesis, University of Oxford, UK
| | - Marcia Curtinha
- Kennedy Institute of Rheumatology, Arthritis Research UK Centre for OA Pathogenesis, University of Oxford, UK
| | - Ida Parisi
- Kennedy Institute of Rheumatology, Arthritis Research UK Centre for OA Pathogenesis, University of Oxford, UK
| | - Sumayya Nafisa Khan
- Kennedy Institute of Rheumatology, Arthritis Research UK Centre for OA Pathogenesis, University of Oxford, UK
| | | | - Anastasios Chanalaris
- Kennedy Institute of Rheumatology, Arthritis Research UK Centre for OA Pathogenesis, University of Oxford, UK
| | - Tonia L Vincent
- Kennedy Institute of Rheumatology, Arthritis Research UK Centre for OA Pathogenesis, University of Oxford, UK
| |
Collapse
|
14
|
Vincent TL. Of mice and men: converging on a common molecular understanding of osteoarthritis. THE LANCET. RHEUMATOLOGY 2020; 2:e633-e645. [PMID: 32989436 PMCID: PMC7511206 DOI: 10.1016/s2665-9913(20)30279-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Despite an increasing burden of osteoarthritis in developed societies, target discovery has been slow and there are currently no approved disease-modifying osteoarthritis drugs. This lack of progress is due in part to a series of misconceptions over the years: that osteoarthritis is an inevitable consequence of ageing, that damaged articular cartilage cannot heal itself, and that osteoarthritis is driven by synovial inflammation similar to that seen in rheumatoid arthritis. Molecular interrogation of disease through ex-vivo tissue analysis, in-vitro studies, and preclinical models have radically reshaped the knowledge landscape. Inflammation in osteoarthritis appears to be distinct from that seen in rheumatoid arthritis. Recent randomised controlled trials, using treatments repurposed from rheumatoid arthritis, have largely been unsuccessful. Genome-wide studies point to defects in repair pathways, which accords well with recent promise using growth factor therapies or Wnt pathway antagonism. Nerve growth factor has emerged as a robust target in osteoarthritis pain in phase 2-3 trials. These studies, both positive and negative, align well with those in preclinical surgical models of osteoarthritis, indicating that pathogenic mechanisms identified in mice can lead researchers to valid human targets. Several novel candidate pathways are emerging from preclinical studies that offer hope of future translational impact. Enhancing trust between industry, basic, and clinical scientists will optimise our collective chance of success.
Collapse
Affiliation(s)
- Tonia L Vincent
- Centre for Osteoarthritis Pathogenesis, Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Chondroprotective Actions of Selective COX-2 Inhibitors In Vivo: A Systematic Review. Int J Mol Sci 2020; 21:ijms21186962. [PMID: 32971951 PMCID: PMC7555215 DOI: 10.3390/ijms21186962] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022] Open
Abstract
Knee osteoarthritis (OA) is a condition mainly characterized by cartilage degradation. Currently, no effective treatment exists to slow down the progression of OA-related cartilage damage. Selective COX-2 inhibitors may, next to their pain killing properties, act chondroprotective in vivo. To determine whether the route of administration is important for the efficacy of the chondroprotective properties of selective COX-2 inhibitors, a systematic review was performed according to the PRISMA guidelines. Studies investigating OA-related cartilage damage of selective COX-2 inhibitors in vivo were included. Nine of the fourteen preclinical studies demonstrated chondroprotective effects of selective COX-2 inhibitors using systemic administration. Five clinical studies were included and, although in general non-randomized, failed to demonstrate chondroprotective actions of oral selective COX-2 inhibitors. All of the four preclinical studies using bolus intra-articular injections demonstrated chondroprotective actions, while one of the three preclinical studies using a slow release system demonstrated chondroprotective actions. Despite the limited evidence in clinical studies that have used the oral administration route, there seems to be a preclinical basis for considering selective COX-2 inhibitors as disease modifying osteoarthritis drugs when used intra-articularly. Intra-articularly injected selective COX-2 inhibitors may hold the potential to provide chondroprotective effects in vivo in clinical studies.
Collapse
|
16
|
Liu B, Ji C, Shao Y, Liang T, He J, Jiang H, Chen G, Luo Z. Etoricoxib decreases subchondral bone mass and attenuates biomechanical properties at the early stage of osteoarthritis in a mouse model. Biomed Pharmacother 2020; 127:110144. [PMID: 32330796 DOI: 10.1016/j.biopha.2020.110144] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/01/2020] [Accepted: 04/04/2020] [Indexed: 12/20/2022] Open
Abstract
Etoricoxib, a selective Cyclooxygenase-2 (COX-2) inhibitor, is commonly used in osteoarthritis (OA) for pain relief, however, little is known about the effects on subchondral bone. In the current study, OA was induced via destabilization of the medial meniscus (DMM) in C57BL/6 mice. Two days after surgery, mice were treated with different concentrations of Etoricoxib. Four weeks after treatment, micro computed tomography (Micro-CT) analysis, histological analysis, atomic force microscopy (AFM) analysis, and scanning electron microscopy (SEM) were performed to evaluate OA progression. We demonstrated that Etoricoxib inhibited osteophyte formation in the subchondral bone. However, it also reduced the bone volume fraction (BV/TV), lowered trabecular thickness (Tb.Th), and more microfractures and pores were observed in the subchondral bone. Moreover, Etoricoxib reduced the elastic modulus of subchondral bone. Exposure to Etoricoxib further increased the empty/total osteocyte ratio of the subchondral bone. Etoricoxib did not show significant improvement in articular cartilage destruction and synovial inflammation in early OA. Together, our observations suggested that although Etoricoxib can relieve OA-induced pain and inhibit osteophyte formation in the subchondral bone, it can also change the microstructures and biomechanical properties of subchondral bone, promote subchondral bone loss, and reduce subchondral bone quality in early OA mice.
Collapse
Affiliation(s)
- Bo Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, Jiangsu, PR China; Orthopedic Institute, Soochow University, 708 Renmin Rd, Suzhou, 215006, Jiangsu, PR China
| | - Chenchen Ji
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, Jiangsu, PR China; Orthopedic Institute, Soochow University, 708 Renmin Rd, Suzhou, 215006, Jiangsu, PR China
| | - Yijie Shao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, Jiangsu, PR China
| | - Ting Liang
- Orthopedic Institute, Soochow University, 708 Renmin Rd, Suzhou, 215006, Jiangsu, PR China
| | - Jiaheng He
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, Jiangsu, PR China; Orthopedic Institute, Soochow University, 708 Renmin Rd, Suzhou, 215006, Jiangsu, PR China
| | - Huaye Jiang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, Jiangsu, PR China; Orthopedic Institute, Soochow University, 708 Renmin Rd, Suzhou, 215006, Jiangsu, PR China
| | - Guangdong Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, Jiangsu, PR China.
| | - Zongping Luo
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, Jiangsu, PR China; Orthopedic Institute, Soochow University, 708 Renmin Rd, Suzhou, 215006, Jiangsu, PR China.
| |
Collapse
|
17
|
Jin Z, Ren J, Qi S. RETRACTED: Human bone mesenchymal stem cells-derived exosomes overexpressing microRNA-26a-5p alleviate osteoarthritis via down-regulation of PTGS2. Int Immunopharmacol 2020; 78:105946. [PMID: 31784400 DOI: 10.1016/j.intimp.2019.105946] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/19/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the reliability of the Western blot results in Figures 2E, 3D and F, 4B, E+G, 5D+I, and 6D+F, which appear to have a similar phenotype as contained in many other publications, detailed here: https://pubpeer.com/publications/73C0A79F5EDF9ECC9818CE2D9B2A09; and here: https://docs.google.com/spreadsheets/d/1r0MyIYpagBc58BRF9c3luWNlCX8VUvUuPyYYXzxWvgY/edit#gid=262337249. The provenance of the flow cytometry data in Figure 5A was also questioned, as it appeared to have histograms that were hand drawn. The journal requested the corresponding author comment on these concerns and provide the raw data. The authors did not respond to this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Zhe Jin
- Department of Orthopaedics, the First Hospital of China Medical University, Shenyang 110001, PR China.
| | - Jiaan Ren
- Department of Orthopaedics, the First Hospital of China Medical University, Shenyang 110001, PR China
| | - Shanlun Qi
- Department of Orthopaedics, Dashiqiao Central Hospital, Yingkou 115100, PR China
| |
Collapse
|
18
|
Abstract
The concept of interleukin-1 (IL-1) as a target in osteoarthritis (OA) has been an attractive one for many years. It is a highly potent inducer of cartilage degradation, causing the induction of mRNA and controlling the bioavailability of disease-relevant proteases such as ADAMTS5 and MMP13. It drives synovitis and can induce other disease-relevant genes such as nerve growth factor, a key pain sensitiser in OA. However, the quality of evidence for its involvement in disease is modest. Descriptive studies have demonstrated expression of IL-1α and β in OA cartilage and elevated levels in the synovial fluid of some patients. Agnostic transcriptomic and genomic analyses do not identify IL-1 as a key pathway.
In vivo models show a conflicting role for this molecule; early studies using therapeutic approaches in large animal models show a benefit, but most murine studies fail to demonstrate protection where the ligands (IL-1α/β), the cytokine activator (IL-1–converting enzyme), or the receptor (IL-1R) have been knocked out. Recently, a number of large double-blind randomised controlled clinical studies targeting IL-1 have failed. Enthusiasm for IL-1 as a target in OA is rapidly dwindling.
Collapse
Affiliation(s)
- Tonia L Vincent
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, UK
| |
Collapse
|
19
|
Chou YJ, Chuu JJ, Peng YJ, Cheng YH, Chang CH, Chang CM, Liu HW. The potent anti-inflammatory effect of Guilu Erxian Glue extracts remedy joint pain and ameliorate the progression of osteoarthritis in mice. J Orthop Surg Res 2018; 13:259. [PMID: 30340603 PMCID: PMC6194592 DOI: 10.1186/s13018-018-0967-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 10/05/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a slow progressing, degenerative disorder of the synovial joints. Guilu Erxian Glue (GEG) is a multi-component Chinese herbal remedy with long-lasting favorable effects on several conditions, including articular pain and muscle strength in elderly men with knee osteoarthritis. The present study aimed to identify the effects of Guilu Erxian Paste (GE-P) and Liquid (GE-L) extracted from Guilu Erxian Glue in anterior cruciate ligament transection (ACLT)-induced osteoarthritis mice, and to compare the effectiveness of different preparations on knee cartilage degeneration during the progression of osteoarthritis. METHODS Male C57BL/6J mice underwent anterior cruciate ligament transection to induce mechanically destabilized osteoarthritis in the right knee. 4 weeks later, the mice were orally treated with PBS, celecoxib (10 mg/kg/day), Guilu Erxian Paste (100 or 300 mg/kg/day), and Guilu Erxian Liquid (100 or 300 mg/kg/day) for 28 consecutive days. Von Frey and open-field tests (OFT) were used to evaluate pain behaviors (mechanical hypersensitivity and locomotor performance). Narrowing of the joint space and osteophyte formation were examined radiographically. Inflammatory cytokine (IL-1β, IL-6, and TNF-α) levels in the articular cartilage were determined by quantitative real-time PCR. Histopathological examinations were conducted to evaluate the severity and extent of the cartilage lesions. RESULTS Guilu Erxian Paste and Guilu Erxian Liquid (300 mg/kg/day) were significantly more effective (p < 0.01) than celecoxib (10 mg/kg/day) in decreasing secondary allodynia when compared to the saline-treated group (#p < 0.05). Open-field tests revealed no significant motor dysfunction between the Guilu Erxian Paste- and Guilu Erxian Liquid-treated mice compared to the saline-treated mice. Radiographic findings also confirmed that the administration of Guilu Erxian Paste and Guilu Erxian Liquid (100 and 300 mg/kg/day) significantly and dose-dependently reduced osteolytic lesions and bone spur formation in the anterior cruciate ligament transection-induced osteoarthritis mice when compared to the saline-treated group. Notably, Guilu Erxian Liquid (100 mg/kg/day) treatment significantly reduced the mRNA levels of IL-1β, IL-6, and TNF-α as well as relative the protein expression of IL-1β and TNF-α to the effect of celecoxib. Guilu Erxian Paste and Guilu Erxian Liquid (300 mg/kg/day) markedly attenuated cartilage destruction, surface unevenness, proteoglycan loss, chondrocyte degeneration, and cartilage erosion in the superficial layers (##p < 0.01 and ###p < 0.001 respectively). CONCLUSIONS As expected, our findings suggest that the anti-inflammatory effects of Guilu Erxian Liquid (GE-L), following marked decrease on both IL-1β and TNF-α during the early course of post-traumatic osteoarthrosis (OA), may be of potential value in the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Yen-Jung Chou
- Department of Traditional Chinese Medicine, MacKay Memorial Hospital, Taipei City, Taiwan
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
- Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City, 24205 Taiwan
| | - Jiunn-Jye Chuu
- Department of Biotechnology, College of Engineering, Southern Taiwan University, Tainan City, Taiwan
| | - Yi-Jen Peng
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Yu-Hsuan Cheng
- Department of Biotechnology, College of Engineering, Southern Taiwan University, Tainan City, Taiwan
| | - Chin-Hsien Chang
- Department of Cosmetic Science, Chang Gung University of Science and Technology, Tao-Yuan City, Taiwan
- Department of Traditional Chinese Medicine, En Chu Kong Hospital, New Taipei City, 237 Taiwan
| | - Chieh-Min Chang
- Department of Traditional Chinese Medicine, En Chu Kong Hospital, New Taipei City, 237 Taiwan
| | - Hsia-Wei Liu
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
- Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City, 24205 Taiwan
| |
Collapse
|
20
|
Nakata K, Hanai T, Take Y, Osada T, Tsuchiya T, Shima D, Fujimoto Y. Disease-modifying effects of COX-2 selective inhibitors and non-selective NSAIDs in osteoarthritis: a systematic review. Osteoarthritis Cartilage 2018; 26:1263-1273. [PMID: 29890262 DOI: 10.1016/j.joca.2018.05.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/16/2018] [Accepted: 05/20/2018] [Indexed: 02/02/2023]
Abstract
Osteoarthritis (OA) is a potentially disabling disease whose progression is dependent on several risk factors. OA management usually involves the use of non-steroidal anti-inflammatory drugs (NSAIDs) that are the primary pharmacological treatments of choice. However, NSAIDs have often been associated with unwanted side effects. Cyclooxygenase (COX)-2 specific inhibitors, such as celecoxib, have been successfully used as an alternative in the past for OA treatment and have demonstrated fewer side effects. While abundant data are available for the clinical efficacy of drugs used for OA treatment, little is known about the disease-modifying effects of these agents. A previous review published by Zweers et al. (2010) assessed the available literature between 1990 and 2010 on the disease-modifying effects of celecoxib. In the present review, we aimed to update the existing evidence and identify evolving concepts relating to the disease-modifying effects of not just celecoxib, but also other NSAIDs. We conducted a review of the literature published from 2010 to 2016 dealing with the effects, especially disease-modifying effects, of NSAIDs on cartilage, synovium, and bone in OA patients. Our results show that celecoxib was the most commonly used drug in papers that presented data on disease-modifying effects of NSAIDs. Further, these effects appeared to be mediated through the regulation of prostaglandins, cytokines, and direct changes to tissues. Additional studies should be carried out to assess the disease-modifying properties of NSAIDs in greater detail.
Collapse
Affiliation(s)
- K Nakata
- Medicine for Sports and Performing Arts, Department of Health and Sports Science, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871 Japan.
| | - T Hanai
- Medicine for Sports and Performing Arts, Department of Health and Sports Science, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Y Take
- Medicine for Sports and Performing Arts, Department of Health and Sports Science, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871 Japan
| | - T Osada
- Pfizer Japan Inc., Shinjuku Bunka Quint Bldg. 3-22-7, Yoyogi, Shibuya-ku, Tokyo 151-8589 Japan
| | - T Tsuchiya
- Pfizer Japan Inc., Shinjuku Bunka Quint Bldg. 3-22-7, Yoyogi, Shibuya-ku, Tokyo 151-8589 Japan
| | - D Shima
- Pfizer Japan Inc., Shinjuku Bunka Quint Bldg. 3-22-7, Yoyogi, Shibuya-ku, Tokyo 151-8589 Japan
| | - Y Fujimoto
- Pfizer Japan Inc., Shinjuku Bunka Quint Bldg. 3-22-7, Yoyogi, Shibuya-ku, Tokyo 151-8589 Japan
| |
Collapse
|
21
|
Kung LHW, Ravi V, Rowley L, Angelucci C, Fosang AJ, Bell KM, Little CB, Bateman JF. Cartilage MicroRNA Dysregulation During the Onset and Progression of Mouse Osteoarthritis Is Independent of Aggrecanolysis and Overlaps With Candidates From End-Stage Human Disease. Arthritis Rheumatol 2018; 70:383-395. [DOI: 10.1002/art.40378] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 11/10/2017] [Indexed: 01/13/2023]
Affiliation(s)
| | - Varshini Ravi
- University of Sydney and Royal North Shore Hospital; St. Leonards New South Wales Australia
| | - Lynn Rowley
- Murdoch Children's Research Institute; Parkville Victoria Australia
| | | | - Amanda J. Fosang
- Murdoch Children's Research Institute and University of Melbourne; Parkville Victoria Australia
| | - Katrina M. Bell
- Murdoch Children's Research Institute; Parkville Victoria Australia
| | - Christopher B. Little
- University of Sydney and Royal North Shore Hospital; St. Leonards New South Wales Australia
| | - John F. Bateman
- Murdoch Children's Research Institute and University of Melbourne; Parkville Victoria Australia
| |
Collapse
|
22
|
Montagne K, Onuma Y, Ito Y, Aiki Y, Furukawa KS, Ushida T. High hydrostatic pressure induces pro-osteoarthritic changes in cartilage precursor cells: A transcriptome analysis. PLoS One 2017; 12:e0183226. [PMID: 28813497 PMCID: PMC5558982 DOI: 10.1371/journal.pone.0183226] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 08/01/2017] [Indexed: 01/22/2023] Open
Abstract
Due to the high water content of cartilage, hydrostatic pressure is likely one of the main physical stimuli sensed by chondrocytes. Whereas, in the physiological range (0 to around 10 MPa), hydrostatic pressure exerts mostly pro-chondrogenic effects in chondrocyte models, excessive pressures have been reported to induce detrimental effects on cartilage, such as increased apoptosis and inflammation, and decreased cartilage marker expression. Though some genes modulated by high pressure have been identified, the effects of high pressure on the global gene expression pattern have still not been investigated. In this study, using microarray technology and real-time PCR validation, we analyzed the transcriptome of ATDC5 chondrocyte progenitors submitted to a continuous pressure of 25 MPa for up to 24 h. Several hundreds of genes were found to be modulated by pressure, including some not previously known to be mechano-sensitive. High pressure markedly increased the expression of stress-related genes, apoptosis-related genes and decreased that of cartilage matrix genes. Furthermore, a large set of genes involved in the progression of osteoarthritis were also induced by high pressure, suggesting that hydrostatic pressure could partly mimic in vitro some of the genetic alterations occurring in osteoarthritis.
Collapse
Affiliation(s)
- Kevin Montagne
- Department of Mechanical Engineering, University of Tokyo, Tokyo, Japan
- * E-mail: (TU); (KM)
| | - Yasuko Onuma
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Yuzuru Ito
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Yasuhiko Aiki
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Katsuko S. Furukawa
- Department of Mechanical Engineering, University of Tokyo, Tokyo, Japan
- Department of Bioengineering, University of Tokyo, Tokyo, Japan
| | - Takashi Ushida
- Department of Mechanical Engineering, University of Tokyo, Tokyo, Japan
- Department of Bioengineering, University of Tokyo, Tokyo, Japan
- * E-mail: (TU); (KM)
| |
Collapse
|
23
|
Vincent T, Malfait AM. Time to be positive about negative data? Osteoarthritis Cartilage 2017; 25:351-353. [PMID: 28224967 PMCID: PMC6034630 DOI: 10.1016/j.joca.2017.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 01/29/2017] [Accepted: 01/29/2017] [Indexed: 02/02/2023]
Affiliation(s)
- T Vincent
- Arthritis Research UK Centre for OA Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK.
| | - A-M Malfait
- Department of Internal Medicine, Division of Rheumatology & Department of Biochemistry, Rush University Medical Center, 1611 W. Harrison St, Suite 510, Chicago, IL 60612, USA.
| |
Collapse
|
24
|
CCL2 and CCR2 regulate pain-related behaviour and early gene expression in post-traumatic murine osteoarthritis but contribute little to chondropathy. Osteoarthritis Cartilage 2017; 25:406-412. [PMID: 27746376 PMCID: PMC5358501 DOI: 10.1016/j.joca.2016.10.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/30/2016] [Accepted: 10/05/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The role of inflammation in structural and symptomatic osteoarthritis (OA) remains unclear. One key mediator of inflammation is the chemokine CCL2, primarily responsible for attracting monocytes to sites of injury. We investigated the role of CCL2 and its receptor CCR2 in experimental OA. DESIGN OA was induced in 10 weeks old male wild type (WT), Ccl2-/- and Ccr2-/- mice, by destabilisation of the medial meniscus (DMM). RNA was extracted from whole joints at 6 h and 7 days post-surgery and examined by reverse transcription polymerase chain reaction (RT-PCR). Gene expression changes between naïve and DMM-operated mice were compared. Chondropathy scores, from mice at 8, 12, 16 and 20 weeks post DMM were calculated using modified Osteoarthritis Research Society International (OARSI) grading systems. Changes in hind paw weight distribution, as a measure of pain, were assessed by Linton incapacitance. RESULTS Absence of CCL2 strongly suppressed (>90%) selective inflammatory response genes in the joint 6 h post DMM, including arginase 1, prostaglandin synthase 2, nitric oxide synthase 2 and inhibin A. IL6, MMP3 and tissue inhibitor of metalloproteinase 1 were also significantly suppressed. Similar trends were also observed in the absence of CCR2. A lower average chondropathy score was observed in both Ccl2-/- and Ccr2-/- mice at 12, 16 and 20 weeks post DMM compared with WT mice, but this was only statistically significant at 20 weeks in Ccr2-/- mice. Pain-related behaviour in Ccl2-/- and Ccr2-/- mice post DMM was delayed in onset. CONCLUSION The CCL2/CCR2 axis plays an important role in the development of pain in murine OA, but contributes little to cartilage damage.
Collapse
|
25
|
Blaker CL, Clarke EC, Little CB. Using mouse models to investigate the pathophysiology, treatment, and prevention of post-traumatic osteoarthritis. J Orthop Res 2017; 35:424-439. [PMID: 27312470 DOI: 10.1002/jor.23343] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/14/2016] [Indexed: 02/04/2023]
Abstract
Post-traumatic osteoarthritis (PTOA) is defined by its development after joint injury. Factors contributing to the risk of PTOA occurring, the rate of progression, and degree of associated disability in any individual, remain incompletely understood. What constitutes an "OA-inducing injury" is not defined. In line with advances in the traumatic brain injury field, we propose the scope of PTOA-inducing injuries be expanded to include not only those causing immediate structural damage and instability (Type I), but also those without initial instability/damage from moderate (Type II) or minor (Type III) loading severity. A review of the literature revealed this full spectrum of potential PTOA subtypes can be modeled in mice, with 27 Type I, 6 Type II, and 4 Type III models identified. Despite limitations due to cartilage anatomy, joint size, and bio-fluid availability, mice offer advantages as preclinical models to study PTOA, particularly genetically modified strains. Histopathology was the most common disease outcome, cartilage more frequently studied than bone or synovium, and meniscus and ligaments rarely evaluated. Other methods used to examine PTOA included gene expression, protein analysis, and imaging. Despite the major issues reported by patients being pain and biomechanical dysfunction, these were the least commonly measured outcomes in mouse models. Informative correlations of simultaneously measured disease outcomes in individual animals, was rarely done in any mouse PTOA model. This review has identified knowledge gaps that need to be addressed to increase understanding and improve prevention and management of PTOA. Preclinical mouse models play a critical role in these endeavors. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:424-439, 2017.
Collapse
Affiliation(s)
- Carina L Blaker
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Level 10, Kolling Institute B6, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, The Royal North Shore Hospital, St. Leonards, New South Wales, 2065, Australia.,Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| | - Elizabeth C Clarke
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Level 10, Kolling Institute B6, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, The Royal North Shore Hospital, St. Leonards, New South Wales, 2065, Australia
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| |
Collapse
|
26
|
Abstract
Age is the strongest independent risk factor for the development of osteoarthritis (OA) and for many years this was assumed to be due to repetitive microtrauma of the joint surface over time, the so-called 'wear and tear' arthritis. As our understanding of OA pathogenesis has become more refined, it has changed our appreciation of the role of ageing on disease. Cartilage breakdown in disease is not a passive process but one involving induction and activation of specific matrix-degrading enzymes; chondrocytes are exquisitely sensitive to changes in the mechanical, inflammatory and metabolic environment of the joint; cartilage is continuously adapting to these changes by altering its matrix. Ageing influences all of these processes. In this review, we will discuss how ageing affects tissue structure, joint use and the cellular metabolism. We describe what is known about pathways implicated in ageing in other model systems and discuss the potential value of targeting these pathways in OA.
Collapse
|
27
|
Veronesi F, Della Bella E, Cepollaro S, Brogini S, Martini L, Fini M. Novel therapeutic targets in osteoarthritis: Narrative review on knock-out genes involved in disease development in mouse animal models. Cytotherapy 2016; 18:593-612. [DOI: 10.1016/j.jcyt.2016.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/21/2016] [Accepted: 02/04/2016] [Indexed: 01/17/2023]
|
28
|
Tamura T, Higuchi Y, Kitamura H, Murao N, Saitoh R, Morikawa T, Sato H. Novel hyaluronic acid-methotrexate conjugate suppresses joint inflammation in the rat knee: efficacy and safety evaluation in two rat arthritis models. Arthritis Res Ther 2016; 18:79. [PMID: 27039182 PMCID: PMC4818416 DOI: 10.1186/s13075-016-0971-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/10/2016] [Indexed: 01/15/2023] Open
Abstract
Background Methotrexate (MTX) is one of the most widely used medications to treat rheumatoid arthritis (RA), and recent studies have also suggested the potential benefit of the drug for the treatment of osteoarthritis (OA) of the knee. MTX is commonly administered in oral formulations, but is often associated with systemic adverse reactions. In an attempt to address this issue, we have shown previously that a conjugate of hyaluronic acid (HA) and MTX exhibits potential as a drug candidate for intra-articular treatment of inflammatory arthritis. In this study, we compare the efficacy and safety of an optimized HA-MTX conjugate, DK226, with that of MTX in inflammatory arthritis rat models. Methods In vitro activity of DK226 was assessed in human fibroblast-like synoviocytes (HFLS) and a synovial sarcoma cell line, SW982. Release of MTX from DK226 was investigated after incubation with rabbit synovial tissue homogenate or synovial fluid. In vivo efficacy of DK226 was evaluated in antigen-induced arthritis (AIA) and collagen-induced arthritis (CIA) in the rat knee. Pharmacokinetics and hematological toxicity after treatment with oral MTX or an intra-articular injection of DK226 were compared in AIA. Results Proliferation of HFLS and SW982 cells was inhibited by DK226, and the inhibitory activity was reversed by cotreatment with excess HA or anti-CD44 antibody. MTX was released from DK226 by incubation with rabbit synovial tissue homogenate or synovial fluid at pH 4.0, but not at pH 7.4. AIA was ameliorated by intra-articular DK226, but not by HA, as potently as oral MTX. Hematological toxicity was induced by oral MTX, but not by DK226. The maximum plasma concentration of MTX after oral MTX was 40 times higher than the concentration of MTX after an intra-articular injection of DK226. Knee swelling in AIA was inhibited by intra-articular injections of DK226, but not by free MTX or a mixture of HA and MTX. In CIA, an injection of DK226 into the right knee joint significantly reduced swelling and synovial inflammation of the treated knee joint, but had no effect on the untreated contralateral knee joint. Conclusions DK226 exerted anti-arthritic effects in two different models of arthritis. The conjugate had a wider therapeutic window than oral MTX, and could be a future drug for treatment of arthritic disorders, including inflammatory OA.
Collapse
Affiliation(s)
- Tatsuya Tamura
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan.
| | - Yoshinobu Higuchi
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Hidetomo Kitamura
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Naoaki Murao
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Ryoichi Saitoh
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Tadashi Morikawa
- New Business Planning Department, Denka Co., Ltd., 2-1-1 Nihonbashi-Muromachi, Chuo-ku, Tokyo, 103-8338, Japan
| | - Haruhiko Sato
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| |
Collapse
|
29
|
Orlowsky EW, Kraus VB. The role of innate immunity in osteoarthritis: when our first line of defense goes on the offensive. J Rheumatol 2015; 42:363-71. [PMID: 25593231 PMCID: PMC4465583 DOI: 10.3899/jrheum.140382] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Although osteoarthritis (OA) has existed since the dawn of humanity, its pathogenesis remains poorly understood. OA is no longer considered a "wear and tear" condition but rather one driven by proteases where chronic low-grade inflammation may play a role in perpetuating proteolytic activity. While multiple factors are likely active in this process, recent evidence has implicated the innate immune system, the older or more primitive part of the body's immune defense mechanisms. The roles of some of the components of the innate immune system have been tested in OA models in vivo including the roles of synovial macrophages and the complement system. This review is a selective overview of a large and evolving field. Insights into these mechanisms might inform our ability to identify patient subsets and give hope for the advent of novel OA therapies.
Collapse
Affiliation(s)
- Eric W Orlowsky
- From the Department of Medicine, Duke Molecular Physiology Institute, and the Division of Rheumatology, Duke University School of Medicine, Durham, North Carolina, USA.E.W. Orlowsky, MD, Postdoctoral Fellow, Division of Rheumatology, Duke University School of Medicine; V.B. Kraus, MD, PhD, Professor of Medicine, Department of Medicine, Duke Molecular Physiology Institute, and Division of Rheumatology, Duke University School of Medicine
| | - Virginia Byers Kraus
- From the Department of Medicine, Duke Molecular Physiology Institute, and the Division of Rheumatology, Duke University School of Medicine, Durham, North Carolina, USA.E.W. Orlowsky, MD, Postdoctoral Fellow, Division of Rheumatology, Duke University School of Medicine; V.B. Kraus, MD, PhD, Professor of Medicine, Department of Medicine, Duke Molecular Physiology Institute, and Division of Rheumatology, Duke University School of Medicine.
| |
Collapse
|
30
|
Abstract
Chronic, low-grade inflammation in osteoarthritis (OA) contributes to symptoms and disease progression. Effective disease-modifying OA therapies are lacking, but better understanding inflammatory pathophysiology in OA could lead to transformative therapy. Networks of diverse innate inflammatory danger signals, including complement and alarmins, are activated in OA. Through inflammatory mediators, biomechanical injury and oxidative stress compromise the viability of chondrocytes, reprogramming them to hypertrophic differentiation and proinflammatory and pro-catabolic responses. Integral to this reprogramming are 'switching' pathways in transcriptional networks, other than the well-characterized effects of NFκB and mitogen-activated protein kinase signalling; HIF-2α transcriptional signalling and ZIP8-mediated Zn(2+) uptake, with downstream MTF1 transcriptional signalling, have been implicated but further validation is required. Permissive factors, including impaired bioenergetics via altered mitochondrial function and decreased activity of bioenergy sensors, interact with molecular inflammatory responses and proteostasis mechanisms such as the unfolded protein response and autophagy. Bioenergy-sensing by AMPK and SIRT1 provides 'stop signals' for oxidative stress, inflammatory, and matrix catabolic processes in chondrocytes. The complexity of molecular inflammatory processes in OA and the involvement of multiple inflammatory mediators in tissue repair responses, raises daunting questions about how to therapeutically target inflammatory processes and macroscopic inflammation in OA. Bioenergy sensing might provide a pragmatic 'entry point'.
Collapse
Affiliation(s)
- Ru Liu-Bryan
- San Diego VA Healthcare System and Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, 111K, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | - Robert Terkeltaub
- San Diego VA Healthcare System and Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, 111K, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| |
Collapse
|
31
|
Development and reliability of a multi-modality scoring system for evaluation of disease progression in pre-clinical models of osteoarthritis: celecoxib may possess disease-modifying properties. Osteoarthritis Cartilage 2014; 22:1639-50. [PMID: 25278073 DOI: 10.1016/j.joca.2014.06.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 06/03/2014] [Accepted: 06/13/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE We sought to develop a comprehensive scoring system for evaluation of pre-clinical models of osteoarthritis (OA) progression, and use this to evaluate two different classes of drugs for management of OA. METHODS Post-traumatic OA (PTOA) was surgically induced in skeletally mature rats. Rats were randomly divided in three groups receiving either glucosamine (high dose of 192 mg/kg) or celecoxib (clinical dose) or no treatment. Disease progression was monitored utilizing micro-magnetic resonance imaging (MRI), micro-computed tomography (CT) and histology. Pertinent features such as osteophytes, subchondral sclerosis, joint effusion, bone marrow lesion (BML), cysts, loose bodies and cartilage abnormalities were included in designing a sensitive multi-modality based scoring system, termed the rat arthritis knee scoring system (RAKSS). RESULTS Overall, an inter-observer correlation coefficient (ICC) of greater than 0.750 was achieved for each scored feature. None of the treatments prevented cartilage loss, synovitis, joint effusion, or sclerosis. However, celecoxib significantly reduced osteophyte development compared to placebo. Although signs of inflammation such as synovitis and joint effusion were readily identified at 4 weeks post-operation, we did not detect any BML. CONCLUSION We report the development of a sensitive and reliable multi-modality scoring system, the RAKSS, for evaluation of OA severity in pre-clinical animal models. Using this scoring system, we found that celecoxib prevented enlargement of osteophytes in this animal model of PTOA, and thus it may be useful in preventing OA progression. However, it did not show any chondroprotective effect using the recommended dose. In contrast, high dose glucosamine had no measurable effects.
Collapse
|
32
|
Klop C, de Vries F, Lalmohamed A, Mastbergen SC, Leufkens HGM, Noort-van der Laan WH, Bijlsma JWJ, Welsing PMJ. COX-2-selective NSAIDs and risk of hip or knee replacements: a population-based case-control study. Calcif Tissue Int 2012; 91:387-94. [PMID: 23052224 DOI: 10.1007/s00223-012-9646-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 08/27/2012] [Indexed: 12/14/2022]
Abstract
Disease models of osteoarthritis (OA) have shown that COX-2-selective nonsteroidal anti-inflammatory drugs (NSAIDs, coxibs) may have beneficial effects on cartilage. Clinical or epidemiological evidence for this potential association is scarce. The objective of this study was to evaluate the risk of hip or knee replacement in users of coxibs compared to nonselective NSAIDs. A population-based case-control study was conducted with the Dutch PHARMO Record Linkage System. Cases (n = 26,202) had a first replacement of the hip or knee after enrollment (2000-2009). Up to two controls (without hip or knee replacement) were matched by year of birth, gender, healthcare region, and calendar year. Using conditional logistic regression analysis, odds ratios (ORs) for hip or knee replacement were estimated by comparing long-term (≥1 year) nonselective NSAID use with long-term coxib use. Analyses were statistically adjusted for disease and drug history. Long-term use of nonselective NSAIDs was not associated with a different risk of hip replacement (adjusted OR = 0.89, 95 % CI 0.65-1.22) or knee replacement (adjusted OR = 0.74, 95 % CI 0.49-1.11) as compared to long-term coxib use. Results were not different after stratification by gender, age, and cardiovascular or gastrointestinal disease. This study shows that long-term users of nonselective NSAIDs do not have a different risk of hip or knee replacement as compared to long-term coxib users. Therefore, our results do not support that patients with OA could benefit from using coxibs in order to slow progression of this disease.
Collapse
Affiliation(s)
- Corinne Klop
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Burleigh A, Chanalaris A, Gardiner MD, Driscoll C, Boruc O, Saklatvala J, Vincent TL. Joint immobilization prevents murine osteoarthritis and reveals the highly mechanosensitive nature of protease expression in vivo. ACTA ACUST UNITED AC 2012; 64:2278-88. [DOI: 10.1002/art.34420] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Lories RJU. Changing the outcome of osteoarthritis: still a challenge for cyclooxygenase 2 inhibitors. ACTA ACUST UNITED AC 2012; 64:37-9. [PMID: 21905013 DOI: 10.1002/art.33330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|