1
|
Ma M, Lu M, Sun R, Zhu Z, Fuller DQ, Guo J, He G, Yang X, Tan L, Lu Y, Dong J, Liu R, Yang J, Li B, Guo T, Li X, Zhao D, Zhang Y, Wang CC, Dong G. Forager-farmer transition at the crossroads of East and Southeast Asia 4900 years ago. Sci Bull (Beijing) 2024; 69:103-113. [PMID: 37914610 DOI: 10.1016/j.scib.2023.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 11/03/2023]
Abstract
The southward expansion of East Asian farmers profoundly influenced the social evolution of Southeast Asia by introducing cereal agriculture. However, the timing and routes of cereal expansion in key regions are unclear due to limited empirical evidence. Here we report macrofossil, microfossil, multiple isotopic (C/N/Sr/O) and paleoproteomic data directly from radiocarbon-dated human samples, which were unearthed from a site in Xingyi in central Yunnan and which date between 7000 and 3300 a BP. Dietary isotopes reveal the earliest arrival of millet ca. 4900 a BP, and greater reliance on plant and animal agriculture was indicated between 3800 and 3300 a BP. The dietary differences between hunter-gatherer and agricultural groups are also evident in the metabolic and immune system proteins analysed from their skeletal remains. The results of paleoproteomic analysis indicate that humans had divergent biological adaptations, with and without farming. The combined application of isotopes, archaeobotanical data and proteomics provides a new approach to documenting dietary and health changes across major subsistence transitions.
Collapse
Affiliation(s)
- Minmin Ma
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; Zhaotong University, Zhaotong 657000, China
| | - Minxia Lu
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Rui Sun
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Zhonghua Zhu
- Yunnan Provincial Institute of Cultural Relics and Archaeology, Kunming 650118, China
| | - Dorian Q Fuller
- Institute of Archaeology, University College London, London WC1H 0PY, UK; School of Cultural Heritage, Northwest University, Xi'an 710069, China
| | - Jianxin Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Guanglin He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Xiaomin Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Lingling Tan
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd., Hangzhou 310024, China
| | - Yongxiu Lu
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jiajia Dong
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ruiliang Liu
- The Department of Asia, British Museum, London WC1E 7JW, UK; School of Cultural Heritage, Northwest University, Xi'an 710069, China
| | - Jishuai Yang
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Bo Li
- Tonghai Cultural Relics Management, Yuxi 652700, China
| | - Tiannan Guo
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Xiaorui Li
- Yunnan Provincial Institute of Cultural Relics and Archaeology, Kunming 650118, China
| | - Dongyue Zhao
- School of Cultural Heritage, Northwest University, Xi'an 710069, China
| | - Ying Zhang
- Group of Alpine Paleoecology and Human Adaptation, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Beijing 100101, China
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China.
| | - Guanghui Dong
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; Zhaotong University, Zhaotong 657000, China.
| |
Collapse
|
2
|
Merkulova AA, Abdalian S, Silbak S, Pinheiro A, Schmaier AH. C1 inhibitor and prolylcarboxypeptidase modulate prekallikrein activation on endothelial cells. J Allergy Clin Immunol 2023; 152:961-971.e7. [PMID: 37399947 PMCID: PMC10592223 DOI: 10.1016/j.jaci.2023.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 05/19/2023] [Accepted: 06/05/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND We examined how prekallikrein (PK) activation on human microvascular endothelial cells (HMVECs) is regulated by the ambient concentration of C1 inhibitor (C1INH) and prolylcarboxypeptidase (PRCP). OBJECTIVE We sought to examine the specificity of PK activation on HMVECs by PRCP and the role of C1INH to regulate it, high-molecular-weight kininogen (HK) cleavage, and bradykinin (BK) liberation. METHODS Investigations were performed on cultured HMVECs. Immunofluorescence, enzymatic activity assays, immunoblots, small interfering RNA knockdowns, and cell transfections were used to perform these studies. RESULTS Cultured HMVECs constitutively coexpressed PK, HK, C1INH, and PRCP. PK activation on HMVECs was modulated by the ambient C1INH concentration. In the absence of C1INH, forming PKa on HMVECs cleaved 120-kDa HK completely to a 65-kDa H-chain and a 46-kDa L-chain in 60 minutes. In the presence of 2 μM C1INH, only 50% of the HK became cleaved. C1INH concentrations (0.0-2.5 μM) decreased but did not abolish BK liberated from HK by activated PK. Factor XII did not activate when incubated with HMVECs alone for 1 hour. However, if incubated in the presence of HK and PK, factor XII became activated. The specificity of PK activation on HMVECs by PRCP was shown by several inhibitors to each enzyme. Furthermore, PRCP small interfering RNA knockdowns magnified C1INH inhibitory activity on PK activation, and PRCP transfections reduced C1INH inhibition at any given concentration. CONCLUSIONS These combined studies indicated that on HMVECs, PK activation and HK cleavage to liberate BK were modulated by the local concentrations of C1INH and PRCP.
Collapse
Affiliation(s)
- Alona A Merkulova
- Hematology and Oncology Division, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Sarah Abdalian
- Hematology and Oncology Division, Department of Medicine, Case Western Reserve University, Cleveland, Ohio; University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Sadiq Silbak
- Hematology and Oncology Division, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Alessandro Pinheiro
- Hematology and Oncology Division, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Alvin H Schmaier
- Hematology and Oncology Division, Department of Medicine, Case Western Reserve University, Cleveland, Ohio; University Hospitals Cleveland Medical Center, Cleveland, Ohio.
| |
Collapse
|
3
|
Ahmed IA, Jaffa MA, Moussa M, Hatem D, El-Achkar GA, Al Sayegh R, Karam M, Hamade E, Habib A, Jaffa AA. Plasma Kallikrein as a Modulator of Liver Injury/Remodeling. Front Pharmacol 2021; 12:715111. [PMID: 34566641 PMCID: PMC8458624 DOI: 10.3389/fphar.2021.715111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
The occurrence and persistence of hepatic injury which arises from cell death and inflammation result in liver disease. The processes that lead to liver injury progression and resolution are still not fully delineated. The plasma kallikrein-kinin system (PKKS) has been shown to play diverse functions in coagulation, tissue injury, and inflammation, but its role in liver injury has not been defined yet. In this study, we have characterized the role of the PKKS at various stages of liver injury in mice, as well as the direct effects of plasma kallikrein on human hepatocellular carcinoma cell line (HepG2). Histological, immunohistochemical, and gene expression analyses were utilized to assess cell injury on inflammatory and fibrotic factors. Acute liver injury triggered by carbon tetrachloride (CCl4) injection resulted in significant upregulation of the plasma kallikrein gene (Klkb1) and was highly associated with the high mobility group box 1 gene, the marker of cell death (r = 0.75, p < 0.0005, n = 7). In addition, increased protein expression of plasma kallikrein was observed as clusters around necrotic areas. Plasma kallikrein treatment significantly increased the proliferation of CCl4-induced HepG2 cells and induced a significant increase in the gene expression of the thrombin receptor (protease activated receptor-1), interleukin 1 beta, and lectin–galactose binding soluble 3 (galectin-3) (p < 0.05, n = 4). Temporal variations in the stages of liver fibrosis were associated with an increase in the mRNA levels of bradykinin receptors: beta 1 and 2 genes (p < 0.05; n = 3–10). In conclusion, these findings indicate that plasma kallikrein may play diverse roles in liver injury, inflammation, and fibrosis, and suggest that plasma kallikrein may be a target for intervention in the states of liver injury.
Collapse
Affiliation(s)
- Ibrahim A Ahmed
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, Beirut, Lebanon
| | - Miran A Jaffa
- Epidemiology and Population Health Department, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Mayssam Moussa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, Beirut, Lebanon
| | - Duaa Hatem
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, Beirut, Lebanon.,Section of Pharmacology, Department of Bioethics and Safety, Catholic University, Rome, Italy
| | - Ghewa A El-Achkar
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, Beirut, Lebanon
| | - Rola Al Sayegh
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, Beirut, Lebanon.,INSERM-UMR1149, Centre de Recherche sur l'Inflammation, and Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Universite de Paris, Paris, France
| | - Mia Karam
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, Beirut, Lebanon.,Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
| | - Eva Hamade
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Beirut, Lebanon
| | - Aida Habib
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, Beirut, Lebanon.,INSERM-UMR1149, Centre de Recherche sur l'Inflammation, and Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Universite de Paris, Paris, France
| | - Ayad A Jaffa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, Beirut, Lebanon
| |
Collapse
|
4
|
Aterido A, Cañete JD, Tornero J, Blanco F, Fernández-Gutierrez B, Pérez C, Alperi-López M, Olivè A, Corominas H, Martínez-Taboada V, González I, Fernández-Nebro A, Erra A, López-Lasanta M, López Corbeto M, Palau N, Marsal S, Julià A. A Combined Transcriptomic and Genomic Analysis Identifies a Gene Signature Associated With the Response to Anti-TNF Therapy in Rheumatoid Arthritis. Front Immunol 2019; 10:1459. [PMID: 31312201 PMCID: PMC6614444 DOI: 10.3389/fimmu.2019.01459] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Rheumatoid arthritis (RA) is the most frequent autoimmune disease involving the joints. Although anti-TNF therapies have proven effective in the management of RA, approximately one third of patients do not show a significant clinical response. The objective of this study was to identify new genetic variation associated with the clinical response to anti-TNF therapy in RA. Methods: We performed a sequential multi-omic analysis integrating different sources of molecular information. First, we extracted the RNA from synovial biopsies of 11 RA patients starting anti-TNF therapy to identify gene coexpression modules (GCMs) in the RA synovium. Second, we analyzed the transcriptomic association between each GCM and the clinical response to anti-TNF therapy. The clinical response was determined at week 14 using the EULAR criteria. Third, we analyzed the association between the GCMs and anti-TNF response at the genetic level. For this objective, we used genome-wide data from a cohort of 348 anti-TNF treated patients from Spain. The GCMs that were significantly associated with the anti-TNF response were then tested for validation in an independent cohort of 2,706 anti-TNF treated patients. Finally, the functional implication of the validated GCMs was evaluated via pathway and cell type epigenetic enrichment analyses. Results: A total of 149 GCMs were identified in the RA synovium. From these, 13 GCMs were found to be significantly associated with anti-TNF response (P < 0.05). At the genetic level, we detected two of the 13 GCMs to be significantly associated with the response to adalimumab (P = 0.0015) and infliximab (P = 0.021) in the Spain cohort. Using the independent cohort of RA patients, we replicated the association of the GCM associated with the response to adalimumab (P = 0.0019). The validated module was found to be significantly enriched for genes involved in the nucleotide metabolism (P = 2.41e-5) and epigenetic marks from immune cells, including CD4+ regulatory T cells (P = 0.041). Conclusions: These findings show the existence of a drug-specific genetic basis for anti-TNF response, thereby supporting treatment stratification in the search for response biomarkers in RA.
Collapse
Affiliation(s)
- Adrià Aterido
- Rheumatology Research Group, Vall d'Hebron Research Institute, Barcelona, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Juan D Cañete
- Rheumatology Department, Hospital Clínic de Barcelona and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jesús Tornero
- Rheumatology Department, Hospital Universitario De Guadalajara, Guadalajara, Spain
| | - Francisco Blanco
- Rheumatology Department, INIBIC-Hospital Universitario A Coruña, A Coruña, Spain
| | | | - Carolina Pérez
- Rheumatology Department, Parc de Salut Mar, Barcelona, Spain
| | | | - Alex Olivè
- Rheumatology Department, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | - Héctor Corominas
- Rheumatology Department, Hospital Moisès Broggi, Barcelona, Spain
| | | | - Isidoro González
- Rheumatology Department, Hospital Universitario La Princesa, IIS La Princesa, Madrid, Spain
| | - Antonio Fernández-Nebro
- UGC Reumatología, Instituto Investigación Biomédica Málaga, Hospital Regional Universitario, Universidad de Málaga, Málaga, Spain
| | - Alba Erra
- Rheumatology Department, Hospital Sant Rafael, Barcelona, Spain
| | - María López-Lasanta
- Rheumatology Research Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | | | - Núria Palau
- Rheumatology Research Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Sara Marsal
- Rheumatology Research Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Antonio Julià
- Rheumatology Research Group, Vall d'Hebron Research Institute, Barcelona, Spain
| |
Collapse
|
5
|
Marceau F, Bachelard H, Rivard GÉ, Hébert J. Increased fibrinolysis-induced bradykinin formation in hereditary angioedema confirmed using stored plasma and biotechnological inhibitors. BMC Res Notes 2019; 12:291. [PMID: 31133046 PMCID: PMC6537381 DOI: 10.1186/s13104-019-4335-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/22/2019] [Indexed: 12/25/2022] Open
Abstract
Objective We recently investigated the pathways of immunoreactive bradykinin (iBK) formation in fresh blood of normal volunteers and of patients with hereditary angioedema due to C1-esterase inhibitor deficiency (HAE-1/-2). Herein, we adapted the techniques to small volumes (200 μl) of previously frozen citrated plasma and further analyzed the mechanisms of iBK formation with additional biotechnological inhibitors. Results Measurable iBK formation was observed under stimulation with tissue kallikrein (KLK-1, 10 nM), the particulate material Kontact-APTT (concentration reduced to 2% v/v) or recombinant tissue plasminogen activator (tPA, 169 nM), with little background in unstimulated plasma incubated for up to 2 h. Plasma samples from HAE-1/-2 patients responded earlier to tPA than those from controls, as previously reported with whole blood. Lanadelumab inhibited iBK formation induced by Kontact-APTT and tPA. A highly specific plasmin inhibitor, DX-1000, abolished tPA-induced iBK formation in plasma but had no effect against Kontact-APTT, confirming the role of fibrinolysis in tPA-induced kinin formation. The anti-lanadelumab neutralizing antibody M293-D02 reversed the inhibitory effects of lanadelumab. Frozen plasma is a suitable material for measuring iBK formation kinetics, with possible applications such as investigating the effect of rare disease states on the kallikrein–kinin system and monitoring the effect of HAE prophylactic treatments. Electronic supplementary material The online version of this article (10.1186/s13104-019-4335-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- François Marceau
- Axe Microbiologie-Infectiologie et Immunologie, CHU de Québec-Université Laval, Quebec, QC, G1V 4G2, Canada.
| | - Hélène Bachelard
- Axe Endocrinologie et Néphrologie, CHU de Québec-Université Laval, Quebec, QC, G1V 4G2, Canada
| | | | - Jacques Hébert
- Service d'allergie, CHU de Québec-Université Laval, Quebec, QC, G1V 4G2, Canada
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW The contact system is a plasma protease cascade, which activates the proinflammatory kallikrein-kinin system and the procoagulant intrinsic coagulation pathway. Recent advances demonstrating the novel functions of this system as a key player of innate immune system will be introduced in the present review. RECENT FINDINGS The role of the contact system is to initiate and participate in pathophysiological responses to injury, mainly the processes of coagulation and inflammation. The past few years have seen substantial progress, showing a new role of this system in regulation of innate immunity. The relationship between high-molecular-weight kininogen and lipopolysaccharide (LPS) has been investigated and a new function of high-molecular-weight kininogen has been identified as the critical LPS carrier supporting endotoxemia. In contrast, the role of high-molecular-weight kininogen in Klebsiella pneumoniae sepsis is limited. Coagulation factor XII (FXII) plays a detrimental role in murine wound healing and host defense against K. pneumoniae sepsis. In the pathogenesis of arthritis and colitis, the activation of plasma kallikrein and downstream cleavage of high-molecular-weight kininogen and release of bradykinin constitutes a critical pathway in the innate immune mechanism, whereas FXII is not important. SUMMARY Current findings indicate that the plasma contact system functions as an important constituent of innate immune system, contributing to the pathogenesis of the immunological and infectious diseases.
Collapse
|
7
|
Charest-Morin X, Hébert J, Rivard GÉ, Bonnefoy A, Wagner E, Marceau F. Comparing Pathways of Bradykinin Formation in Whole Blood From Healthy Volunteers and Patients With Hereditary Angioedema Due to C1 Inhibitor Deficiency. Front Immunol 2018; 9:2183. [PMID: 30333824 PMCID: PMC6176197 DOI: 10.3389/fimmu.2018.02183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/04/2018] [Indexed: 12/26/2022] Open
Abstract
Multiple pathways have been proposed to generate bradykinin (BK)-related peptides from blood. We applied various forms of activation to fresh blood obtained from 10 healthy subjects or 10 patients with hereditary angioedema (HAE-1 or −2 only) to investigate kinin formation. An enzyme immunoassay for BK was applied to extracts of citrated blood incubated at 37°C under gentle agitation for 0–2 h in the presence of activators and/or inhibitory agents. Biologically active kinins in extracts were corroborated by c-Fos accumulation in HEK 293a cells that express either recombinant human B2 or B1 receptors (B2R, B1R). Biological evidence of HAE diagnostic and blood cell activation was also obtained. The angiotensin converting enzyme inhibitor enalaprilat, without any effect per se, increased immunoreactive BK (iBK) concentration under active stimulation of blood. Tissue kallikrein (KLK-1) and Kontact-APTT, a particulate material that activates the contact system, rapidly (5 min) and intensely (>100 ng/mL) induced similar iBK generation in the blood of control or HAE subjects. Tissue plasminogen activator (tPA) slowly (≥1 h) induced iBK generation in control blood, but more rapidly and intensely so in that of HAE patients. Effects of biotechnological inhibitors indicate that tPA recruits factor XIIa (FXIIa) and plasma kallikrein to generate iBK. KLK-1, independent of the contact system, is the only stimulus leading to an inconsistent B1R stimulation. Stimulating neutrophils or platelets did not generate iBK. In the HAE patients observed during remission, iBK formation capability coupled to B2R stimulation appears largely intact. However, a selective hypersensitivity to tPA in the blood of HAE patients suggests a role of plasmin-activated FXIIa in the development of attacks. Proposed pathways of kinin formation dependent on blood cell activation were not corroborated.
Collapse
Affiliation(s)
- Xavier Charest-Morin
- Axe Microbiologie-Infectiologie et Immunologie, CHU de Québec-Université Laval, Québec, QC, Canada
| | - Jacques Hébert
- Service d'allergie, CHU de Québec-Université Laval, Québec, QC, Canada
| | | | - Arnaud Bonnefoy
- Division of Hematology/Oncology, CHU Sainte-Justine, Montréal, QC, Canada
| | - Eric Wagner
- Axe Microbiologie-Infectiologie et Immunologie, CHU de Québec-Université Laval, Québec, QC, Canada
| | - François Marceau
- Axe Microbiologie-Infectiologie et Immunologie, CHU de Québec-Université Laval, Québec, QC, Canada
| |
Collapse
|
8
|
Wang B, Yang A, Zhao Z, He C, Liu Y, Colman RW, Dai J, Wu Y. The Plasma Kallikrein-Kininogen Pathway Is Critical in the Pathogenesis of Colitis in Mice. Front Immunol 2018; 9:21. [PMID: 29467753 PMCID: PMC5808240 DOI: 10.3389/fimmu.2018.00021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 01/04/2018] [Indexed: 12/17/2022] Open
Abstract
The kallikrein-kinin system (KKS) consists of two serine proteases, prekallikrein (pKal) and factor XII (FXII), and a cofactor, high-molecular-weight kininogen (HK). Upon activation of the KKS, HK is cleaved to release bradykinin. Although the KKS is activated in humans and animals with inflammatory bowel disease (IBD), its role in the pathogenesis of IBD has not been characterized. In the present study, we determined the role of the KKS in the pathogenesis of IBD using mice that lack proteins involved in the KKS. In two colitis models, induced by dextran sulfate sodium (DSS) or 2,4,6-trinitrobenzene sulfonic acid (TNBS), mice deficient in HK, pKal, or bradykinin receptors displayed attenuated phenotypes, including body weight loss, disease activity index, colon length shortening, histological scoring, and colonic production of cytokines. Infiltration of neutrophils and inflammatory monocytes in the colonic lamina propria was reduced in HK-deficient mice. Reconstitution of HK-deficient mice through intravenous injection of HK recovered their susceptibility to DSS-induced colitis, increased IL-1β levels in the colon tissue and bradykinin concentrations in plasma. In contrast to the phenotypes of other mice lacking other proteins involved in the KKS, mice lacking FXII had comparable colonic inflammation to that observed in wild-type mice. The concentration of bradykinin was significantly increased in the plasma of wild-type mice after DSS-induced colitis. In vitro analysis revealed that DSS-induced pKal activation, HK cleavage, and bradykinin plasma release were prevented by the absence of pKal or the inhibition of Kal. Unlike DSS, TNBS-induced colitis did not trigger HK cleavage. Collectively, our data strongly suggest that Kal, acting independently of FXII, contributes to experimental colitis by promoting bradykinin release from HK.
Collapse
Affiliation(s)
- Bo Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Aizhen Yang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Zhenzhen Zhao
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Chao He
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yuanyuan Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Robert W. Colman
- The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, United States
| | - Jihong Dai
- The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Yi Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
9
|
Schmaier AH. Plasma Prekallikrein: Its Role in Hereditary Angioedema and Health and Disease. Front Med (Lausanne) 2018; 5:3. [PMID: 29423395 PMCID: PMC5788901 DOI: 10.3389/fmed.2018.00003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/09/2018] [Indexed: 11/13/2022] Open
Abstract
Plasma prekallikrein (PK) has a critical role in acute attacks of hereditary angioedema (HAE). Unlike C1 inhibitor, its levels fall during HAE attacks with resultant cleaved high-molecular-weight kininogen. Cleavage of high-molecular-weight kininogen liberates bradykinin, the major biologic peptide that promotes the edema. How prekallikrein initially becomes activated in acute attacks of HAE is not known. PK itself is negatively associated with cardiovascular disease. High prekallikrein is associated with accelerated vascular disease in diabetes and polymorphisms of prekallikrein that reduce high-molecular-weight kininogen binding are associated with protection from cardiovascular events. Prekallikrein-deficient mice have reduced thrombosis risk and plasma kallikrein (PKa) inhibition is associated with reduced experimental gastroenterocolitis and arthritis in rodents. In sum, prekallikrein and its enzyme PKa are major targets in HAE providing much opportunity to improve the acute and chronic management of HAE. PKa inhibition also may be a target to ameliorate cardiovascular disease, thrombosis risk, and inflammation as in enterocolitis and arthritis.
Collapse
Affiliation(s)
- Alvin H Schmaier
- Hematology and Oncology Division, Department of Medicine, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
10
|
Laschke MW, Menger MD. Basic mechanisms of vascularization in endometriosis and their clinical implications. Hum Reprod Update 2018; 24:207-224. [PMID: 29377994 DOI: 10.1093/humupd/dmy001] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/19/2017] [Accepted: 01/01/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Vascularization is a major hallmark in the pathogenesis of endometriosis. An increasing number of studies suggests that multiple mechanisms contribute to the vascularization of endometriotic lesions, including angiogenesis, vasculogenesis and inosculation. OBJECTIVE AND RATIONALE In this review, we provide an overview of the basic mechanisms of vascularization in endometriosis and give special emphasis on their future clinical implications in the diagnosis and therapy of the disease. SEARCH METHODS Literature searches were performed in PubMed for English articles with the key words 'endometriosis', 'endometriotic lesions', 'angiogenesis', 'vascularization', 'vasculogenesis', 'endothelial progenitor cells' and 'inosculation'. The searches included both animal and human studies. No restriction was set for the publication date. OUTCOMES The engraftment of endometriotic lesions is typically associated with angiogenesis, i.e. the formation of new blood vessels from pre-existing ones. This angiogenic process underlies the complex regulation by angiogenic growth factors and hormones, which activate intracellular pathways and associated signaling molecules. In addition, circulating endothelial progenitor cells (EPCs) are mobilized from the bone marrow and recruited into endometriotic lesions, where they are incorporated into the endothelium of newly developing microvessels, referred to as vasculogenesis. Finally, preformed microvessels in shed endometrial fragments inosculate with the surrounding host microvasculature, resulting in a rapid blood supply to the ectopic tissue. These vascularization modes offer different possibilities for the establishment of novel diagnostic and therapeutic approaches. Angiogenic growth factors and EPCs may serve as biomarkers for the diagnosis and classification of endometriosis. Blood vessel formation and mature microvessels in endometriotic lesions may be targeted by means of anti-angiogenic compounds and vascular-disrupting agents. WIDER IMPLICATIONS The establishment of vascularization-based approaches in the management of endometriosis still represents a major challenge. For diagnostic purposes, reliable angiogenic and vasculogenic biomarker panels exhibiting a high sensitivity and specificity must be identified. For therapeutic purposes, novel compounds selectively targeting the vascularization of endometriotic lesions without inducing severe side effects are required. Recent progress in the field of endometriosis research indicates that these goals may be achieved in the near future.
Collapse
Affiliation(s)
- Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| |
Collapse
|
11
|
Yang A, Zhou J, Wang B, Dai J, Colman RW, Song W, Wu Y. A critical role for plasma kallikrein in the pathogenesis of autoantibody-induced arthritis. FASEB J 2017; 31:5419-5431. [PMID: 28808141 DOI: 10.1096/fj.201700018r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 07/31/2017] [Indexed: 01/08/2023]
Abstract
The plasma kallikrein-kinin system (KKS) consists of serine proteases, prekallikrein (pKal) and factor XII (FXII), and a cofactor, high-MW kininogen (HK). Upon activation, activated pKal and FXII cleave HK to release bradykinin. Activation of this system has been noted in patients with rheumatoid arthritis, and its pathogenic role has been characterized in animal arthritic models. In this study, we generated 2 knockout mouse strains that lacked pKal and HK and determined the role of KKS in autoantibody-induced arthritis. In a K/BxN serum transfer-induced arthritis (STIA) model, mice that lacked HK, pKal, or bradykinin receptors displayed protective phenotypes in joint swelling, histologic changes in inflammation, and cytokine production; however, FXII-deficient mice developed normal arthritis. Inhibition of Kal ameliorated arthritis severity and incidence at early stage STIA and reduced the levels of major cytokines in joints. In addition to releasing bradykinin from HK, Kal directly activated monocytes to produce proinflammatory cytokines, up-regulated their C5aR and FcRIII expression, and released C5a. Immune complex increased pKal activity, which led to HK cleavage. The absence of HK is associated with a decrease in joint vasopermeability. Thus, we identify a critical role for Kal in autoantibody-induced arthritis with pleiotropic effects, which suggests that it is a new target for the inhibition of arthritis.-Yang, A., Zhou, J., Wang, B., Dai, J., Colman, R. W., Song, W., Wu, Y. A critical role for plasma kallikrein in the pathogenesis of autoantibody-induced arthritis.
Collapse
Affiliation(s)
- Aizhen Yang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Junsong Zhou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Bo Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jihong Dai
- The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, USA.,Department of Pathology and Laboratory Medicine, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Robert W Colman
- The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Wenchao Song
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yi Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; .,The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Yang A, Xie Z, Wang B, Colman RW, Dai J, Wu Y. An essential role of high-molecular-weight kininogen in endotoxemia. J Exp Med 2017; 214:2649-2670. [PMID: 28794132 PMCID: PMC5584120 DOI: 10.1084/jem.20161900] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 05/25/2017] [Accepted: 07/07/2017] [Indexed: 01/08/2023] Open
Abstract
High-molecular-weight kininogen (HK) is a plasma protein. Yang et al. show that HK binds LPS and supports endotoxemia. Blockade of their binding attenuates circulating LPS level. Therefore, HK is essential for endotoxemia and is a new target for LPS clearance and sepsis treatment. In this study, we show that mice lacking high-molecular-weight kininogen (HK) were resistant to lipopolysaccharide (LPS)-induced mortality and had significantly reduced circulating LPS levels. Replenishment of HK-deficient mice with human HK recovered the LPS levels and rendered the mice susceptible to LPS-induced mortality. Binding of HK to LPS occurred through the O-polysaccharide/core oligosaccharide, consistent with the ability to bind LPS from K. pneumoniae, P. aeruginosa, S. minnesota, and different E. coli strains. Binding of LPS induced plasma HK cleavage to the two-chain form (HKa, containing a heavy chain [HC] and a light chain [LC]) and bradykinin. Both HKa and the LC, but not the HC, could disaggregate LPS. The light chain bound LPS with high affinity (Kd = 1.52 × 10−9 M) through a binding site in domain 5 (DHG15). A monoclonal antibody against D5 significantly reduced LPS-induced mortality and circulating LPS levels in wild-type mice. Thus, HK, as a major LPS carrier in circulation, plays an essential role in endotoxemia.
Collapse
Affiliation(s)
- Aizhen Yang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Zhanli Xie
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Bo Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Robert W Colman
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA
| | - Jihong Dai
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA.,Department of Pathology and Laboratory Medicine, Rutgers-New Jersey Medical School, Newark, NJ
| | - Yi Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China .,Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA
| |
Collapse
|
13
|
Estrogen Stimulates Homing of Endothelial Progenitor Cells to Endometriotic Lesions. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2129-2142. [PMID: 27315780 DOI: 10.1016/j.ajpath.2016.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 02/29/2016] [Accepted: 04/12/2016] [Indexed: 01/19/2023]
Abstract
The incorporation of endothelial progenitor cells (EPCs) into microvessels contributes to the vascularization of endometriotic lesions. Herein, we analyzed whether this vasculogenic process is regulated by estrogen. Estrogen- and vehicle-treated human EPCs were analyzed for migration and tube formation. Endometriotic lesions were induced in irradiated FVB/N mice, which were reconstituted with bone marrow from FVB/N-TgN (Tie2/green fluorescent protein) 287 Sato mice. The animals were treated with 100 μg/kg β-estradiol 17-valerate or vehicle (control) over 7 and 28 days. Lesion growth, cyst formation, homing of green fluorescent protein(+)/Tie2(+) EPCs, vascularization, cell proliferation, and apoptosis were analyzed by high-resolution ultrasonography, caliper measurements, histology, and immunohistochemistry. Numbers of blood circulating EPCs were assessed by flow cytometry. In vitro, estrogen-treated EPCs exhibited a higher migratory and tube-forming capacity when compared with controls. In vivo, numbers of circulating EPCs were not affected by estrogen. However, estrogen significantly increased the number of EPCs incorporated into the lesions' microvasculature, resulting in an improved early vascularization. Estrogen further stimulated the growth of lesions, which exhibited massively dilated glands with a flattened layer of stroma. This was mainly because of an increased glandular secretory activity, whereas cell proliferation and apoptosis were not markedly affected. These findings indicate that vasculogenesis in endometriotic lesions is dependent on estrogen, which adds a novel hormonally regulated mechanism to the complex pathophysiology of endometriosis.
Collapse
|
14
|
Chepeleva EV, Pavlova SV, Malakhova AA, Milevskaya EA, Rusakova YL, Podkhvatilina NA, Sergeevichev DS, Pokushalov EA, Karaskov AM, Sukhikh GT, Zakiyan SM. Therapy of Chronic Cardiosclerosis in WAG Rats Using Cultures of Cardiovascular Cells Enriched with Cardiac Stem Cell. Bull Exp Biol Med 2015; 160:165-73. [DOI: 10.1007/s10517-015-3119-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Indexed: 01/23/2023]
|
15
|
Abstract
The contact system, also named as plasma kallikrein-kinin system, consists of three serine proteinases: coagulation factors XII (FXII) and XI (FXI), and plasma prekallikrein (PK), and the nonenzymatic cofactor high molecular weight kininogen (HK). This system has been investigated actively for more than 50 years. The components of this system and their interactions have been elucidated from in vitro experiments, which indicates that this system is prothrombotic by activating intrinsic pathway, and proinflammatory by producing bioactive peptide bradykinin. Although the activation of the contact system have been implicated in various types of human disease, in only a few instances is its role clearly defined. In the last 10 years, our understanding of the contact system, particularly its biology and (patho)physiology has greatly increased through investigations using gene-modified animal models. In this review we will describe a revitalized view of the contact system as a critical (patho)physiologic mediator of coagulation and inflammation.
Collapse
Affiliation(s)
- Yi Wu
- The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, 3420 N. Broad Street, Philadelphia, PA 19140 USA
| |
Collapse
|
16
|
Du Z, Zan T, Huang X, Sheng L, Li H, Li H, Li Q. DFO enhances the targeting of CD34-positive cells and improves neovascularization. Cell Transplant 2014; 24:2353-66. [PMID: 25506687 DOI: 10.3727/096368914x685753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Desferrioxamine (DFO), an iron chelator, mimicked hypoxia by inhibiting HIF-1α degradation and upregulated angiogenic factors. In this experiment, we elucidated the effect of DFO on CD34-positive cell migration and neovascularization. CD34-positive cells were cultured in media with DFO or an inhibitor and subjected to in vitro tubule formation and the expression of factors. Nude mice were randomly divided into five groups of 12: control, CD34, CD34-DFO, CD34-DFO-AMD (AMD3100, CXCR4 inhibitor), and CD34-DFO-LY (LY294002, the PI3K inhibitor) groups. Limb perfusion and in vivo imaging was evaluated by laser speckle imaging (LSI) and bioluminescence imaging (BLI). Capillary density was examined 14 days after surgery, and the relevant mechanism was also explored. In vitro, DFO significantly increased the tube formation and expression of angiogenic factors in CD34-positive cells, which were blocked by the PI3K inhibitor, LY294002. DFO enhanced blood flow, the function of the ischemic hindlimb, and the levels of VEGF. Further, p-eNOS and p-Akt increased in response to the ischemia. BLI showed that DFO increased the number of CD34-positive cells targeted to the ischemic sites. Immunohistofluorescence revealed that the capillary density in the ischemic hindlimb was significantly higher in the DFO treatment group compared with the other groups. However, all of these effects were diminished by LY294002. DFO treatment enhanced CD34-positive cell targeting and improved neovascularization via the PI3K/Akt signal transduction pathway in an ischemic hindlimb.
Collapse
Affiliation(s)
- Zijing Du
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | | | | | | | | | | | | |
Collapse
|
17
|
Chao J, Bledsoe G, Chao L. Kallikrein-kinin in stem cell therapy. World J Stem Cells 2014; 6:448-457. [PMID: 25258666 PMCID: PMC4172673 DOI: 10.4252/wjsc.v6.i4.448] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/27/2014] [Accepted: 09/01/2014] [Indexed: 02/06/2023] Open
Abstract
The tissue kallikrein-kinin system exerts a wide spectrum of biological activities in the cardiovascular, renal and central nervous systems. Tissue kallikrein-kinin modulates the proliferation, viability, mobility and functional activity of certain stem cell populations, namely mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs), mononuclear cell subsets and neural stem cells. Stimulation of these stem cells by tissue kallikrein-kinin may lead to protection against renal, cardiovascular and neural damage by inhibiting apoptosis, inflammation, fibrosis and oxidative stress and promoting neovascularization. Moreover, MSCs and EPCs genetically modified with tissue kallikrein are resistant to hypoxia- and oxidative stress-induced apoptosis, and offer enhanced protective actions in animal models of heart and kidney injury and hindlimb ischemia. In addition, activation of the plasma kallikrein-kinin system promotes EPC recruitment to the inflamed synovium of arthritic rats. Conversely, cleaved high molecular weight kininogen, a product of plasma kallikrein, reduces the viability and vasculogenic activity of EPCs. Therefore, kallikrein-kinin provides a new approach in enhancing the efficacy of stem cell therapy for human diseases.
Collapse
|
18
|
Xie Z, Dai J, Yang A, Wu Y. A role for bradykinin in the development of anti-collagen antibody-induced arthritis. Rheumatology (Oxford) 2014; 53:1301-6. [PMID: 24599920 DOI: 10.1093/rheumatology/keu015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES Clinical and experimental observations have suggested that bradykinin, a major activation product of the plasma kallikrein-kinin system, is involved in the pathogenesis of arthritis, but the pathogenic role of bradykinin receptors remains inconclusive. In this study we examined whether bradykinin receptors are important in the pathogenesis of anti-collagen antibody-induced arthritis (CAIA) using double receptor-deficient (B1RB2R(-/-)) mice. METHODS CAIA was induced in B1RB2R(+/+) and B1RB2R(-/-) mice by injection of an anti-collagen antibody cocktail on day 0 and lipopolysaccharide on day 3. Severity of disease was evaluated by measurement of joint diameter and histological analysis. The expression of proinflammatory cytokines in joint tissue and peripheral mononuclear cells was determined by ELISA and real-time RT-PCR. RESULTS The absent expression of B1R and B2R mRNA in B1RB2R(-/-) mice was confirmed by RT-PCR. Although B1RB2R(+/+) mice developed severe CAIA, the severity of the disease was significantly attenuated in B1RB2R(-/-) mice. In B1RB2R(+/+) mice bearing CAIA, both B1R and B2R mRNA levels were increased in joint tissue and peripheral mononuclear cells. Compared with B1RB2R(+/+) mice, the production of IL-1β and IL-6 in joint tissue and their mRNA expression in peripheral mononuclear cells were remarkably reduced in B1RB2R(-/-) mice. CONCLUSION These observations provide genetic evidence that bradykinin plays an important role in the pathogenesis of CAIA. B1R, whose expression is induced in inflamed joint tissue and peripheral inflammatory cells, is important in the development of CAIA.
Collapse
Affiliation(s)
- Zhanli Xie
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, Soochow University, Suzhou, China and Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Jihong Dai
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, Soochow University, Suzhou, China and Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Aizhen Yang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, Soochow University, Suzhou, China and Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Yi Wu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, Soochow University, Suzhou, China and Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA.Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, Soochow University, Suzhou, China and Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|