1
|
Hameed M, Daamen AR, Hossain MS, Coutermarsh-Ott S, Lipsky PE, Weger-Lucarelli J. Obesity-Associated Changes in Immune Cell Dynamics During Alphavirus Infection Revealed by Single Cell Transcriptomic Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617696. [PMID: 39416014 PMCID: PMC11482886 DOI: 10.1101/2024.10.10.617696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Obesity induces diverse changes in host immunity, resulting in worse disease outcomes following infection with various pathogens, including arthritogenic alphaviruses. However, the impact of obesity on the functional landscape of immune cells during arthritogenic alphavirus infection remains unexplored. Here, we used single-cell RNA sequencing (scRNA-seq) to dissect the blood and tissue immune responses to Mayaro virus (MAYV) infection in lean and obese mice. Footpad injection of MAYV caused significant shifts in immune cell populations and induced robust expression of interferon response and proinflammatory cytokine genes and related pathways in both blood and tissue. In MAYV-infected lean mice, analysis of the local tissue response revealed a unique macrophage subset with high expression of IFN response genes that was not found in obese mice. This was associated with less severe inflammation in lean mice. These results provide evidence for a unique macrophage population that may contribute to the superior capacity of lean mice to control arthritogenic alphavirus infection.
Collapse
Affiliation(s)
- Muddassar Hameed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Department of Pathology & Immunology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrea R. Daamen
- AMPEL BioSolutions LLC and the RILITE Research Institute, Charlottesville, VA, United States
| | - Md Shakhawat Hossain
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Peter E. Lipsky
- AMPEL BioSolutions LLC and the RILITE Research Institute, Charlottesville, VA, United States
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
2
|
Hameed M, Solomon NA, Weger-Lucarelli J. Lack of pathogenic involvement of CCL4 and its receptor CCR5 in arthritogenic alphavirus disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606106. [PMID: 39131287 PMCID: PMC11312581 DOI: 10.1101/2024.07.31.606106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Arthritogenic alphaviruses, including chikungunya virus (CHIKV), Mayaro virus (MAYV), Ross River virus (RRV), and O'nyong nyong virus (ONNV) are emerging and reemerging viruses that cause disease characterized by fever, rash, and incapacitating joint swelling. Alphavirus infection induces robust immune responses in infected hosts, leading to the upregulation of several cytokines and chemokines, including chemokine C ligand 4 (CCL4). CCL4 is a chemoattractant for immune cells such as T cells, natural killer cells, monocytes/macrophages, and dendritic cells, recruiting these cells to the site of infection, stimulating the release of proinflammatory mediators, and inducing T cell differentiation. CCL4 has been found at high levels in both the acute and chronic phases of chikungunya disease; however, the role of CCL4 in arthritogenic alphavirus disease development remains unexplored. Here, we tested the effect of CCL4 on MAYV infection in mice through antibody depletion and treatment with recombinant mouse CCL4. We observed no differences in mice depleted of CCL4 or treated with recombinant CCL4 in terms of disease progression such as weight loss and footpad swelling or the development of viremia. CCL4 uses the G protein-coupled receptor C-C chemokine receptor type 5 (CCR5). To determine whether CCR5 deficiency would alter disease outcomes or virus replication in mice, we inoculated CCR5 knockout (CCR5-/-) mice with MAYV and observed no effect on disease development and immune cell profile of blood and footpads between CCR5-/- and wild type mice. These studies failed to identify a clear role for CCL4 or its receptor CCR5 in MAYV infection.
Collapse
Affiliation(s)
- Muddassar Hameed
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
- Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Norman A. Solomon
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
- Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
- Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
- Lead contact
| |
Collapse
|
3
|
Lum FM, Chan YH, Teo TH, Becht E, Amrun SN, Teng KW, Hartimath SV, Yeo NK, Yee WX, Ang N, Torres-Ruesta AM, Fong SW, Goggi JL, Newell EW, Renia L, Carissimo G, Ng LF. Crosstalk between CD64 +MHCII + macrophages and CD4 + T cells drives joint pathology during chikungunya. EMBO Mol Med 2024; 16:641-663. [PMID: 38332201 PMCID: PMC10940729 DOI: 10.1038/s44321-024-00028-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Communications between immune cells are essential to ensure appropriate coordination of their activities. Here, we observed the infiltration of activated macrophages into the joint-footpads of chikungunya virus (CHIKV)-infected animals. Large numbers of CD64+MHCII+ and CD64+MHCII- macrophages were present in the joint-footpad, preceded by the recruitment of their CD11b+Ly6C+ inflammatory monocyte precursors. Recruitment and differentiation of these myeloid subsets were dependent on CD4+ T cells and GM-CSF. Transcriptomic and gene ontology analyses of CD64+MHCII+ and CD64+MHCII- macrophages revealed 89 differentially expressed genes, including genes involved in T cell proliferation and differentiation pathways. Depletion of phagocytes, including CD64+MHCII+ macrophages, from CHIKV-infected mice reduced disease pathology, demonstrating that these cells play a pro-inflammatory role in CHIKV infection. Together, these results highlight the synergistic dynamics of immune cell crosstalk in driving CHIKV immunopathogenesis. This study provides new insights in the disease mechanism and offers opportunities for development of novel anti-CHIKV therapeutics.
Collapse
Affiliation(s)
- Fok-Moon Lum
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore.
| | - Yi-Hao Chan
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Teck-Hui Teo
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Etienne Becht
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Siti Naqiah Amrun
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Karen Ww Teng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Siddesh V Hartimath
- Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Nicholas Kw Yeo
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Wearn-Xin Yee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Nicholas Ang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Anthony M Torres-Ruesta
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Siew-Wai Fong
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Julian L Goggi
- Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Evan W Newell
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Laurent Renia
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Guillaume Carissimo
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
| | - Lisa Fp Ng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- National Institute of Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, L69 7BE, UK.
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZX, UK.
| |
Collapse
|
4
|
Ng WH, Liu X, Ling ZL, Santos CNO, Magalhães LS, Kueh AJ, Herold MJ, Taylor A, Freitas JR, Koit S, Wang S, Lloyd AR, Teixeira MM, Merits A, Almeida RP, King NJC, Mahalingam S. FHL1 promotes chikungunya and o'nyong-nyong virus infection and pathogenesis with implications for alphavirus vaccine design. Nat Commun 2023; 14:6605. [PMID: 37884534 PMCID: PMC10603155 DOI: 10.1038/s41467-023-42330-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
Arthritogenic alphaviruses are positive-strand RNA viruses that cause debilitating musculoskeletal diseases affecting millions worldwide. A recent discovery identified the four-and-a-half-LIM domain protein 1 splice variant A (FHL1A) as a crucial host factor interacting with the hypervariable domain (HVD) of chikungunya virus (CHIKV) nonstructural protein 3 (nsP3). Here, we show that acute and chronic chikungunya disease in humans correlates with elevated levels of FHL1. We generated FHL1-/- mice, which when infected with CHIKV or o'nyong-nyong virus (ONNV) displayed reduced arthritis and myositis, fewer immune infiltrates, and reduced proinflammatory cytokine/chemokine outputs, compared to infected wild-type (WT) mice. Interestingly, disease signs were comparable in FHL1-/- and WT mice infected with arthritogenic alphaviruses Ross River virus (RRV) or Mayaro virus (MAYV). This aligns with pull-down assay data, which showed the ability of CHIKV and ONNV nsP3 to interact with FHL1, while RRV and MAYV nsP3s did not. We engineered a CHIKV mutant unable to bind FHL1 (CHIKV-ΔFHL1), which was avirulent in vivo. Following inoculation with CHIKV-ΔFHL1, mice were protected from disease upon challenge with CHIKV and ONNV, and viraemia was significantly reduced in RRV- and MAYV-challenged mice. Targeting FHL1-binding as an approach to vaccine design could lead to breakthroughs in mitigating alphaviral disease.
Collapse
Affiliation(s)
- Wern Hann Ng
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Xiang Liu
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Zheng L Ling
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
- Sydney Institute for Infectious Diseases, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Camilla N O Santos
- Division of Immunology and Molecular Biology Laboratory, University Hospital/EBSERH, Federal University of Sergipe (UFS), Aracaju, Brazil
| | - Lucas S Magalhães
- Division of Immunology and Molecular Biology Laboratory, University Hospital/EBSERH, Federal University of Sergipe (UFS), Aracaju, Brazil
| | - Andrew J Kueh
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - Adam Taylor
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Joseph R Freitas
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Sandra Koit
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Sainan Wang
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Andrew R Lloyd
- Viral Immunology Systems Program, Kirby Institute, University of New South Wales, Kensington, NSW, Australia
| | - Mauro M Teixeira
- Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Roque P Almeida
- Division of Immunology and Molecular Biology Laboratory, University Hospital/EBSERH, Federal University of Sergipe (UFS), Aracaju, Brazil
| | - Nicholas J C King
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
- Sydney Institute for Infectious Diseases, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Suresh Mahalingam
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia.
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia.
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
5
|
N-Linked Glycans Shape Skin Immune Responses during Arthritis and Myositis after Intradermal Infection with Ross River Virus. J Virol 2022; 96:e0099922. [PMID: 36000846 PMCID: PMC9472629 DOI: 10.1128/jvi.00999-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Arthritogenic alphaviruses are mosquito-borne arboviruses that include several re-emerging human pathogens, including the chikungunya (CHIKV), Ross River (RRV), Mayaro (MAYV), and o'nyong-nyong (ONNV) virus. Arboviruses are transmitted via a mosquito bite to the skin. Herein, we describe intradermal RRV infection in a mouse model that replicates the arthritis and myositis seen in humans with Ross River virus disease (RRVD). We show that skin infection with RRV results in the recruitment of inflammatory monocytes and neutrophils, which together with dendritic cells migrate to draining lymph nodes (LN) of the skin. Neutrophils and monocytes are productively infected and traffic virus from the skin to LN. We show that viral envelope N-linked glycosylation is a key determinant of skin immune responses and disease severity. RRV grown in mammalian cells elicited robust early antiviral responses in the skin, while RRV grown in mosquito cells stimulated poorer early antiviral responses. We used glycan mass spectrometry to characterize the glycan profile of mosquito and mammalian cell-derived RRV, showing deglycosylation of the RRV E2 glycoprotein is associated with curtailed skin immune responses and reduced disease following intradermal infection. Altogether, our findings demonstrate skin infection with an arthritogenic alphavirus leads to musculoskeletal disease and envelope glycoprotein glycosylation shapes disease outcome. IMPORTANCE Arthritogenic alphaviruses are transmitted via mosquito bites through the skin, potentially causing debilitating diseases. Our understanding of how viral infection starts in the skin and how virus systemically disseminates to cause disease remains limited. Intradermal arbovirus infection described herein results in musculoskeletal pathology, which is dependent on viral envelope N-linked glycosylation. As such, intradermal infection route provides new insights into how arboviruses cause disease and could be extended to future investigations of skin immune responses following infection with other re-emerging arboviruses.
Collapse
|
6
|
Chen Y, Lin J, Schlotterer A, Kurowski L, Hoffmann S, Hammad S, Dooley S, Buchholz M, Hu J, Fleming I, Hammes HP. MicroRNA-124 Alleviates Retinal Vasoregression via Regulating Microglial Polarization. Int J Mol Sci 2021; 22:ijms222011068. [PMID: 34681723 PMCID: PMC8538759 DOI: 10.3390/ijms222011068] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 12/15/2022] Open
Abstract
Microglial activation is implicated in retinal vasoregression of the neurodegenerative ciliopathy-associated disease rat model (i.e., the polycystic kidney disease (PKD) model). microRNA can regulate microglial activation and vascular function, but the effect of microRNA-124 (miR-124) on retinal vasoregression remains unclear. Transgenic PKD and wild-type Sprague Dawley (SD) rats received miR-124 at 8 and 10 weeks of age intravitreally. Retinal glia activation was assessed by immunofluorescent staining and in situ hybridization. Vasoregression and neuroretinal function were evaluated by quantitative retinal morphometry and electroretinography (ERG), respectively. Microglial polarization was determined by immunocytochemistry and qRT-PCR. Microglial motility was examined via transwell migration assays, wound healing assays, and single-cell tracking. Our data showed that miR-124 inhibited glial activation and improved vasoregession, as evidenced by the reduced pericyte loss and decreased acellular capillary formation. In addition, miR-124 improved neuroretinal function. miR-124 shifted microglial polarization in the PKD retina from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype by suppressing TNF-α, IL-1β, CCL2, CCL3, MHC-II, and IFN-γ and upregulating Arg1 and IL-10. miR-124 also decreased microglial motility in the migration assays. The transcriptional factor of C/EBP-α-PU.1 signaling, suppressed by miR-124 both in vivo (PKD retina) and in vitro (microglial cells), could serve as a key regulator in microglial activation and polarization. Our data illustrate that miR-124 regulates microglial activation and polarization. miR-124 inhibits pericyte loss and thereby alleviates vasoregression and ameliorates neurovascular function.
Collapse
Affiliation(s)
- Ying Chen
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (Y.C.); (J.L.); (A.S.); (L.K.)
| | - Jihong Lin
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (Y.C.); (J.L.); (A.S.); (L.K.)
| | - Andrea Schlotterer
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (Y.C.); (J.L.); (A.S.); (L.K.)
| | - Luke Kurowski
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (Y.C.); (J.L.); (A.S.); (L.K.)
| | - Sigrid Hoffmann
- Center of Medical Research, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany;
| | - Seddik Hammad
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (S.H.); (S.D.)
| | - Steven Dooley
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (S.H.); (S.D.)
| | - Malte Buchholz
- Department of Gastroenterology and Endocrinology, University Hospital, Philipps-University Marburg, Hans-Meerwein-Str. 3, D-35043 Marburg, Germany;
| | - Jiong Hu
- Institute for Vascular Signalling, Center for Molecular Medicine, Goethe University, D-60590 Frankfurt, Germany; (J.H.); (I.F.)
| | - Ingrid Fleming
- Institute for Vascular Signalling, Center for Molecular Medicine, Goethe University, D-60590 Frankfurt, Germany; (J.H.); (I.F.)
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (Y.C.); (J.L.); (A.S.); (L.K.)
- Correspondence: ; Tel.: +49-621-383-2663
| |
Collapse
|
7
|
Guerrero-Arguero I, Tellez-Freitas CM, Weber KS, Berges BK, Robison RA, Pickett BE. Alphaviruses: Host pathogenesis, immune response, and vaccine & treatment updates. J Gen Virol 2021; 102. [PMID: 34435944 DOI: 10.1099/jgv.0.001644] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Human pathogens belonging to the Alphavirus genus, in the Togaviridae family, are transmitted primarily by mosquitoes. The signs and symptoms associated with these viruses include fever and polyarthralgia, defined as joint pain and inflammation, as well as encephalitis. In the last decade, our understanding of the interactions between members of the alphavirus genus and the human host has increased due to the re-appearance of the chikungunya virus (CHIKV) in Asia and Europe, as well as its emergence in the Americas. Alphaviruses affect host immunity through cytokines and the interferon response. Understanding alphavirus interactions with both the innate immune system as well as the various cells in the adaptive immune systems is critical to developing effective therapeutics. In this review, we summarize the latest research on alphavirus-host cell interactions, underlying infection mechanisms, and possible treatments.
Collapse
Affiliation(s)
- Israel Guerrero-Arguero
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA.,Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - K Scott Weber
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Bradford K Berges
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Richard A Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Brett E Pickett
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| |
Collapse
|
8
|
Gao J, Wu M, Wang F, Jiang L, Tian R, Zhu X, He S. CD74, a novel predictor for bronchopulmonary dysplasia in preterm infants. Medicine (Baltimore) 2020; 99:e23477. [PMID: 33235138 PMCID: PMC7710202 DOI: 10.1097/md.0000000000023477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) remains a major complication and accounts for high morbidity and mortality of preterm infants. The present study aimed to identify the key genes in the development of BPD and to provide some new insights into the pathogenesis of BPD. The GSE108754 dataset was downloaded from Gene Expression Omnibus database containing 5 samples of BPD patients and 6 of non-BPD infants. The differentially expressed genes (DEGs) between BPD and non-BPD patients were identified by R software. The pathway and function enrichment analyses were performed through Database for Annotation Visualization and Integrated Discovery website. The protein-protein interaction network for DEGs was established by Cytoscape software and the most highly connected module was selected through MCODE plugin. Furthermore, the clinical sample verification among 25 BPD patients and 10 non-BPD infants was carried out in our center. Finally, based on the results above, the gene set enrichment analysis focusing on CD74 upregulated status was employed. Totally, 189 DEGs including 147 upregulated genes and 42 downregulated genes between BPD and non-BPD patients were screened out. The pathway and function enrichments revealed these DEGs were mainly enriched in asthma, intestinal immune network for IgA production, antigen processing and presentation and immune response. Thirteen DEGs (CD74, HLA-DMA, HLA-DRA, HLA-DMB, HLA-DOB, HLA-DQA1, HLA-DRB5, HLA-DPA1, HLA-DOA, HLA-DPB1, HLA-DQB2, HLA-DQA2, and HLA-DQB1) were determined as hub genes. The mRNA expression levels of the 13 hub genes were tested by quantitative real-time polymerase chain reaction among our clinical samples. Eventually, CD74 was confirmed to be the most significant highly expressed in BPD samples (P < .001) and its expression level was negatively correlated with gestational age (r = -0.653) and birth weight (r = -0.675). The gene set enrichment analysis results showed the gene sets associated with lupus erythematosus, viral myocarditis, immune network for IgA production, graft versus host disease, cell adhesion molecules and so no were differentially enriched with the phenotype of high-expression CD74. In conclusion, CD74 may serve to predict the BPD development and provide a new therapeutic target for BPD.
Collapse
Affiliation(s)
- Junyan Gao
- Department of Pediatrics, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu
| | - Mingfu Wu
- Department of Pediatrics, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu
| | - Fudong Wang
- Department of Pediatrics, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu
| | - Lijun Jiang
- Department of Pediatrics, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu
| | - Rui Tian
- Department of Pediatrics, The First People's Hospital of Kunming City, Kunming, Yunnan
| | - Xueping Zhu
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, Jiangsu
| | - Shan He
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, Jiangsu
- Department of Pediatrics, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| |
Collapse
|
9
|
Lin J, Hu J, Schlotterer A, Wang J, Kolibabka M, Awwad K, Dietrich N, Breitschopf K, Wohlfart P, Kannt A, Lorenz K, Feng Y, Popp R, Hoffmann S, Fleming I, Hammes HP. Protective effect of Soluble Epoxide Hydrolase Inhibition in Retinal Vasculopathy associated with Polycystic Kidney Disease. Am J Cancer Res 2020; 10:7857-7871. [PMID: 32685025 PMCID: PMC7359083 DOI: 10.7150/thno.43154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
Rationale: Vasoregression secondary to glial activation develops in various retinal diseases, including retinal degeneration and diabetic retinopathy. Photoreceptor degeneration and subsequent retinal vasoregression, characterized by pericyte loss and acellular capillary formation in the absence diabetes, are also seen in transgenic rats expressing the polycystic kidney disease (PKD) gene. Activated Müller glia contributes to retinal vasodegeneration, at least in part via the expression of the soluble epoxide hydrolase (sEH). Given that an increase in sEH expression triggered vascular destabilization in diabetes, and that vasoregression is similar in diabetic mice and PKD rats, the aim of the present study was to determine whether sEH inhibition could prevent retinal vasoregression in the PKD rat. Methods: One-month old male homozygous transgenic PKD rats were randomly allocated to receive vehicle or a sEH inhibitor (sEH-I; Sar5399, 30 mg/kg) for four weeks. Wild-type Sprague-Dawley (SD) littermates received vehicle as controls. Retinal sEH expression and activity were measured by Western blotting and LC-MS, and vasoregression was quantified in retinal digestion preparations. Microglial activation and immune response cytokines were assessed by immunofluorescence and quantitative PCR, respectively. 19,20-dihydroxydocosapentaenoic acid (19,20-DHDP) mediated Notch signaling, microglial activation and migration were assessed in vivo and in vitro. Results: This study demonstrates that sEH expression and activity were increased in PKD retinae, which led to elevated production of 19,20-DHDP and the depression of Notch signaling. The latter changes elicited pericyte loss and the recruitment of CD11b+/CD74+ microglia to the perivascular region. Microglial activation increased the expression of immune-response cytokines, and reduced levels of Notch3 and delta-like ligand 4 (Dll4). Treatment with Sar5399 decreased 19,20-DHDP generation and increased Notch3 expression. Sar5399 also prevented vasoregression by reducing pericyte loss and suppressed microglial activation as well as the expression of immune-response cytokines. Mechanistically, the activation of Notch signaling by Dll4 maintained a quiescent microglial cell phenotype, i.e. reduced both the surface presentation of CD74 and microglial migration. In contrast, in retinal explants, 19,20-DHDP and Notch inhibition both promoted CD74 expression and reversed the Dll4-induced decrease in migration. Conclusions: Our data indicate that 19,20-DHDP-induced alterations in Notch-signaling result in microglia activation and pericyte loss and contribute to retinal vasoregression in polycystic kidney disease. Moreover, sEH inhibition can ameliorate vasoregression through reduced activity of inflammatory microglia. sEH inhibition is thus an attractive new therapeutic approach to prevent retinal vasoregression.
Collapse
|
10
|
Arboviruses and Muscle Disorders: From Disease to Cell Biology. Viruses 2020; 12:v12060616. [PMID: 32516914 PMCID: PMC7354517 DOI: 10.3390/v12060616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 12/23/2022] Open
Abstract
Infections due to arboviruses (arthropod-borne viruses) have dramatically increased worldwide during the last few years. In humans, symptoms associated with acute infection of most arboviruses are often described as "dengue-like syndrome", including fever, rash, conjunctivitis, arthralgia, and muscular symptoms such as myalgia, myositis, or rhabdomyolysis. In some cases, muscular symptoms may persist over months, especially following flavivirus and alphavirus infections. However, in humans the cellular targets of infection in muscle have been rarely identified. Animal models provide insights to elucidate pathological mechanisms through studying viral tropism, viral-induced inflammation, or potential viral persistence in the muscle compartment. The tropism of arboviruses for muscle cells as well as the viral-induced cytopathic effect and cellular alterations can be confirmed in vitro using cellular models. This review describes the link between muscle alterations and arbovirus infection, and the underlying mechanisms.
Collapse
|
11
|
Guerrero-Arguero I, Høj TR, Tass ES, Berges BK, Robison RA. A comparison of Chikungunya virus infection, progression, and cytokine profiles in human PMA-differentiated U937 and murine RAW264.7 monocyte derived macrophages. PLoS One 2020; 15:e0230328. [PMID: 32163514 PMCID: PMC7067478 DOI: 10.1371/journal.pone.0230328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/27/2020] [Indexed: 11/29/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes rash, fever and severe polyarthritis that can last for years in humans. Murine models display inflammation and macrophage infiltration only in the adjacent tissues at the site of inoculation, showing no signs of systemic polyarthritis. Monocyte-derived macrophages are one cell type suspected to contribute to a systemic CHIKV infection. The purpose of this study was to analyze differences in CHIKV infection in two different cell lines, human U937 and murine RAW264.7 monocyte derived macrophages. PMA-differentiated U937 and RAW264.7 macrophages were infected with CHIKV, and infectious virus production was measured by plaque assay and by reverse transcriptase quantitative PCR at various time points. Secreted cytokines in the supernatants were measured using cytometric bead arrays. Cytokine mRNA levels were also measured to supplement expression data. Here we show that CHIKV replicates more efficiently in human macrophages compared to murine macrophages. In addition, infected human macrophages produced around 10-fold higher levels of infectious virus when compared to murine macrophages. Cytokine induction by CHIKV infection differed between human and murine macrophages; IL-1, IL-6, IFN-γ, and TNF were significantly upregulated in human macrophages. This evidence suggests that CHIKV replicates more efficiently and induces a much greater pro-inflammatory cytokine profile in human macrophages, when compared to murine macrophages. This may shed light on the critical role that macrophages play in the CHIKV inflammatory response.
Collapse
Affiliation(s)
- Israel Guerrero-Arguero
- Department of Microbiology and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Taalin R. Høj
- Department of Microbiology and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, Utah, United States of America
| | - E. Shannon Tass
- Department of Statistics, College of Physical and Mathematical Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Bradford K. Berges
- Department of Microbiology and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Richard A. Robison
- Department of Microbiology and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, Utah, United States of America
| |
Collapse
|
12
|
Liu A, Li H, Qi X, Wang Q, Yang B, Wu T, Yan N, Li Y, Pan Q, Gao Y, Gao L, Liu C, Zhang Y, Cui H, Li K, Wang Y, Wang X. Macrophage Migration Inhibitory Factor Triggers Inflammatory Responses During Very Virulent Infectious Bursal Disease Virus Infection. Front Microbiol 2019; 10:2225. [PMID: 31632367 PMCID: PMC6779731 DOI: 10.3389/fmicb.2019.02225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/11/2019] [Indexed: 12/31/2022] Open
Abstract
Infectious bursal disease (IBD) is one of the main threats to the poultry industry worldwide. In China, very virulent IBD virus (vvIBDV) is the main prevalent virus strain, causing inflammation, immunosuppression, and high mortality in young chickens. To determine whether this acute inflammation can trigger lesions or even death in chickens, it is important to study the mechanism of vvIBDV pathogenicity. Thus, in the current study, we investigated the inflammation response, bursal lesions, and mortality in chickens caused by vvIBDV at different time points postinfection. Results showed an upregulation of proinflammatory cytokines, including interleukin-1β and interleukin-18, and macrophage infiltration in bursa in response to vvIBDV infection. High-throughput proteomic sequencing based on isobaric tags for relative and absolute quantitation showed that chicken macrophage migration inhibitory factor (chMIF) was upregulated uniquely in primary bursal cells infected with vvIBDV compared with infection by nonpathogenic attenuated IBDV. We confirmed that chMIF was upregulated by vvIBDV infection both in vivo and in vitro. Moreover, chMIF was extracellularly secreted by infected DT40 and primary bursal cells. Further experiments revealed that the secreted chMIF could induce migration of peripheral blood mononuclear cells and promote transcription of proinflammatory cytokines in chicken primary macrophages. Notably, these effects of chMIF could be reduced by using an MIF specific inhibitor. Thus, our study elucidates critical molecular determinants underlying vvIBDV-mediated initiation of acute inflammation, which might be pivotal to understand the mechanism of vvIBDV pathogenicity.
Collapse
Affiliation(s)
- Aijing Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hui Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaole Qi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qi Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Bo Yang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tiantian Wu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Nana Yan
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yue Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qing Pan
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yulong Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Li Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changjun Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yanping Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyu Cui
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Kai Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yongqiang Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaomei Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
13
|
A bioinformatics investigation into the pharmacological mechanisms of the effect of Fufang Danshen on pain based on methodologies of network pharmacology. Sci Rep 2019; 9:5913. [PMID: 30976033 PMCID: PMC6459854 DOI: 10.1038/s41598-019-40694-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/20/2018] [Indexed: 12/31/2022] Open
Abstract
Fufang Danshen (FFDS), a Chinese medicine formula widely used in the clinic, has proven therapeutic effects on pain relief. However, the mechanisms of these effects have not been elucidated. Here, we performed a systematic analysis to discover the mechanisms of FFDS in attenuating pain to gain a better understanding of FFDS in the treatment of other diseases accompanied by pain. Relevance analysis showed that Salvia miltiorrhizae was the best studied herb in FFDS. Most compounds in FFDS have good bioavailability, and we collected 223 targets for 35 compounds in FFDS. These targets were significantly enriched in many pathways related to pain and can be classified as signal transduction, endocrine system, nervous system and lipid metabolism. We compared Salvia miltiorrhizae and Panax notoginseng and found that they can significantly affect different pathways. Moreover, ten pain disease proteins and 45 therapeutic targets can be directly targeted by FFDS. All 45 therapeutic targets have direct or indirect connections with pain disease proteins. Forty-six pain disease proteins can be indirectly affected by FFDS, especially through heat shock cognate 71 kDa protein (HSPA8) and transcription factor AP-1 (JUN). A total of 109 targets of FFDS were identified as significant targets.
Collapse
|
14
|
Protective immunity by an engineered DNA vaccine for Mayaro virus. PLoS Negl Trop Dis 2019; 13:e0007042. [PMID: 30730897 PMCID: PMC6366747 DOI: 10.1371/journal.pntd.0007042] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 11/30/2018] [Indexed: 01/07/2023] Open
Abstract
Mayaro virus (MAYV) of the genus alphavirus is a mosquito-transmitted emerging infectious disease that causes an acute febrile illness, rash, headaches, and nausea that may turn into incapacitating, persistent arthralgias in some victims. Since its discovery in Trinidad in 1954, cases of MAYV infection have largely been confined there and to the northern countries of South America, but recently, MAYV cases have been reported in some island nations in the Caribbean Sea. Accompanying these reports is evidence that new vectors, including Aedes spp. mosquitos, recently implicated in the global spread of Zika and chikungunya viruses, are competent for MAYV transmission, which, if true, could facilitate the spread of MAYV beyond its current range. Despite its status as an emerging virus, there are no licensed vaccines to prevent MAYV infection nor therapeutics to treat it. Here, we describe the development and testing of a novel DNA vaccine, scMAYV-E, that encodes a synthetically-designed consensus MAYV envelope sequence. In vivo electroporation-enhanced immunization of mice with this vaccine induced potent humoral responses including neutralizing antibodies as well as robust T-cell responses to multiple epitopes in the MAYV envelope. Importantly, these scMAYV-E-induced immune responses protected susceptible mice from morbidity and mortality following a MAYV challenge.
Collapse
|
15
|
Trifone C, Salido J, Ruiz MJ, Leng L, Quiroga MF, Salomón H, Bucala R, Ghiglione Y, Turk G. Interaction Between Macrophage Migration Inhibitory Factor and CD74 in Human Immunodeficiency Virus Type I Infected Primary Monocyte-Derived Macrophages Triggers the Production of Proinflammatory Mediators and Enhances Infection of Unactivated CD4 + T Cells. Front Immunol 2018; 9:1494. [PMID: 29997630 PMCID: PMC6030361 DOI: 10.3389/fimmu.2018.01494] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 06/15/2018] [Indexed: 11/13/2022] Open
Abstract
Understanding the mechanisms of human immunodeficiency virus type I (HIV-1) pathogenesis would facilitate the identification of new therapeutic targets to control the infection in face of current antiretroviral therapy limitations. CD74 membrane expression is upregulated in HIV-1-infected cells and the magnitude of its modulation correlates with immune hyperactivation in HIV-infected individuals. In addition, plasma level of the CD74 activating ligand macrophage migration inhibitory factor (MIF) is increased in infected subjects. However, the role played by MIF/CD74 interaction in HIV pathogenesis remains unexplored. Here, we studied the effect of MIF/CD74 interaction on primary HIV-infected monocyte-derived macrophages (MDMs) and its implications for HIV immunopathogenesis. Confocal immunofluorescence analysis of CD74 and CD44 (the MIF signal transduction co-receptor) expression indicated that both molecules colocalized at the plasma membrane specifically in wild-type HIV-infected MDMs. Treatment of infected MDMs with MIF resulted in an MIF-dependent increase in TLR4 expression. Similarly, there was a dose-dependent increase in the production of IL-6, IL-8, TNFα, IL-1β, and sICAM compared to the no-MIF condition, specifically from infected MDMs. Importantly, the effect observed on IL-6, IL-8, TNFα, and IL-1β was abrogated by impeding MIF interaction with CD74. Moreover, the use of a neutralizing αMIF antibody or an MIF antagonist reverted these effects, supporting the specificity of the results. Treatment of unactivated CD4+ T-cells with MIF-treated HIV-infected MDM-derived culture supernatants led to enhanced permissiveness to HIV-1 infection. This effect was lost when CD4+ T-cells were treated with supernatants derived from infected MDMs in which CD74/MIF interaction had been blocked. Moreover, the enhanced permissiveness of unactivated CD4+ T-cells was recapitulated by exogenous addition of IL-6, IL-8, IL-1β, and TNFα, or abrogated by neutralizing its biological activity using specific antibodies. Results obtained with BAL and NL4-3 HIV laboratory strains were reproduced using transmitted/founder primary isolates. This evidence indicated that MIF/CD74 interaction resulted in a higher production of proinflammatory cytokines from HIV-infected MDMs. This caused the generation of an inflammatory microenvironment which predisposed unactivated CD4+ T-cells to HIV-1 infection, which might contribute to viral spreading and reservoir seeding. Overall, these results support a novel role of the MIF/CD74 axis in HIV pathogenesis that deserves further investigation.
Collapse
Affiliation(s)
- César Trifone
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Jimena Salido
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - María Julia Ruiz
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Lin Leng
- Department of Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - María Florencia Quiroga
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Horacio Salomón
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Richard Bucala
- Department of Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Yanina Ghiglione
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Gabriela Turk
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| |
Collapse
|
16
|
Gunn BM, Jones JE, Shabman RS, Whitmore AC, Sarkar S, Blevins LK, Morrison TE, Heise MT. Ross River virus envelope glycans contribute to disease through activation of the host complement system. Virology 2018; 515:250-260. [PMID: 29324290 PMCID: PMC7119116 DOI: 10.1016/j.virol.2017.12.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/24/2017] [Accepted: 12/20/2017] [Indexed: 11/30/2022]
Abstract
Mannose binding lectin (MBL) generally plays a protective role during viral infection, yet MBL-mediated complement activation promotes Ross River virus (RRV)-induced inflammatory tissue destruction, contributing to arthritis and myositis. As MBL binds to carbohydrates, we hypothesized that N-linked glycans on the RRV envelope glycoproteins act as ligands for MBL. Using a panel of RRV mutants lacking the envelope N-linked glycans, we found that MBL deposition onto infected cells was dependent on the E2 glycans. Moreover, the glycan-deficient viruses exhibited reduced disease and tissue damage in a mouse model of RRV-induced myositis compared to wild-type RRV, despite similar viral load and inflammatory infiltrates within the skeletal muscle. Instead, the reduced disease induced by glycan-deficient viruses was linked to decreased MBL deposition and complement activation within inflamed tissues. These results demonstrate that the viral N-linked glycans promote MBL deposition and complement activation onto RRV-infected cells, contributing to the development of RRV-induced myositis. Mannose-binding lectin promotes induction of complement-mediated arthritis and myositis during Ross River virus infection. Mannose Binding Lectin deposition onto Ross River virus-infected cells is dependent on glycans on the viral E2 glycoprotein. Viral mutants lacking E2 glycans exhibit reduced disease in a model of Ross River virus-induced arthritis and myositis. Ross River virus E2 glycan mutants cause reduced Mannose Binding Lectin deposition and complement activation.
Collapse
Affiliation(s)
- Bronwyn M Gunn
- Dept. of Microbiology and Immunology, University of North Carolina at Chapel Hill, 160 Dental Circle, 9024 Burnett Womack, Chapel Hill, NC 27599, USA.
| | - Jennifer E Jones
- Dept. of Microbiology and Immunology, University of North Carolina at Chapel Hill, 160 Dental Circle, 9024 Burnett Womack, Chapel Hill, NC 27599, USA.
| | - Reed S Shabman
- Dept. of Microbiology and Immunology, University of North Carolina at Chapel Hill, 160 Dental Circle, 9024 Burnett Womack, Chapel Hill, NC 27599, USA
| | - Alan C Whitmore
- Dept. of Genetics, University of North Carolina at Chapel Hill, 160 Dental Circle, 9024 Burnett Womack, Chapel Hill, NC 27599, USA.
| | - Sanjay Sarkar
- Dept. of Genetics, University of North Carolina at Chapel Hill, 160 Dental Circle, 9024 Burnett Womack, Chapel Hill, NC 27599, USA.
| | - Lance K Blevins
- Dept. of Genetics, University of North Carolina at Chapel Hill, 160 Dental Circle, 9024 Burnett Womack, Chapel Hill, NC 27599, USA
| | - Thomas E Morrison
- Dept. of Microbiology, University of Colorado School of Medicine, 12800 E. 19th Ave., RC1N 9119, Mail Stop 8333, Aurora, CO 80045, USA.
| | - Mark T Heise
- Dept. of Microbiology and Immunology, University of North Carolina at Chapel Hill, 160 Dental Circle, 9024 Burnett Womack, Chapel Hill, NC 27599, USA; Dept. of Genetics, University of North Carolina at Chapel Hill, 160 Dental Circle, 9024 Burnett Womack, Chapel Hill, NC 27599, USA.
| |
Collapse
|
17
|
Haist KC, Burrack KS, Davenport BJ, Morrison TE. Inflammatory monocytes mediate control of acute alphavirus infection in mice. PLoS Pathog 2017; 13:e1006748. [PMID: 29244871 PMCID: PMC5747464 DOI: 10.1371/journal.ppat.1006748] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/29/2017] [Accepted: 11/13/2017] [Indexed: 12/13/2022] Open
Abstract
Chikungunya virus (CHIKV) and Ross River virus (RRV) are mosquito-transmitted alphaviruses that cause debilitating acute and chronic musculoskeletal disease. Monocytes are implicated in the pathogenesis of these infections; however, their specific roles are not well defined. To investigate the role of inflammatory Ly6ChiCCR2+ monocytes in alphavirus pathogenesis, we used CCR2-DTR transgenic mice, enabling depletion of these cells by administration of diptheria toxin (DT). DT-treated CCR2-DTR mice displayed more severe disease following CHIKV and RRV infection and had fewer Ly6Chi monocytes and NK cells in circulation and muscle tissue compared with DT-treated WT mice. Furthermore, depletion of CCR2+ or Gr1+ cells, but not NK cells or neutrophils alone, restored virulence and increased viral loads in mice infected with an RRV strain encoding attenuating mutations in nsP1 to levels detected in monocyte-depleted mice infected with fully virulent RRV. Disease severity and viral loads also were increased in DT-treated CCR2-DTR+;Rag1-/- mice infected with the nsP1 mutant virus, confirming that these effects are independent of adaptive immunity. Monocytes and macrophages sorted from muscle tissue of RRV-infected mice were viral RNA positive and had elevated expression of Irf7, and co-culture of Ly6Chi monocytes with RRV-infected cells resulted in induction of type I IFN gene expression in monocytes that was Irf3;Irf7 and Mavs-dependent. Consistent with these data, viral loads of the attenuated nsP1 mutant virus were equivalent to those of WT RRV in Mavs-/- mice. Finally, reconstitution of Irf3-/-;Irf7-/- mice with CCR2-DTR bone marrow rescued mice from severe infection, and this effect was reversed by depletion of CCR2+ cells, indicating that CCR2+ hematopoietic cells are capable of inducing an antiviral response. Collectively, these data suggest that MAVS-dependent production of type I IFN by monocytes is critical for control of acute alphavirus infection and that determinants in nsP1, the viral RNA capping protein, counteract this response. Mosquito-transmitted arthritogenic alphaviruses, such as chikungunya virus (CHIKV), Mayaro virus, and Ross River virus (RRV), cause large disease outbreaks. Infection with these viruses results in severe pain and inflammation in joints, tendons, and muscles, likely due to direct viral infection of these tissues, that can persist for years. Monocytes and macrophages have been implicated in the damaging effects of the inflammation, however, the role of these cell types in control of alphaviral infection are poorly understood. Using mouse models and an attenuated RRV with mutations in the nsP1 gene, we found that monocytes are critical to control acute infection and to reduce disease severity. Furthermore, we found that monocytes respond to virus-infected cells by increasing expression levels of type I interferon, a critical antiviral defense system. The induction of type I interferon in monocytes was dependent on MAVS, a signaling protein downstream of cytosolic viral RNA sensor proteins. Similar to monocytes, MAVS was required to control infection with the nsP1 mutant RRV. These studies suggest that monocytes control acute alphavirus infection and that determinants in nsP1, the viral RNA capping protein, counteract this response. Thus, therapeutic strategies targeting these cells for the treatment of these viral inflammatory diseases should do so without compromising their role in innate immunity.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/deficiency
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/immunology
- Alphavirus Infections/immunology
- Alphavirus Infections/virology
- Animals
- Antigens, Ly/metabolism
- Chikungunya virus/immunology
- Chikungunya virus/pathogenicity
- Diphtheria Toxin/pharmacology
- Heparin-binding EGF-like Growth Factor/genetics
- Heparin-binding EGF-like Growth Factor/immunology
- Humans
- Inflammation/virology
- Interferon Regulatory Factor-3/deficiency
- Interferon Regulatory Factor-3/genetics
- Interferon Regulatory Factor-3/immunology
- Interferon Regulatory Factor-7/deficiency
- Interferon Regulatory Factor-7/genetics
- Interferon Regulatory Factor-7/immunology
- Interferon Type I/biosynthesis
- Interferon Type I/genetics
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Monocytes/drug effects
- Monocytes/immunology
- Monocytes/virology
- Receptors, CCR2/genetics
- Receptors, CCR2/metabolism
- Ross River virus/genetics
- Ross River virus/immunology
- Ross River virus/pathogenicity
- Viral Load
- Virulence/genetics
- Virulence/immunology
Collapse
Affiliation(s)
- Kelsey C. Haist
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Kristina S. Burrack
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Bennett J. Davenport
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Thomas E. Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
18
|
Collin R, St-Pierre C, Guilbault L, Mullins-Dansereau V, Policheni A, Guimont-Desrochers F, Pelletier AN, Gray DH, Drobetsky E, Perreault C, Hillhouse EE, Lesage S. An Unbiased Linkage Approach Reveals That the p53 Pathway Is Coupled to NK Cell Maturation. THE JOURNAL OF IMMUNOLOGY 2017; 199:1490-1504. [PMID: 28710252 DOI: 10.4049/jimmunol.1600789] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/18/2017] [Indexed: 12/23/2022]
Abstract
Natural killer cells constitute potent innate lymphoid cells that play a major role in both tumor immunosurveillance and viral clearance via their effector functions. A four-stage model of NK cell functional maturation has been established according to the expression of CD11b and CD27, separating mature NK (mNK) cells into distinct populations that exhibit specific phenotypic and functional properties. To identify genetic factors involved in the regulation of NK cell functional maturation, we performed a linkage analysis on F2 (B6.Rag1-/- × NOD.Rag1-/- intercross) mice. We identified six loci on chromosomes 2, 4, 7, 10, 11, and 18 that were linked to one or more mNK cell subsets. Subsequently, we performed an in silico analysis exploiting mNK cell subset microarray data, highlighting various genes and microRNAs as potential regulators of the functional maturation of NK cells. Together, the combination of our unbiased genetic linkage study and the in silico analysis positions genes known to affect NK cell biology along the specific stages of NK cell functional maturation. Moreover, this approach allowed us to uncover a novel candidate gene in the regulation of NK cell maturation, namely Trp53 Using mice deficient for Trp53, we confirm that this tumor suppressor regulates NK cell functional maturation. Additional candidate genes revealed in this study may eventually serve as targets for the modulation of NK cell functional maturation to potentiate both tumor immunosurveillance and viral clearance.
Collapse
Affiliation(s)
- Roxanne Collin
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Charles St-Pierre
- Institut de Recherche en Immunologie et en Cancérologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada.,Département de Médecine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Lorie Guilbault
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Victor Mullins-Dansereau
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Antonia Policheni
- Molecular Genetics of Cancer Division, Immunology Division, Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia; and.,Department of Medical Biology, Melbourne University, Parkville, Victoria 3052, Australia
| | - Fanny Guimont-Desrochers
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Adam-Nicolas Pelletier
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Daniel H Gray
- Molecular Genetics of Cancer Division, Immunology Division, Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia; and.,Department of Medical Biology, Melbourne University, Parkville, Victoria 3052, Australia
| | - Elliot Drobetsky
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada
| | - Claude Perreault
- Institut de Recherche en Immunologie et en Cancérologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada.,Département de Médecine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Erin E Hillhouse
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada;
| | - Sylvie Lesage
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada; .,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
19
|
MIF allele-dependent regulation of the MIF coreceptor CD44 and role in rheumatoid arthritis. Proc Natl Acad Sci U S A 2016; 113:E7917-E7926. [PMID: 27872288 DOI: 10.1073/pnas.1612717113] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Fibroblast-like synoviocytes mediate joint destruction in rheumatoid arthritis and exhibit sustained proinflammatory and invasive properties. CD44 is a polymorphic transmembrane protein with defined roles in matrix interaction and tumor invasion that is also a signaling coreceptor for macrophage migration inhibitory factor (MIF), which engages cell surface CD74. High-expression MIF alleles (rs5844572) are associated with rheumatoid joint erosion, but whether MIF signaling through the CD74/CD44 receptor complex promotes upstream autoimmune responses or contributes directly to synovial joint destruction is unknown. We report here the functional regulation of CD44 by an autocrine pathway in synovial fibroblasts that is driven by high-expression MIF alleles to up-regulate an inflammatory and invasive phenotype. MIF increases CD44 expression, promotes its recruitment into a functional signal transduction complex, and stimulates alternative exon splicing, leading to expression of the CD44v3-v6 isoforms associated with oncogenic invasion. CD44 recruitment into the MIF receptor complex, downstream MAPK and RhoA signaling, and invasive phenotype require MIF and CD74 and are reduced by MIF pathway antagonists. These data support a functional role for high-MIF expression alleles and the two-component CD74/CD44 MIF receptor in rheumatoid arthritis and suggest that pharmacologic inhibition of this pathway may offer a specific means to interfere with progressive joint destruction.
Collapse
|
20
|
Straub RH, Cutolo M. Glucocorticoids and chronic inflammation. Rheumatology (Oxford) 2016; 55:ii6-ii14. [DOI: 10.1093/rheumatology/kew348] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 08/23/2016] [Indexed: 12/20/2022] Open
|
21
|
Benedek G, Vandenbark AA, Alkayed NJ, Offner H. Partial MHC class II constructs as novel immunomodulatory therapy for stroke. Neurochem Int 2016; 107:138-147. [PMID: 27773790 DOI: 10.1016/j.neuint.2016.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/10/2016] [Accepted: 10/17/2016] [Indexed: 02/06/2023]
Abstract
The worldwide prevalence of stroke continues to rise despite recent successes in treating acute ischemic stroke. With limited patient eligibility and associated risk of tPA and mechanical thrombectomy, new preventive and therapeutic modalities are needed to stave the rising wave of stroke. Inflammation plays a key role in brain damage after cerebral ischemia, and novel therapies that target pro-inflammatory cells have demonstrated promise for treatment for stroke. Partial MHC class II constructs have been shown to prevent and/or reverse clinical signs of various inflammatory diseases such as experimental autoimmune encephalomyelitis, collagen-induced arthritis and experimental autoimmune uveitis, by reducing the number and frequency of activated cells in the damaged CNS. Herein, we review the use of partial MHC class II constructs as a novel treatment for ischemic stroke. These constructs have been shown to reduce infarct volume and neurological deficit in various cerebral ischemia models in young adult and aging male and female mice. In addition, partial MHC class II constructs were shown to reverse stroke-associated splenic atrophy and promote a protective M2 macrophage/microglia phenotype in the CNS which contributes to tissue repair and recovery after stroke. By addressing remaining STAIR criteria, such as efficacy in large animal models of stroke, these constructs will be prime candidates for clinical trials of acute ischemic stroke.
Collapse
Affiliation(s)
- Gil Benedek
- Neuroimmunology Research, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd, Portland, OR, 97239, USA; Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Arthur A Vandenbark
- Neuroimmunology Research, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd, Portland, OR, 97239, USA; Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA; Department of Molecular Microbiology & Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Nabil J Alkayed
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Halina Offner
- Neuroimmunology Research, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd, Portland, OR, 97239, USA; Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA; Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| |
Collapse
|
22
|
Adouchief S, Smura T, Vapalahti O, Hepojoki J. Mapping of human B-cell epitopes of Sindbis virus. J Gen Virol 2016; 97:2243-2254. [PMID: 27339177 DOI: 10.1099/jgv.0.000531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mosquito-transmitted Sindbis virus (SINV) causes fever, skin lesions and musculoskeletal symptoms if transmitted to man. SINV is the prototype virus of genus Alphavirus, which includes other arthritogenic viruses such as chikungunya virus (CHIKV) and Ross River virus (RRV) that cause large epidemics with a considerable public health burden. Until now the human B-cell epitopes have been studied for CHIKV and RRV, but not for SINV. To identify the B-cell epitopes in SINV-infection, we synthetised a library of linear 18-mer peptides covering the structural polyprotein of SINV, and probed it with SINV IgG-positive and IgG-negative serum pools. By comparing the binding profiles of the pools, we identified 15 peptides that were strongly reactive only with the SINV IgG-positive pools. We then utilized alanine scanning and individual (n=22) patient sera to further narrow the number of common B-cell epitopes to six. These epitopes locate to the capsid, E2, E1 and to a region in PE2 (uncleaved E3-E2), which may only be present in immature virions. By sequence comparison, we observed that one of the capsid protein epitopes shares six identical amino acids with macrophage migration inhibitory factor (MIF) receptor, which is linked to inflammatory diseases and to molecular pathology of alphaviral arthritides. Our results add to the current understanding on SINV disease and raise questions of a potential role of uncleaved PE2 and the MIF receptor (CD74) mimotope in human SINV infection.
Collapse
Affiliation(s)
- Samuel Adouchief
- Department of Virology, Faculty of Medicine, Medicum, University of Helsinki, Helsinki, Finland
| | - Teemu Smura
- Department of Virology, Faculty of Medicine, Medicum, University of Helsinki, Helsinki, Finland
| | - Olli Vapalahti
- Department of Virology, Faculty of Medicine, Medicum, University of Helsinki, Helsinki, Finland.,Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.,Department of Virology and Immunology, Hospital District of Helsinki and Uusimaa (HUSLAB), Helsinki, Finland
| | - Jussi Hepojoki
- Department of Virology, Faculty of Medicine, Medicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
23
|
David L, Gokhale A, Jois S, Johnson A, Behrens M, Luthra H, Taneja V. CD74/DQA1 dimers predispose to the development of arthritis in humanized mice. Immunology 2015; 147:204-11. [PMID: 26524976 DOI: 10.1111/imm.12551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/12/2015] [Accepted: 10/23/2015] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis (RA) is associated with the presence of certain HLA class II genes. However, why some individuals carrying RA non-associated alleles develop arthritis is still unexplained. The trans-heterodimer between two RA non-associated HLA genes can render susceptibility to develop arthritis in humanized mice, DQA1*0103/DQB1*0604, suggesting a role for DQ α chains in pathogenesis. In this study we determined the role of DQA1 in arthritis by using mice expressing DQA1*0103 and lacking endogenous class II molecules. Proximity ligation assay showed that DQA1*0103 is expressed on the cell surface as a dimer with CD74. Upon immunization with type II collagen, DQA1*0103 mice generated an antigen-specific cellular and humoral response and developed severe arthritis. Structural modelling suggests that DQA1*0103/CD74 form a pocket with similarity to the antigen binding pocket. DQA1*0103 mice present type II collagen-derived peptides that are not presented by an arthritis-resistant DQA1*0103/DQB1*0601 allele, suggesting that the DQA1*0103/CD74 dimer may result in presentation of unique antigens and susceptibility to develop arthritis. The present data provide a possible explanation by which the DQA1 molecule contributes to susceptibility to develop arthritis.
Collapse
Affiliation(s)
- Luckey David
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Ameya Gokhale
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Seetharama Jois
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Aaron Johnson
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | | | - Harvinder Luthra
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Veena Taneja
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.,Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
24
|
Dhama K, Kapoor S, Pawaiya RVS, Chakraborty S, Tiwari R, Verma AK. Ross River Virus (RRV) infection in horses and humans: a review. Pak J Biol Sci 2015; 17:768-79. [PMID: 26035950 DOI: 10.3923/pjbs.2014.768.779] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A fascinating and important arbovirus is Ross River Virus (RRV) which is endemic and epizootic in nature in certain parts of the world. RRV is a member of the genus Alphavirus within the Semliki Forest complex of the family Togaviridae, which also includes the Getah virus. The virus is responsible for causing disease both in humans as well as horses. Mosquito species (Aedes camptorhynchus and Aedes vigilax; Culex annulirostris) are the most important vector for this virus. In places of low temperature as well as low rainfall or where there is lack of habitat of mosquito there is also limitation in the transmission of the virus. Such probability is higher especially in temperate regions bordering endemic regions having sub-tropical climate. There is involvement of articular as well as non-articular cells in the replication of RRV. Levels of pro-inflammatory factors viz., tumor necrosis factor-alpha (TNF-α); interferon-gamma (IFN-γ); and macrophage chemo-attractant protein-1 (MAC-1) during disease pathogenesis have been found to be reduced. Reverse transcription-polymerase chain reaction (RT-PCR) is the most advanced molecular diagnostic tool along with epitope-blocking enzyme-linked immunosorbent assay (ELISA) for detecting RRV infection. Treatment for RRV infection is only supportive. Vaccination is not a fruitful approach. Precise data collection will help the researchers to understand the RRV disease dynamics and thereby designing effective prevention and control strategy. Advances in diagnosis, vaccine development and emerging/novel therapeutic regimens need to be explored to their full potential to tackle RRV infection and the disease it causes.
Collapse
|
25
|
Pentosan Polysulfate: a Novel Glycosaminoglycan-Like Molecule for Effective Treatment of Alphavirus-Induced Cartilage Destruction and Inflammatory Disease. J Virol 2015; 89:8063-76. [PMID: 26018160 DOI: 10.1128/jvi.00224-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 05/19/2015] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Arthritogenic alphaviruses such as Ross River virus (RRV) and chikungunya virus (CHIKV) cause large-scale epidemics of severe musculoskeletal disease and have been progressively expanding their global distribution. Since its introduction in July 2014, CHIKV now circulates in the United States. The hallmark of alphavirus disease is crippling pain and inflammation of the joints, a similar immunopathology to rheumatoid arthritis. The use of glycans as novel therapeutics is an area of research that has increased in recent years. Here, we describe the promising therapeutic potential of the glycosaminoglycan (GAG)-like molecule pentosan polysulfate (PPS) to alleviate virus-induced arthritis. Mouse models of RRV and CHIKV disease were used to characterize the extent of cartilage damage in infection and investigate the potential of PPS to treat disease. This was assessed using histological analysis, real-time PCR, and fluorescence-activated cell sorting (FACS). Alphaviral infection resulted in cartilage destruction, the severity of which was alleviated by PPS therapy during RRV and CHIKV clinical disease. The reduction in cartilage damage corresponded with a significant reduction in immune infiltrates. Using multiplex bead arrays, PPS treatment was found to have significantly increased the anti-inflammatory cytokine interleukin-10 and reduced proinflammatory cytokines, typically correlated with disease severity. Furthermore, we reveal that the severe RRV-induced joint pathology, including thinning of articular cartilage and loss of proteoglycans in the cartilage matrix, was diminished with treatment. PPS is a promising new therapy for alphavirus-induced arthritis, acting to preserve the cartilage matrix, which is damaged during alphavirus infection. Overall, the data demonstrate the potential of glycotherapeutics as a new class of treatment for infectious arthritis. IMPORTANCE The hallmark of alphavirus disease is crippling pain and joint arthritis, which often has an extended duration. In the past year, CHIKV has expanded into the Americas, with approximately 1 million cases reported to date, whereas RRV continues to circulate in the South Pacific. Currently, there is no licensed specific treatment for alphavirus disease, and the increasing spread of infection highlights an urgent need for therapeutic intervention strategies. Pentosan polysulfate (PPS) is a glycan derivative that is orally bioavailable, has few toxic side effects, and is currently licensed under the name Elmiron for the treatment of cystitis in the United States. Our findings show that RRV infection damages the articular cartilage, including a loss of proteoglycans within the joint. Furthermore, treatment with PPS reduced the severity of both RRV- and CHIKV-induced musculoskeletal disease, including a reduction in inflammation and joint swelling, suggesting that PPS is a promising candidate for drug repurposing for the treatment of alphavirus-induced arthritis.
Collapse
|
26
|
Foo SS, Chen W, Taylor A, Sheng KC, Yu X, Teng TS, Reading PC, Blanchard H, Garlanda C, Mantovani A, Ng LFP, Herrero LJ, Mahalingam S. Role of pentraxin 3 in shaping arthritogenic alphaviral disease: from enhanced viral replication to immunomodulation. PLoS Pathog 2015; 11:e1004649. [PMID: 25695775 PMCID: PMC4335073 DOI: 10.1371/journal.ppat.1004649] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 01/01/2015] [Indexed: 11/21/2022] Open
Abstract
The rising prevalence of arthritogenic alphavirus infections, including chikungunya virus (CHIKV) and Ross River virus (RRV), and the lack of antiviral treatments highlight the potential threat of a global alphavirus pandemic. The immune responses underlying alphavirus virulence remain enigmatic. We found that pentraxin 3 (PTX3) was highly expressed in CHIKV and RRV patients during acute disease. Overt expression of PTX3 in CHIKV patients was associated with increased viral load and disease severity. PTX3-deficient (PTX3(-/-)) mice acutely infected with RRV exhibited delayed disease progression and rapid recovery through diminished inflammatory responses and viral replication. Furthermore, binding of the N-terminal domain of PTX3 to RRV facilitated viral entry and replication. Thus, our study demonstrates the pivotal role of PTX3 in shaping alphavirus-triggered immunity and disease and provides new insights into alphavirus pathogenesis.
Collapse
Affiliation(s)
- Suan-Sin Foo
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Weiqiang Chen
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Adam Taylor
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Kuo-Ching Sheng
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Xing Yu
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Terk-Shin Teng
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Patrick C. Reading
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Helen Blanchard
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Cecilia Garlanda
- Humanitas Clinical and Research Center, Department of Inflammation and Immunology, Rozzano, Italy
| | - Alberto Mantovani
- Humanitas Clinical and Research Center, Department of Inflammation and Immunology, Rozzano, Italy
- Department of Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| | - Lisa F. P. Ng
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lara J. Herrero
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | | |
Collapse
|
27
|
Bindarit, an inhibitor of monocyte chemotactic protein synthesis, protects against bone loss induced by chikungunya virus infection. J Virol 2014; 89:581-93. [PMID: 25339772 DOI: 10.1128/jvi.02034-14] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED The recent global resurgence of arthritogenic alphaviruses, in particular chikungunya virus (CHIKV), highlights an urgent need for the development of therapeutic intervention strategies. While there has been significant progress in defining the pathophysiology of alphaviral disease, relatively little is known about the mechanisms involved in CHIKV-induced arthritis or potential therapeutic options to treat the severe arthritic symptoms associated with infection. Here, we used microcomputed tomographic (μCT) and histomorphometric analyses to provide previously undescribed evidence of reduced bone volume in the proximal tibial epiphysis of CHIKV-infected mice compared to the results for mock controls. This was associated with a significant increase in the receptor activator of nuclear factor-κB ligand/osteoprotegerin (RANKL/OPG) ratio in infected murine joints and in the serum of CHIKV patients. The expression levels of the monocyte chemoattractant proteins (MCPs), including MCP-1/CCL2, MCP-2/CCL8, and MCP-3/CCL7, were also highly elevated in joints of CHIKV-infected mice, accompanied by increased cellularity within the bone marrow in tibial epiphysis and ankle joints. Both this effect and CHIKV-induced bone loss were significantly reduced by treatment with the MCP inhibitor bindarit. Collectively, these findings demonstrate a unique role for MCPs in promoting CHIKV-induced osteoclastogenesis and bone loss during disease and suggest that inhibition of MCPs with bindarit may be an effective therapy for patients affected with alphavirus-induced bone loss. IMPORTANCE Arthritogenic alphaviruses, including chikungunya virus (CHIKV) and Ross River virus (RRV), cause worldwide outbreaks of polyarthritis, which can persist in patients for months following infection. Previous studies have shown that host proinflammatory soluble factors are associated with CHIKV disease severity. Furthermore, it is established that chemokine (C-C motif) ligand 2 (CCL2/MCP-1) is important in cellular recruitment and inducing bone-resorbing osteoclast (OC) formation. Here, we show that CHIKV replicates in bone and triggers bone loss by increasing the RANKL/OPG ratio. CHIKV infection results in MCP-induced cellular infiltration in the inflamed joints, and bone loss can be ameliorated by treatment with an MCP-inhibiting drug, bindarit. Taken together, our data reveal a previously undescribed role for MCPs in CHIKV-induced bone loss: one of recruiting monocytes/OC precursors to joint sites and thereby favoring a pro-osteoclastic microenvironment. This suggests that bindarit may be an effective treatment for alphavirus-induced bone loss and arthritis in humans.
Collapse
|