1
|
Zhu J, Lin Y, Li G, He Y, Su Z, Tang Y, Zhang Y, Xu Q, Yao Z, Zhou H, Liu B, Cai X. Dual-targeted halofuginone hydrobromide nanocomplexes for promotion of macrophage repolarization and apoptosis of rheumatoid arthritis fibroblast-like synoviocytes in adjuvant-induced arthritis in rats. J Pharm Anal 2024; 14:100981. [PMID: 39703571 PMCID: PMC11656085 DOI: 10.1016/j.jpha.2024.100981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 12/21/2024] Open
Abstract
Rheumatoid arthritis (RA) is a prevalent autoimmune disease characterized by chronic inflammation and excessive proliferation of the synovium. Currently, treatment options focus on either reducing inflammation or inhibiting synovial hyperplasia. However, these modalities are unsatisfactory in achieving the desired therapeutic outcomes. Halofuginone hydrobromide (HF), an herbal active ingredient, has demonstrated pharmacological effects of both anti-inflammation and inhibition of synovial hyperplasia proliferation. However, HF's medical efficacy is limited due to its poor water solubility, short half-life (t 1/2), and non-target toxicity. In the current study, by using the advantages of nanotechnology, we presented a novel dual-targeted nanocomplex, termed HA-M@P@HF NPs, which consisted of a hyaluronic acid (HA)-modified hybrid membrane (M)-camouflaged poly lactic-co-glycolic acid (PLGA) nanosystem for HF delivery. These nanocomplexes not only overcame the limitations of HF but also achieved simultaneous targeting of inflammatory macrophages and human fibroblast-like synoviocytes-RA (HFLS-RA). In vivo experiments demonstrated that these nanocomplexes effectively suppressed immune-mediated inflammation and synovial hyperplasia, safeguarding against bone destruction in rats with adjuvant-induced arthritis (AIA). Remarkable anti-arthritic effects of these nanocomplexes were accomplished through promoting repolarization of M1-to-M2 macrophages and apoptosis of HFLS-RA, thereby offering a promising therapeutic strategy for RA.
Collapse
Affiliation(s)
- Junping Zhu
- Institute of Innovation and Applied Research in Chinese Medicine; Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ye Lin
- Institute of Innovation and Applied Research in Chinese Medicine; Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Gejing Li
- Institute of Innovation and Applied Research in Chinese Medicine; Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yini He
- Institute of Innovation and Applied Research in Chinese Medicine; Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Zhaoli Su
- Institute of Innovation and Applied Research in Chinese Medicine; Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yuanyuan Tang
- Institute of Innovation and Applied Research in Chinese Medicine; Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, China
- College of Biology, Hunan University, Changsha, 410082, China
| | - Ye Zhang
- Institute of Innovation and Applied Research in Chinese Medicine; Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Qian Xu
- Institute of Innovation and Applied Research in Chinese Medicine; Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Zhongliu Yao
- Institute of Innovation and Applied Research in Chinese Medicine; Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Hua Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, 410082, China
| | - Xiong Cai
- Institute of Innovation and Applied Research in Chinese Medicine; Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, China
| |
Collapse
|
2
|
Wu X, Sun Q, Li X, Jiang L, Chen L. Halofuginone Inhibits Osteoclastogenesis and Enhances Osteoblastogenesis by Regulating Th17/Treg Cell Balance in Multiple Myeloma Mice with Bone Lesions. Indian J Hematol Blood Transfus 2024; 40:407-414. [PMID: 39011260 PMCID: PMC11246324 DOI: 10.1007/s12288-024-01756-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/15/2024] [Indexed: 07/17/2024] Open
Abstract
Evidences shows that T helper 17 (Th17) and regulatory T (Treg) cells imbalance plays a critical role in bone lesions of MM patients. Therefore, regulating the Th17/Treg imbalance may be beneficial for bone lesions in MM. Ten MM mice complicated with bone lesions were established and divided into the halofuginone (HF) group and the PBS group. After treatment, tibia and fibula from both groups were scanned by micro-CT. Osteoclasts and osteoblasts were validated by histochemical staining and ELISA. Th17 and Treg cells were tested by flow cytometry. The correlations between Th17/Treg cell ratio and osteoclasts, osteoblasts and bone remodeling were analyzed using the Spearman relative analysis. After treatment, mice in the HF group had an increase in trabecular bone volume fraction and thickened cortex, but a decrease in trabecular separation compared to mice in the PBS group.Tartrate-resistant acid phosphase (TRAP) + osteoclasts and its biomarker TRACP5b in serum were reduced, while alkaline phosphatase (ALP) + osteoblasts and its biomarker N-terminal propeptide of type 1precollagen (P1NP) in serum were accreted in the HF group. Th17/Treg cell ratio in halofuginone-treated mice was 0.85 ± 0.05, and was significantly lower than that in PBS-treated mice, which was 1.51 ± 0.03. In addition, it showed that the Th17/Treg cell ratio was significantly and positively associated with osteoclasts, but was significantly and negatively associated with osteoblasts and bone remodeling. Halofuginone plays a critical role in the amelioration bone lesions in MM, as it can inhibit osteoclastogenesis and enhance osteoblastogenesis by regulating the Th17/Treg cell balance. Supplementary Information The online version contains supplementary material available at 10.1007/s12288-024-01756-4.
Collapse
Affiliation(s)
- Xiaofei Wu
- Department of Hematology, The Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430014 China
| | - Qiong Sun
- Department of Hematology, The Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430014 China
| | - Xiang Li
- Department of Hematology, The Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430014 China
| | - Lin Jiang
- Department of Hematology, The Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430014 China
| | - Li Chen
- Department of Hematology, The Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430014 China
| |
Collapse
|
3
|
Zuo R, Kong L, Pang W, Jiang S. Halofuginone-guided nano-local therapy: Nano-thermosensitive hydrogels for postoperative metastatic canine mammary carcinoma with scar removal. Int J Pharm X 2024; 7:100241. [PMID: 38572023 PMCID: PMC10987322 DOI: 10.1016/j.ijpx.2024.100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/06/2024] [Accepted: 03/24/2024] [Indexed: 04/05/2024] Open
Abstract
In female dogs, the highest morbidity and mortality rates cancer are the result of mammary adenocarcinoma, which presents with metastases in the lung. Other than early surgical removal, however, no special methods are available to treat mammary adenocarcinoma. Because human breast cancer and canine mammary carcinoma share clinical characteristics and heterogeneity, the canine model is a suitable spontaneous tumor model for breast cancer in humans. In this study, the physical swelling method was used to prepare halofuginone-loaded D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) polymer micelles nano-thermosensitive hydrogels (HTPM-gel). Furthermore, HTPM-gel was investigated via characterization, morphology, properties such as swelling experiment and in vitro release with reflecting its splendid nature. Moreover, HTPM-gel was further examined its capability to anti-proliferation, anti-migration, and anti-invasion. Ultimately, HTPM-gel was investigated for its in vivo anticancer activity in the post-operative metastatic and angiogenic canine mammary carcinoma. HTPM-gel presented spherical under transmission electron microscope (TEM) and represented grid structure under scanning electron microscope (SEM), with hydrodynamic diameter (HD) of 20.25 ± 2.5 nm and zeta potential (ZP) of 15.10 ± 1.82 mV. Additionally, HTPM-gel own excellent properties comprised of pH-dependent swelling behavior, sustained release behavior. To impede the migration, invasion, and proliferation of CMT-U27 cells, we tested the efficacy of HTPM-gel. Evaluation of in vivo anti-tumor efficacy demonstrates HTPM-gel exhibit a splendid anti-metastasis and anti-angiogenic ability, with exhibiting ideal biocompatibility. Notably, HTPM-gel also inhibited the scar formation in the healing process after surgery. In summary, HTPM-gel exhibited anti-metastasis and anti-angiogenic and scar repair features. According to the results of this study, HTPM-gel has encouraging clinical potential to treat tumors with multifunctional hydrogel.
Collapse
Affiliation(s)
- Runan Zuo
- Animal-derived food safety innovation team, College of Animal Science and Technology, Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui 230036, PR China
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, PR China
| | - Lingqing Kong
- Animal-derived food safety innovation team, College of Animal Science and Technology, Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Wanjun Pang
- Animal-derived food safety innovation team, College of Animal Science and Technology, Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Shanxiang Jiang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, PR China
| |
Collapse
|
4
|
Zhu J, Wei J, Lin Y, Tang Y, Su Z, Li L, Liu B, Cai X. Inhibition of IL-17 signaling in macrophages underlies the anti-arthritic effects of halofuginone hydrobromide: Network pharmacology, molecular docking, and experimental validation. BMC Complement Med Ther 2024; 24:105. [PMID: 38413973 PMCID: PMC10900594 DOI: 10.1186/s12906-024-04397-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/11/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a prevalent autoimmune disease marked by chronic synovitis as well as cartilage and bone destruction. Halofuginone hydrobromide (HF), a bioactive compound derived from the Chinese herbal plant Dichroa febrifuga Lour., has demonstrated substantial anti-arthritic effects in RA. Nevertheless, the molecular mechanisms responsible for the anti-RA effects of HF remain unclear. METHODS This study employed a combination of network pharmacology, molecular docking, and experimental validation to investigate potential targets of HF in RA. RESULTS Network pharmacology analyses identified 109 differentially expressed genes (DEGs) resulting from HF treatment in RA. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses unveiled a robust association between these DEGs and the IL-17 signaling pathway. Subsequently, a protein-protein interaction (PPI) network analysis revealed 10 core DEGs, that is, EGFR, MMP9, TLR4, ESR1, MMP2, PPARG, MAPK1, JAK2, STAT1, and MAPK8. Among them, MMP9 displayed the greatest binding energy for HF. In an in vitro assay, HF significantly inhibited the activity of inflammatory macrophages, and regulated the IL-17 signaling pathway by decreasing the levels of IL-17 C, p-NF-κB, and MMP9. CONCLUSION In summary, these findings suggest that HF has the potential to inhibit the activation of inflammatory macrophages through its regulation of the IL-17 signaling pathway, underscoring its potential in the suppression of immune-mediated inflammation in RA.
Collapse
Affiliation(s)
- Junping Zhu
- Department of Rheumatology, First Hospital, School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Jiaming Wei
- Department of Rheumatology, First Hospital, School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Ye Lin
- Department of Rheumatology, First Hospital, School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Yuanyuan Tang
- Department of Rheumatology, First Hospital, School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Zhaoli Su
- Department of Rheumatology, First Hospital, School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
- The Central Research Laboratory, Hunan Traditional Chinese Medical College, Zhuzhou, China
- Guangxi Provincial Key Laboratory of Preventive and Therapeutic Research in Prevalent Diseases in West Guangxi, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Liqing Li
- The Central Research Laboratory, Hunan Traditional Chinese Medical College, Zhuzhou, China.
- Guangxi Provincial Key Laboratory of Preventive and Therapeutic Research in Prevalent Diseases in West Guangxi, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China.
| | - Bin Liu
- College of Biology, Hunan University, Changsha, Hunan, 410082, China.
| | - Xiong Cai
- Department of Rheumatology, First Hospital, School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|
5
|
Jain PP, Zhao T, Xiong M, Song S, Lai N, Zheng Q, Chen J, Carr SG, Babicheva A, Izadi A, Rodriguez M, Rahimi S, Balistrieri F, Rahimi S, Simonson T, Valdez-Jasso D, Thistlethwaite PA, Shyy JYJ, Wang J, Makino A, Yuan JXJ. Halofuginone, a promising drug for treatment of pulmonary hypertension. Br J Pharmacol 2021; 178:3373-3394. [PMID: 33694155 PMCID: PMC9792225 DOI: 10.1111/bph.15442] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Halofuginone is a febrifugine derivative originally isolated from Chinese traditional herb Chang Shan that exhibits anti-hypertrophic, anti-fibrotic and anti-proliferative effects. We sought to investigate whether halofuginone induced pulmonary vasodilation and attenuates chronic hypoxia-induced pulmonary hypertension (HPH). EXPERIMENTAL APPROACH Patch-clamp experiments were conducted to examine the activity of voltage-dependent Ca2+ channels (VDCCs) in pulmonary artery smooth muscle cells (PASMCs). Digital fluorescence microscopy was used to measure intracellular Ca2+ concentration in PASMCs. Isolated perfused and ventilated mouse lungs were used to measure pulmonary artery pressure (PAP). Mice exposed to hypoxia (10% O2 ) for 4 weeks were used as model of HPH for in vivo experiments. KEY RESULTS Halofuginone increased voltage-gated K+ (Kv ) currents in PASMCs and K+ currents through KCNA5 channels in HEK cells transfected with KCNA5 gene. HF (0.03-1 μM) inhibited receptor-operated Ca2+ entry in HEK cells transfected with calcium-sensing receptor gene and attenuated store-operated Ca2+ entry in PASMCs. Acute (3-5 min) intrapulmonary application of halofuginone significantly and reversibly inhibited alveolar hypoxia-induced pulmonary vasoconstriction dose-dependently (0.1-10 μM). Intraperitoneal administration of halofuginone (0.3 mg·kg-1 , for 2 weeks) partly reversed established PH in mice. CONCLUSION AND IMPLICATIONS Halofuginone is a potent pulmonary vasodilator by activating Kv channels and blocking VDCC and receptor-operated and store-operated Ca2+ channels in PASMCs. The therapeutic effect of halofuginone on experimental PH is probably due to combination of its vasodilator effects, via inhibition of excitation-contraction coupling and anti-proliferative effects, via inhibition of the PI3K/Akt/mTOR signalling pathway.
Collapse
Affiliation(s)
- Pritesh P. Jain
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Tengteng Zhao
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Mingmei Xiong
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA,Department of Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | - Ning Lai
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA,State Key Laboratory of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiuyu Zheng
- Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, USA
| | - Jiyuan Chen
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA,State Key Laboratory of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | - Aleksandra Babicheva
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Amin Izadi
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Marisela Rodriguez
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Shamin Rahimi
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Francesca Balistrieri
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Shayan Rahimi
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Tatum Simonson
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Daniela Valdez-Jasso
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Patricia A. Thistlethwaite
- Division of Cardiothoracic Surgery, Department of Surgery, University of California, San Diego, La Jolla, California, USA
| | - John Y.-J. Shyy
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Jian Wang
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA,State Key Laboratory of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ayako Makino
- Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, USA
| | - Jason X.-J. Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
6
|
Yang X, Zhou F, Yuan P, Dou G, Liu X, Liu S, Wang X, Jin R, Dong Y, Zhou J, Lv Y, Deng Z, Liu S, Chen X, Han Y, Jin Y. T cell-depleting nanoparticles ameliorate bone loss by reducing activated T cells and regulating the Treg/Th17 balance. Bioact Mater 2021; 6:3150-3163. [PMID: 33778195 PMCID: PMC7970013 DOI: 10.1016/j.bioactmat.2021.02.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/07/2021] [Accepted: 02/23/2021] [Indexed: 12/21/2022] Open
Abstract
Estrogen deficiency is one of the most frequent causes of osteoporosis in postmenopausal women. Under chronic inflammatory conditions caused by estrogen deficiency, activated T cells contribute to elevated levels of proinflammatory cytokines, impaired osteogenic differentiation capabilities of bone marrow mesenchymal stem cells (BMMSCs), and disturbed regulatory T cell (Treg)/Th17 cell balance. However, therapeutic strategies that re-establish immune homeostasis in this disorder have not been well developed. Here, we produced T cell-depleting nanoparticles (TDNs) that ameliorated the osteopenia phenotype and rescued the osteogenic deficiency of BMMSCs in ovariectomized (OVX) mice. TDNs consist of monocyte chemotactic protein-1 (MCP-1)-encapsulated mesoporous silica nanoparticles as the core and Fas-ligand (FasL) as the corona. We showed that the delicate design of the TDNs enables rapid release of MCP-1 to recruit activated T cells and then induces their apoptosis through the conjugated FasL both in vitro and in vivo. Apoptotic signals recognized by macrophages help skew the Treg/Th17 cell balance and create an immune tolerant state, further attenuating the osteogenic deficiency of BMMSCs and the osteopenia phenotype. Mechanistically, we found that the therapeutic effects of TDNs were partially mediated by apoptotic T cell-derived extracellular vesicles (ApoEVs), which promoted macrophage transformation towards the M2 phenotype. These findings demonstrate that TDNs may represent a promising strategy for treating osteoporosis and other immune disorders. A delicate nanoparticle was prepared which can induce the apoptosis of activated T cells. The T cell-depleting nanoparticles establish an immune tolerance microenvironment and ameliorate bone loss in OVX mice. T cell-derived apoptotic extracellular vesicles participated in the amelioration of osteopenia.
Collapse
Affiliation(s)
- Xiaoshan Yang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Xijing Hospital of Digestive Diseases & State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Fuxing Zhou
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Pingyun Yuan
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiao Tong University, Xi'an, Shaanxi, 710049, China
| | - Geng Dou
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xuemei Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Siying Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xiangdong Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Ronghua Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yan Dong
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jun Zhou
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yajie Lv
- Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Zhihong Deng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xin Chen
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiao Tong University, Xi'an, Shaanxi, 710049, China
| | - Ying Han
- Xijing Hospital of Digestive Diseases & State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| |
Collapse
|
7
|
Demiroglu-Zergeroglu A, Turhal G, Topal H, Ceylan H, Donbaloglu F, Karadeniz Cerit K, Odongo RR. Anticarcinogenic effects of halofuginone on lung-derived cancer cells. Cell Biol Int 2020; 44:1934-1944. [PMID: 32437065 DOI: 10.1002/cbin.11399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Malignant mesothelioma is a rare but aggressive form of malignancy, which is difficult to diagnose and is resistant to current chemotherapeutic treatment options. Molecular techniques have been used to investigate the mechanisms of action and the beneficial therapeutic effects of halofuginone (HF) in several cancers but not malignant mesotheliomas. In this study, the antiproliferative and apoptotic effects of HF were investigated through its ability to deregulate EGFR downstream signalling cascade proteins in the pathologically aggressive malignant mesothelioma and non-small-cell lung cancer cells. We showed that administration of HF at nanomolar concentrations induced a dose-dependent reduction in the viability of cancer cells, made cell cycle arrest, inhibited proliferation of cancer cells via STAT3 and ERK1/2 pathways and triggered the apoptotic cascade via p38MAPK. We demonstrated that the apoptotic cell death mechanism was mediated by enhanced activation of caspase-3 and concomitant PARP cleavage, downregulation of Bcl-2 and upregulation of Bax in both malignant mesothelioma and lung cancer cells. In particular, we demonstrated that cancer cells were more sensitive to HF treatment than normal mesothelial cells. Taken together, this study suggests that HF exerts its anticancer effects in lung-derived cancers by targeting signal transduction pathways mainly through deregulation of ERK1/2, STAT3 and p38MAPK to reduce cancer cell viability, induce cell cycle arrest and apoptotic cell death. Thus, HF might be considered as a potential agent against malignant mesothelioma and/or lung cancer cells.
Collapse
Affiliation(s)
- Asuman Demiroglu-Zergeroglu
- Department of Molecular Biology & Genetics, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Gulseren Turhal
- Department of Molecular Biology & Genetics, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Halime Topal
- Department of Molecular Biology & Genetics, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Hurmuz Ceylan
- Department of Molecular Biology & Genetics, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Fadime Donbaloglu
- Department of Molecular Biology & Genetics, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Kivilcim Karadeniz Cerit
- Department of Pediatric Surgery, School of Medicine, Marmara University, Pendik, Istanbul, Turkey
| | - Ronald R Odongo
- Department of Molecular Biology & Genetics, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Turkey
| |
Collapse
|
8
|
Aminoacyl-tRNA synthetase inhibition activates a pathway that branches from the canonical amino acid response in mammalian cells. Proc Natl Acad Sci U S A 2020; 117:8900-8911. [PMID: 32253314 DOI: 10.1073/pnas.1913788117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Signaling pathways that sense amino acid abundance are integral to tissue homeostasis and cellular defense. Our laboratory has previously shown that halofuginone (HF) inhibits the prolyl-tRNA synthetase catalytic activity of glutamyl-prolyl-tRNA synthetase (EPRS), thereby activating the amino acid response (AAR). We now show that HF treatment selectively inhibits inflammatory responses in diverse cell types and that these therapeutic benefits occur in cells that lack GCN2, the signature effector of the AAR. Depletion of arginine, histidine, or lysine from cultured fibroblast-like synoviocytes recapitulates key aspects of HF treatment, without utilizing GCN2 or mammalian target of rapamycin complex 1 pathway signaling. Like HF, the threonyl-tRNA synthetase inhibitor borrelidin suppresses the induction of tissue remodeling and inflammatory mediators in cytokine-stimulated fibroblast-like synoviocytes without GCN2, but both aminoacyl-tRNA synthetase (aaRS) inhibitors are sensitive to the removal of GCN1. GCN1, an upstream component of the AAR pathway, binds to ribosomes and is required for GCN2 activation. These observations indicate that aaRS inhibitors, like HF, can modulate inflammatory response without the AAR/GCN2 signaling cassette, and that GCN1 has a role that is distinct from its activation of GCN2. We propose that GCN1 participates in a previously unrecognized amino acid sensor pathway that branches from the canonical AAR.
Collapse
|
9
|
Du HL, Zhai AD, Yu H. Synergistic effect of halofuginone and dexamethasone on LPS‑induced acute lung injury in type II alveolar epithelial cells and a rat model. Mol Med Rep 2019; 21:927-935. [PMID: 31974595 DOI: 10.3892/mmr.2019.10865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 11/09/2018] [Indexed: 11/09/2022] Open
Abstract
Acute lung injury (ALI) is characterized by neutrophilic infiltration, uncontrolled oxidative stress and inflammatory processes. Despite various therapeutic regimes having been performed, there remains no effective pharmacotherapy available to treat ALI. Halofuginone (HF), a ketone isolated from Dichroa febrifuga, exhibits significant anti‑inflammatory and antifibrotic effects. Dexamethasone (DEX), a synthetic glucocorticoid, has been routinely used as an adjuvant therapy in treating inflammatory diseases, including ALI. The present study aimed to investigate the effects of the combination of HF and DEX in the treatment of ALI. The present results suggested that the simultaneous administration of HF and DEX markedly decreased the level of pro‑inflammatory cytokines and increased the level of anti‑inflammatory cytokines, as assessed by western blot analysis. In addition, HF and DEX effectively decreased nuclear factor‑κB activity via suppressing the phosphorylation of P65 in lipopolysaccharide (LPS)‑induced human pulmonary alveolar epithelial cells (HPAEpiC) and lung tissues extracted from ALI rats, as determined by immunofluorescence. Furthermore, in vivo experiments demonstrated that the combination of HF and DEX in LPS‑induced ALI rats defended against lung fibrosis, perivascular inflammation, congestion and edema of pulmonary alveoli, as assessed by histopathological analysis, TUNEL staining and immunohistochemistry assay. Taken together, the present study indicated the synergistic effect of HF and DEX on LPS‑induced ALI in HPAEpiC cells and a rat model. These results offer a novel therapeutic approach for the treatment of ALI.
Collapse
Affiliation(s)
- Hai-Lian Du
- Department of Respiratory Medicine, Yidu Central Hospital Affiliated to Weifang Medical College, Qingzhou, Shandong 262500, P.R. China
| | - Ai-Dong Zhai
- Department of Internal Medicine, Maternal and Child Health Hospital of Zibo, Zibo, Shandong 255029, P.R. China
| | - Hong Yu
- Intensive Care Unit, Second Hospital of Harbin City, Harbin, Heilongjiang 150036, P.R. China
| |
Collapse
|
10
|
Xu H, Yin W, Liang H, Nan Y, Qiu F, Jin Y. A Scalable Total Synthesis of Halofuginone. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hua Xu
- Launch-Pharma Technologies, Ltd., 188 Kaiyuan Boulevard, Building D, Fifth Floor, Science Park of Guangzhou, Guangzhou 510530, China
| | - Wenhao Yin
- Launch-Pharma Technologies, Ltd., 188 Kaiyuan Boulevard, Building D, Fifth Floor, Science Park of Guangzhou, Guangzhou 510530, China
| | - Haoqiang Liang
- Launch-Pharma Technologies, Ltd., 188 Kaiyuan Boulevard, Building D, Fifth Floor, Science Park of Guangzhou, Guangzhou 510530, China
| | - Yanbo Nan
- Launch-Pharma Technologies, Ltd., 188 Kaiyuan Boulevard, Building D, Fifth Floor, Science Park of Guangzhou, Guangzhou 510530, China
| | - Fayang Qiu
- Launch-Pharma Technologies, Ltd., 188 Kaiyuan Boulevard, Building D, Fifth Floor, Science Park of Guangzhou, Guangzhou 510530, China
| | - Yehua Jin
- Launch-Pharma Technologies, Ltd., 188 Kaiyuan Boulevard, Building D, Fifth Floor, Science Park of Guangzhou, Guangzhou 510530, China
| |
Collapse
|
11
|
Zhan W, Kang Y, Chen N, Mao C, Kang Y, Shang J. Halofuginone ameliorates inflammation in severe acute hepatitis B virus (HBV)-infected SD rats through AMPK activation. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:2947-2955. [PMID: 29066866 PMCID: PMC5644545 DOI: 10.2147/dddt.s149623] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The hepatitis B virus (HBV) has caused acute and chronic liver diseases in ~350 million infected people worldwide. Halofuginone (HF) is a plant alkaloid which has been demonstrated to play a crucial role in immune regulation. Our present study explored the function of HF in the immune response of HBV-infected Sprague Dawley (SD) rats. Plasmid containing pCDNA3.1-HBV1.3 was injected in SD rats for the construction of an acute HBV-infected animal model. Our data showed that HF reduced the high concentrations of serum hepatitis B e-antigen, hepatitis B surface antigen, and HBV DNA induced by HBV infection. HF also reduced the number of T helper (Th)17 cells and the expression of interleukin (IL)-17 compared with the pCDNA3.1-HBV1.3 group. Moreover, pro-inflammatory cytokine levels (IL-17, IL-23, interferon-γ, and IL-2) were downregulated and anti-inflammatory cytokine levels (IL-4 and IL-13) were upregulated by HF. Through further research we found that the expression of AMP-activated protein kinase (AMPK) and IKBA which suppressed NF-κB activation was increased while the expression of p-NF-κB P65 was decreased in pCDNA3.1-HBV1.3+HF group compared with pCDNA3.1-HBV1.3 group, indicating that HF may work through the activation of AMPK. Finally, our conjecture was further verified by using the AMPK inhibitor compound C, which counteracted the anti-inflammation effect of HF, resulting in the decreased expression of AMPK, IKBA and increased expression of p-NF-κB P65 and reduced number of Th17 cells. In our present study, HF was considered as an anti-inflammatory factor in acute HBV-infected SD rats and worked through AMPK-mediated NF-κB p65 inactivation. This study implicated HF as a potential therapeutic strategy for hepatitis B.
Collapse
Affiliation(s)
- Weili Zhan
- Department of Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yanhong Kang
- Department of Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Ning Chen
- Department of Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Chongshan Mao
- Department of Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yi Kang
- Department of Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Jia Shang
- Department of Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| |
Collapse
|
12
|
Li Z, Fei H, Wang Z, Zhu T. Low‑dose halofuginone inhibits the synthesis of type I collagen without influencing type II collagen in the extracellular matrix of chondrocytes. Mol Med Rep 2017; 16:3290-3298. [PMID: 28713920 PMCID: PMC5547978 DOI: 10.3892/mmr.2017.7009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 05/24/2017] [Indexed: 12/28/2022] Open
Abstract
Full‑thickness and large area defects of articular cartilage are unable to completely repair themselves and require surgical intervention, including microfracture, autologous or allogeneic osteochondral grafts, and autologous chondrocyte implantation. A large proportion of regenerative cartilage exists as fibrocartilage, which is unable to withstand impacts in the same way as native hyaline cartilage, owing to excess synthesis of type I collagen in the matrix. The present study demonstrated that low‑dose halofuginone (HF), a plant alkaloid isolated from Dichroa febrifuga, may inhibit the synthesis of type I collagen without influencing type II collagen in the extracellular matrix of chondrocytes. In addition, HF was revealed to inhibit the phosphorylation of mothers against decapentaplegic homolog (Smad)2/3 and promoted Smad7 expression, as well as decrease the synthesis of type I collagen synthesis. Results from the present study indicated that HF treatment suppressed the synthesis of type I collagen by inhibiting the transforming growth factor‑β signaling pathway in chondrocytes. These results may provide an alternative solution to the problems associated with fibrocartilage, and convert fibrocartilage into hyaline cartilage at the mid‑early stages of cartilage regeneration. HF may additionally be used to improve monolayer expansion or 3D cultures of seed cells for the tissue engineering of cartilage.
Collapse
Affiliation(s)
- Zeng Li
- Department of Respiratory, The General Hospital of Shenyang Military Region, Shenyang, Liaoning 110015, P.R. China
| | - Hao Fei
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Zhen Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Tianyi Zhu
- Department of Respiratory, The General Hospital of Shenyang Military Region, Shenyang, Liaoning 110015, P.R. China
| |
Collapse
|
13
|
Zeng S, Wang K, Huang M, Qiu Q, Xiao Y, Shi M, Zou Y, Yang X, Xu H, Liang L. Halofuginone inhibits TNF-α-induced the migration and proliferation of fibroblast-like synoviocytes from rheumatoid arthritis patients. Int Immunopharmacol 2017; 43:187-194. [DOI: 10.1016/j.intimp.2016.12.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 12/06/2016] [Accepted: 12/12/2016] [Indexed: 12/12/2022]
|
14
|
Fasching P, Stradner M, Graninger W, Dejaco C, Fessler J. Therapeutic Potential of Targeting the Th17/Treg Axis in Autoimmune Disorders. Molecules 2017; 22:E134. [PMID: 28098832 PMCID: PMC6155880 DOI: 10.3390/molecules22010134] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 02/08/2023] Open
Abstract
A disruption of the crucial balance between regulatory T-cells (Tregs) and Th17-cells was recently implicated in various autoimmune disorders. Tregs are responsible for the maintenance of self-tolerance, thus inhibiting autoimmunity, whereas pro-inflammatory Th17-cells contribute to the induction and propagation of inflammation. Distortion of the Th17/Treg balance favoring the pro-inflammatory Th17 side is hence suspected to contribute to exacerbation of autoimmune disorders. This review aims to summarize recent data and advances in targeted therapeutic modification of the Th17/Treg-balance, as well as information on the efficacy of candidate therapeutics with respect to the treatment of autoimmune diseases.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Autoimmune Diseases/drug therapy
- Autoimmune Diseases/genetics
- Autoimmune Diseases/immunology
- Autoimmune Diseases/pathology
- Forkhead Transcription Factors/antagonists & inhibitors
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/immunology
- Gene Expression Regulation
- Humans
- Immunologic Factors/therapeutic use
- Inflammation
- Interleukin-17/antagonists & inhibitors
- Interleukin-17/genetics
- Interleukin-17/immunology
- Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/immunology
- Piperidines/therapeutic use
- Pyrimidines/therapeutic use
- Pyrroles/therapeutic use
- Signal Transduction
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/pathology
- Ustekinumab/therapeutic use
Collapse
Affiliation(s)
- Patrizia Fasching
- Department of Rheumatology and Immunology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria.
| | - Martin Stradner
- Department of Rheumatology and Immunology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria.
| | - Winfried Graninger
- Department of Rheumatology and Immunology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria.
| | - Christian Dejaco
- Department of Rheumatology and Immunology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria.
| | - Johannes Fessler
- Department of Rheumatology and Immunology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria.
| |
Collapse
|
15
|
Halofuginone alleviates acute viral myocarditis in suckling BALB/c mice by inhibiting TGF-β1. Biochem Biophys Res Commun 2016; 473:558-64. [PMID: 27021682 DOI: 10.1016/j.bbrc.2016.03.118] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 03/24/2016] [Indexed: 11/22/2022]
Abstract
Viral myocarditis (VMC) is an inflammation of heart muscle in infants and young adolescents. This study explored the function of halofuginone (HF) in Coxsackievirus B3 (CVB3) -treated suckling mice. HF-treated animal exhibited higher survival rate, lower heart/body weight, and more decreased blood sugar concentration than CVB3 group. HF also reduced the expressions of interleukin(IL)-17 and IL-23 and the numbers of Th17 cells. Moreover, HF downregulated pro-inflammatory cytokine levels and increased anti-inflammatory cytokine levels. The expressions of transforming growth factor(TGF-β1) and nuclear factor kappa-light-chain-enhancer of activated B (NF-κB) p65/ tumor necrosis factor-α (TNF-α) proteins were decreased by HF as well. Finally, the overexpression of TGF-β1 counteracted the protection effect of HF in CVB3-treated suckling mice. In summary, our study suggests HF increases the survival of CVB3 suckling mice, reduces the Th17 cells and pro-inflammatory cytokine levels, and may through downregulation of the TGF-β1-mediated expression of NF-κB p65/TNF-α pathway proteins. These results offer a potential therapeutic strategy for the treatment of VMC.
Collapse
|
16
|
Cui Z, Crane J, Xie H, Jin X, Zhen G, Li C, Xie L, Wang L, Bian Q, Qiu T, Wan M, Xie M, Ding S, Yu B, Cao X. Halofuginone attenuates osteoarthritis by inhibition of TGF-β activity and H-type vessel formation in subchondral bone. Ann Rheum Dis 2015; 75:1714-21. [PMID: 26470720 PMCID: PMC5013081 DOI: 10.1136/annrheumdis-2015-207923] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/20/2015] [Indexed: 12/28/2022]
Abstract
Objectives Examine whether osteoarthritis (OA) progression can be delayed by halofuginone in anterior cruciate ligament transection (ACLT) rodent models. Methods 3-month-old male C57BL/6J (wild type; WT) mice and Lewis rats were randomised to sham-operated, ACLT-operated, treated with vehicle, or ACLT-operated, treated with halofuginone. Articular cartilage degeneration was graded using the Osteoarthritis Research Society International (OARSI)-modified Mankin criteria. Immunostaining, flow cytometry, RT-PCR and western blot analyses were conducted to detect relative protein and RNA expression. Bone micro CT (μCT) and CT-based microangiography were quantitated to detect alterations of microarchitecture and vasculature in tibial subchondral bone. Results Halofuginone attenuated articular cartilage degeneration and subchondral bone deterioration, resulting in substantially lower OARSI scores. Specifically, we found that proteoglycan loss and calcification of articular cartilage were significantly decreased in halofuginone-treated ACLT rodents compared with vehicle-treated ACLT controls. Halofuginone reduced collagen X (Col X), matrix metalloproteinase-13 and A disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS 5) and increased lubricin, collagen II and aggrecan. In parallel, halofuginone-attenuated uncoupled subchondral bone remodelling as defined by reduced subchondral bone tissue volume, lower trabecular pattern factor (Tb.pf) and increased thickness of subchondral bone plate compared with vehicle-treated ACLT controls. We found that halofuginone exerted protective effects in part by suppressing Th17-induced osteoclastic bone resorption, inhibiting Smad2/3-dependent TGF-β signalling to restore coupled bone remodelling and attenuating excessive angiogenesis in subchondral bone. Conclusions Halofuginone attenuates OA progression by inhibition of subchondral bone TGF-β activity and aberrant angiogenesis as a potential preventive therapy for OA.
Collapse
Affiliation(s)
- Zhuang Cui
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Janet Crane
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hui Xie
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Xin Jin
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Gehua Zhen
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Changjun Li
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Liang Xie
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Long Wang
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Qin Bian
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Tao Qiu
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mei Wan
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Min Xie
- Department of Pharmaceutical Chemistry, Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, California, USA
| | - Sheng Ding
- Department of Pharmaceutical Chemistry, Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, California, USA
| | - Bin Yu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xu Cao
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Astry B, Venkatesha SH, Moudgil KD. Involvement of the IL-23/IL-17 axis and the Th17/Treg balance in the pathogenesis and control of autoimmune arthritis. Cytokine 2015; 74:54-61. [PMID: 25595306 PMCID: PMC4457562 DOI: 10.1016/j.cyto.2014.11.020] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 11/15/2014] [Accepted: 11/18/2014] [Indexed: 02/07/2023]
Abstract
The T helper (Th) cell subsets are characterized by the type of cytokines produced and the master transcription factor expressed. Th1 cells participate in cell-mediated immunity, whereas Th2 cells promote humoral immunity. Furthermore, the two subsets can control each other. Thereby, Th1-Th2 balance offered a key paradigm in understanding the induction and regulation of immune pathology in autoimmune and other diseases. However, over the past decade, Th17 cells producing interleukin-17 (IL-17) have emerged as the major pathogenic T cell subset in many pathological conditions that were previously attributed to Th1 cells. In addition, the role of CD4+CD25+T regulatory cells (Treg) in controlling the activity of Th17 and other T cell subsets has increasingly been realized. Thereby, examination of the Th17/Treg balance in the course of autoimmune diseases has significantly advanced our understanding of the pathogenesis of these disorders. The differentiation of Th17 and Treg cells from naïve T cells is inter-related and controlled in part by the cytokine milieu. For example, transforming growth factor β (TGFβ) is required for Treg induction, whereas the same cytokine in the presence of IL-6 (or IL-1) promotes the differentiation of Th17. Furthermore, IL-23 plays a role in the maintenance of Th17. Accordingly, novel therapeutic approaches are being developed to target IL-23/IL-17 as well as to modulate the Th17/Treg balance in favor of immune regulation to control autoimmunity.
Collapse
Affiliation(s)
- Brian Astry
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Shivaprasad H Venkatesha
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Kamal D Moudgil
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| |
Collapse
|
18
|
Tong B, Yu J, Wang T, Dou Y, Wu X, Kong L, Dai Y, Xia Y. Sinomenine suppresses collagen-induced arthritis by reciprocal modulation of regulatory T cells and Th17 cells in gut-associated lymphoid tissues. Mol Immunol 2015; 65:94-103. [PMID: 25656802 DOI: 10.1016/j.molimm.2015.01.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/12/2015] [Accepted: 01/15/2015] [Indexed: 01/25/2023]
Abstract
Sinomenine (SIN) has long been used as a therapeutic agent of rheumatoid arthritis (RA) in China. However, the discrepancy between low oral bioavailability and higher minimal effective concentration made its action mode mysterious. The present study aimed to gain insight into the mechanisms by which SIN suppressed collagen-induced arthritis (CIA) in rats in view of Th17 and regulatory T (Treg) cell balance. SIN was orally administered, and the clinical symptoms of CIA rats were monitored; inflammatory cytokines levels in serum were measured by ELISA; pharmacokinetic studies were performed in normal and CIA rats; Th17 and Treg cell frequencies were analyzed by flow cytometry. The data showed that SIN treatment resulted in a dramatic decrease of arthritis scores and paw volume of CIA rats, which was accompanied by down-regulation of IL-17A and up-regulation of IL-10 in rat serum. The frequency of Treg cells was increased and the frequency of Th17 cells was decreased in the gut lymphoid tissues of SIN-treated rats. Immunohistochemistry assay demonstrated that more α4β7-positive cells were detained in joint tissues after SIN treatment. Moreover, the anti-arthritis efficacy of SIN disappeared when it was given by intraperitoneal injection, further confirming the action of SIN was gut-dependent. In conclusion, SIN exerts anti-RA action probably through modulating the frequencies of Treg cells and Th17 cells in intestinal lymph nodes and yielding a trafficking of lymphocytes (especially Treg cells) from gut to joint.
Collapse
Affiliation(s)
- Bei Tong
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Juntao Yu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Ting Wang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yannong Dou
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Xin Wu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yue Dai
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| | - Yufeng Xia
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| |
Collapse
|
19
|
Abstract
Halofuginone is an analog of febrifugine-an alkaloid originally isolated from the plant Dichroa febrifuga. During recent years, halofuginone has attracted much attention because of its wide range of beneficial biological activities, which encompass malaria, cancer, and fibrosis-related and autoimmune diseases. At present two modes of halofuginone actions have been described: (1) Inhibition of Smad3 phosphorylation downstream of the TGFβ signaling pathway results in inhibition of fibroblasts-to-myofibroblasts transition and fibrosis. (2) Inhibition of prolyl-tRNA synthetase (ProRS) activity in the blood stage of malaria and inhibition of Th17 cell differentiation thereby inhibiting inflammation and the autoimmune reaction by activation of the amino acid starvation and integrated stress responses. This review deals with the history and origin of this natural product, its synthesis, its known modes of action, and it's various biological activities in pre-clinical animal models and in humans.
Collapse
Affiliation(s)
- Mark Pines
- The Volcani Center, Institute of Animal Science, P.O. Box 6, Bet Dagan 50250, Israel.
| | - Itai Spector
- The Volcani Center, Institute of Animal Science, P.O. Box 6, Bet Dagan 50250, Israel.
| |
Collapse
|
20
|
Tong B, Dou Y, Wang T, Yu J, Wu X, Lu Q, Chou G, Wang Z, Kong L, Dai Y, Xia Y. Norisoboldine ameliorates collagen-induced arthritis through regulating the balance between Th17 and regulatory T cells in gut-associated lymphoid tissues. Toxicol Appl Pharmacol 2015; 282:90-9. [PMID: 25481498 DOI: 10.1016/j.taap.2014.11.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/12/2014] [Accepted: 11/20/2014] [Indexed: 12/24/2022]
Abstract
Norisoboldine (NOR), the main active ingredient of the dry root of Lindera aggregata, was previously proven to have substantial therapeutic effects on collagen-induced arthritis (CIA) in mice by oral administration. However, it exhibited a very poor bioavailability in normal rats. The pharmacokinetic-pharmacodynamics disconnection attracts us to explore its anti-arthritic mechanism in more detail. In this study, NOR, administered orally, markedly attenuated the pathological changes in CIA rats, which was accompanied by the down-regulation of pro-inflammatory cytokines and the up-regulation of anti-inflammatory cytokine IL-10. Pharmacokinetic studies demonstrated that the plasma concentration of NOR was moderately elevated in CIA rats compared with normal rats, but it was still far lower than the minimal effective concentration required for inhibiting the proliferation and activation of T lymphocytes in vitro. Interestingly, NOR was shown to regulate the balance between Th17 and regulatory T (Treg) cells in the intestinal lymph nodes more strikingly than in other tissues. It could increase the expression of Foxp3 mRNA in both gut and joints, and markedly up-regulate the number of integrin α4β7 (a marker of gut source)-positive Foxp3(+) cells in the joints of CIA rats. These results suggest that the gut might be the primary action site of NOR, and NOR exerts anti-arthritis effect through regulating the balance between Th17 and Treg cells in intestinal lymph nodes and yielding a trafficking of lymphocytes (especially Treg cells) from the gut to joint. The findings of the present study also provide a plausible explanation for the anti-arthritic effects of poorly absorbed compounds like NOR.
Collapse
MESH Headings
- Administration, Oral
- Alkaloids/administration & dosage
- Alkaloids/blood
- Alkaloids/pharmacokinetics
- Alkaloids/pharmacology
- Animals
- Anti-Inflammatory Agents/administration & dosage
- Anti-Inflammatory Agents/blood
- Anti-Inflammatory Agents/pharmacokinetics
- Anti-Inflammatory Agents/pharmacology
- Arthritis, Experimental/blood
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/immunology
- Arthritis, Experimental/pathology
- Chemotaxis, Leukocyte/drug effects
- Collagen Type II
- Cytokines/blood
- Female
- Forkhead Transcription Factors/metabolism
- Freund's Adjuvant
- Inflammation Mediators/blood
- Joints/drug effects
- Joints/immunology
- Joints/metabolism
- Joints/pathology
- Lymph Nodes/drug effects
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Mesentery
- Peyer's Patches/drug effects
- Peyer's Patches/immunology
- Peyer's Patches/metabolism
- Rats, Wistar
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/metabolism
Collapse
Affiliation(s)
- Bei Tong
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yannong Dou
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Ting Wang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Juntao Yu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Xin Wu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Qian Lu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Guixin Chou
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lingyi Kong
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yue Dai
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| | - Yufeng Xia
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| |
Collapse
|
21
|
Park JS, Lee J, Lim MA, Kim EK, Kim SM, Ryu JG, Lee JH, Kwok SK, Park KS, Kim HY, Park SH, Cho ML. JAK2-STAT3 Blockade by AG490 Suppresses Autoimmune Arthritis in Mice via Reciprocal Regulation of Regulatory T Cells and Th17 Cells. THE JOURNAL OF IMMUNOLOGY 2014; 192:4417-24. [DOI: 10.4049/jimmunol.1300514] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|