1
|
Wang S, Kurth S, Burger C, Wirtz DC, Schildberg FA, Ossendorff R. TNFα-Related Chondrocyte Inflammation Models: A Systematic Review. Int J Mol Sci 2024; 25:10805. [PMID: 39409134 PMCID: PMC11476358 DOI: 10.3390/ijms251910805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
Tumor necrosis factor alpha (TNFα), as a key pro-inflammatory cytokine, plays a central role in joint diseases. In recent years, numerous models of TNFα-induced cartilage inflammation have been developed. However, due to the significant differences between these models and the lack of consensus in their construction, it becomes difficult to compare the results of different studies. Therefore, we summarized and compared these models based on important parameters for model construction, such as cell source, cytokine concentration, stimulation time, mechanical stimulation, and more. We attempted to analyze the advantages and disadvantages of each model and provide a compilation of the analytical methods used in previous studies. Currently, TNFα chondrocyte inflammation models can be categorized into four main types: monolayer-based, construct-based, explant-based TNFα chondrocyte inflammation models, and miscellaneous TNFα chondrocyte inflammation models. The most commonly used models were the monolayer-based TNFα chondrocyte inflammation models (42.86% of cases), with 10 ng/mL TNFα being the most frequently used concentration. The most frequently used chondrocyte cell passage is passage 1 (50%). Human tissues were most frequently used in experiments (51.43%). Only five articles included models with mechanical stimulations. We observed variations in design conditions between different models. This systematic review provides the essential experimental characteristics of the available chondrocyte inflammation models with TNFα, and it provides a platform for better comparison between existing and new studies in this field. It is essential to perform further experiments to standardize each model and to find the most appropriate experimental parameters.
Collapse
|
2
|
Zhou D, Tian JM, Li Z, Huang J. Cbx4 SUMOylates BRD4 to regulate the expression of inflammatory cytokines in post-traumatic osteoarthritis. Exp Mol Med 2024:10.1038/s12276-024-01315-x. [PMID: 39349832 DOI: 10.1038/s12276-024-01315-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 10/03/2024] Open
Abstract
Brominated domain protein 4 (BRD4) is a chromatin reader known to exacerbate the inflammatory response in post-traumatic osteoarthritis (PTOA) by controlling the expression of inflammatory cytokines. However, the extent to which this regulatory effect is altered after BRD4 translation remains largely unknown. In this study, we showed that the E3 SUMO protein ligase CBX4 (Cbx4) is involved in the SUMO modification of BRD4 to affect its ability to control the expression of the proinflammatory genes IL-1β, TNF-α, and IL-6 in synovial fibroblasts. Specifically, Cbx4-mediated SUMOylation of K1111 lysine residues prevents the degradation of BRD4, thereby activating the transcriptional activities of the IL-1β, TNF-α and IL-6 genes, which depend on BRD4. SUMOylated BRD4 also recruits the multifunctional methyltransferase subunit TRM112-like protein (TRMT112) to further promote the processing of proinflammatory gene transcripts to eventually increase their expression. In vivo, treatment of PTOA with a Cbx4 inhibitor in rats was comparable to treatment with BRD4 inhibitors, indicating the importance of SUMOylation in controlling BRD4 to alleviate PTOA. Overall, this study is the first to identify Cbx4 as the enzyme responsible for the SUMO modification of BRD4 and highlights the central role of the Cbx4-BRD4 axis in exacerbating PTOA from the perspective of inflammation.
Collapse
Affiliation(s)
- Ding Zhou
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia-Ming Tian
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zi Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jun Huang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Pope J, Finckh A, Silva-Fernández L, Mandl P, Fan H, Rivas JL, Valderrama M, Montoro M. Tofacitinib Monotherapy in Rheumatoid Arthritis: Clinical Trials and Real-World Data Contextualization of Patients, Efficacy, and Treatment Retention. Open Access Rheumatol 2024; 16:115-126. [PMID: 38883150 PMCID: PMC11179645 DOI: 10.2147/oarrr.s446431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 05/28/2024] [Indexed: 06/18/2024] Open
Abstract
Purpose To evaluate the characteristics, efficacy, and retention of tofacitinib monotherapy in patients with rheumatoid arthritis using data from randomized controlled trials (RCTs) and real-world data (RWD). Patients and Methods Three patient groups receiving tofacitinib 5 mg twice daily (BID) monotherapy were defined for post hoc RCT/long-term extension (LTE) analyses: (1) disease-modifying antirheumatic drug (DMARD)-inadequate responder patients from phase 3/3b/4 RCTs; (2) methotrexate-naïve patients from a phase 3 RCT; and (3) index study patients continuing in an LTE study. Outcomes included low disease activity (LDA)/remission rates defined by Clinical Disease Activity Index (CDAI); Disease Activity Score in 28 joints (DAS28-4), erythrocyte sedimentation rate; DAS28-4, C-reactive protein (DAS28-4[CRP]); and rates of/time to discontinuation due to lack of efficacy/adverse events. RWD were identified by non-systematic literature searches of PubMed, Embase, and American College of Rheumatology/European Alliance of Associations for Rheumatology congress abstracts (2012-2022). Results RCT/LTE analyses included 1000/498 patients receiving tofacitinib 5 mg BID monotherapy. Baseline disease activity was high; patients tended to receive concomitant glucocorticoids; most were biologic DMARD-naïve. CDAI LDA rates were 32.2-62.2% for Groups 1/2 (months 3-12) and 64.0-70.7% for Group 3 (months 12-72). In Groups 1, 2, and 3, 4.0%, 15.6%, and 27.7% of patients, respectively, discontinued tofacitinib monotherapy due to lack of efficacy/adverse events. From 11 RWD publications, 16.6-66.1% received tofacitinib monotherapy. Consistent with clinical data, tofacitinib monotherapy effectiveness (month 6 CDAI LDA, 30.2%; month 3 DAS28-4[CRP] remission, 53.4%) and persistence were observed in RWD, with retention comparable to tofacitinib combination therapy. Conclusion Tofacitinib monotherapy demonstrated clinically significant responses/persistence in RCT/LTE analyses, with effectiveness observed and persistence comparable to combination therapy in RWD. Trial Registration NCT00814307, NCT02187055, NCT01039688, NCT00413699, NCT00661661 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Janet Pope
- Division of Rheumatology, University of Western Ontario, London, Ontario, Canada
| | - Axel Finckh
- Division of Rheumatology, University Hospital of Geneva, Geneva, Switzerland
| | | | - Peter Mandl
- Division of Rheumatology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
4
|
Joshi H, Tuli HS, Ranjan A, Chauhan A, Haque S, Ramniwas S, Bhatia GK, Kandari D. The Pharmacological Implications of Flavopiridol: An Updated Overview. Molecules 2023; 28:7530. [PMID: 38005250 PMCID: PMC10673037 DOI: 10.3390/molecules28227530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Flavopiridol is a flavone synthesized from the natural product rohitukine, which is derived from an Indian medicinal plant, namely Dysoxylum binectariferum Hiern. A deeper understanding of the biological mechanisms by which such molecules act may allow scientists to develop effective therapeutic strategies against a variety of life-threatening diseases, such as cancer, viruses, fungal infections, parasites, and neurodegenerative diseases. Mechanistic insight of flavopiridol reveals its potential for kinase inhibitory activity of CDKs (cyclin-dependent kinases) and other kinases, leading to the inhibition of various processes, including cell cycle progression, apoptosis, tumor proliferation, angiogenesis, tumor metastasis, and the inflammation process. The synthetic derivatives of flavopiridol have overcome a few demerits of its parent compound. Moreover, these derivatives have much improved CDK-inhibitory activity and therapeutic abilities for treating severe human diseases. It appears that flavopiridol has potential as a candidate for the formulation of an integrated strategy to combat and alleviate human diseases. This review article aims to unravel the potential therapeutic effectiveness of flavopiridol and its possible mechanism of action.
Collapse
Affiliation(s)
- Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India;
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133207, India;
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, Rostov-on-Don 344090, Russia;
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Sector 125, Noida 201301, India;
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia;
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 11022801, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 13306, United Arab Emirates
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali 140413, India;
| | - Gurpreet Kaur Bhatia
- Department of Physics, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India;
| | - Divya Kandari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India;
| |
Collapse
|
5
|
Che X, Huang Y, Zhong K, Jia K, Wei Y, Meng Y, Yuan W, Lu H. Thiophanate-methyl induces notochord toxicity by activating the PI3K-mTOR pathway in zebrafish (Danio rerio) embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120861. [PMID: 36563988 DOI: 10.1016/j.envpol.2022.120861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/10/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Thiophanate-methyl (TM), a typical pesticide widely used worldwide, was detected in rivers, soil, fruits, and vegetables. Thus, it is urgent to identify the potential harm of TM residual to non-target organisms and its molecular mechanisms. We used zebrafish (Danio rerio) in this study to evaluate TM toxicity. TM exposure induced developmental toxicity, including inhibited hatchability, reduced heart rates, restrained spontaneous locomotion, and decreased body length. Furthermore, we observed obvious toxicity in the notochord and detected increased expression levels of notochord-related genes (shha, col2a, and tbxta) by in situ hybridization in zebrafish larvae. In addition, calcein staining, alkaline phosphatase (ALP) activity analysis, and anatomic analysis indicated that TM induced notochord toxicity. We used rescue experiments to verify whether the PI3K-mTOR pathway involved in the notochord development was the cause of notochord abnormalities. Rapamycin and LY294002 (an inhibitor of PI3K) relieve notochord toxicity caused by TM, including morphological abnormalities. In summary, TM might induce notochord toxicity by activating the PI3K-mTOR pathway in zebrafish.
Collapse
Affiliation(s)
- Xiaofang Che
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yong Huang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Keyuan Zhong
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Kun Jia
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - You Wei
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yunlong Meng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Wei Yuan
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, China.
| |
Collapse
|
6
|
Al Jundi S, Martinez JR, Cresta J, Yousefi F, DeSantis G, Thoonkuzhy M, Rabut E, Mohanraj B, Mauck RL, Dodge GR. Identifying small molecules for protecting chondrocyte function and matrix integrity after controlled compressive injury. OSTEOARTHRITIS AND CARTILAGE OPEN 2022; 4:100289. [PMID: 36474951 PMCID: PMC9718264 DOI: 10.1016/j.ocarto.2022.100289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/30/2022] [Accepted: 06/14/2022] [Indexed: 10/17/2022] Open
Abstract
Objective Articular cartilage injury is central for the development of post-traumatic osteoarthritis (PTOA). With few disease-modifying therapies successful at offsetting progressive osteoarthritis (OA), our goal is to use a high throughput screening platform of cartilage injury to identify novel chondroprotective compounds. Targeting articular cartilage damage immediately after injury remains a promising therapeutic strategy to overcome irreversible tissue damage. Method We constructed a single impact-cartilage screening method using a multi-platen system that simultaneously impacts 48 samples and makes use of engineered cartilage tissue analogs (known as CTAs). Drug libraries were screened and assessed for their ability to alter two crucial biological responses to impact injuries, namely matrix degradation and cell stress. Results Over 500 small molecules were screened for their ability to alter proteoglycan loss, matrix metalloproteinase activity, and cell stress or death. Fifty-five compounds passed through secondary screening and were from commercial libraries of natural and redox, stem cell related compounds, as well as protease, kinase and phosphatase inhibitors. Through secondary screening, 16 promising candidates exhibited activity on one or more critical function of chondrocytes. While many are mechanistically known compounds, their function in joint diseases is not known. Conclusion This platform was validated for screening drug activity against a tissue engineered model of PTOA. Multiple compounds identified in this manner have potential application as early protective therapy for treating PTOA, and require further study. We propose this screening platform can identify novel molecules that act on early chondrocyte responses to injury and provide an invaluable tool for therapeutic development.
Collapse
Affiliation(s)
- Saleh Al Jundi
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, USA
| | - Jerahme R. Martinez
- Translational Musculoskeletal Research Center, Crescenz VA Medical Center, Philadelphia, PA, University of Pennsylvania, Philadelphia, PA, USA
| | - Jake Cresta
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, USA
- Translational Musculoskeletal Research Center, Crescenz VA Medical Center, Philadelphia, PA, University of Pennsylvania, Philadelphia, PA, USA
| | - Farzad Yousefi
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, USA
| | - Gabriel DeSantis
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, USA
| | - Matthew Thoonkuzhy
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, USA
| | - Emilie Rabut
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, USA
- Translational Musculoskeletal Research Center, Crescenz VA Medical Center, Philadelphia, PA, University of Pennsylvania, Philadelphia, PA, USA
| | - Bhavana Mohanraj
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, USA
| | - Robert L. Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, USA
- Translational Musculoskeletal Research Center, Crescenz VA Medical Center, Philadelphia, PA, University of Pennsylvania, Philadelphia, PA, USA
- Mechano Therapeutics, LLC, Philadelphia, PA, USA
| | - George R. Dodge
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, USA
- Translational Musculoskeletal Research Center, Crescenz VA Medical Center, Philadelphia, PA, University of Pennsylvania, Philadelphia, PA, USA
- Mechano Therapeutics, LLC, Philadelphia, PA, USA
| |
Collapse
|
7
|
Owen MJ, Celik U, Chaudhary SK, Yik JHN, Patton JS, Kuo MC, Haudenschild DR, Liu GY. Production of Inhalable Ultra-Small Particles for Delivery of Anti-Inflammation Medicine via a Table-Top Microdevice. MICROMACHINES 2022; 13:1382. [PMID: 36144005 PMCID: PMC9501338 DOI: 10.3390/mi13091382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 06/16/2023]
Abstract
A table-top microdevice was introduced in this work to produce ultrasmall particles for drug delivery via inhalation. The design and operation are similar to that of spray-drying equipment used in industry, but the device itself is much smaller and more portable in size, simpler to operate and more economical. More importantly, the device enables more accurate control over particle size. Using Flavopiridol, an anti-inflammation medication, formulations have been developed to produce inhalable particles for pulmonary delivery. A solution containing the desired components forms droplets by passing through an array of micro-apertures that vibrate via a piezo-electrical driver. High-purity nitrogen gas was introduced and flew through the designed path, which included the funnel collection and cyclone chamber, and finally was pumped away. The gas carried and dried the micronized liquid droplets along the pathway, leading to the precipitation of dry solid microparticles. The formation of the cyclone was essential to assure the sufficient travel path length of the liquid droplets to allow drying. Synthesis parameters were optimized to produce microparticles, whose morphology, size, physio-chemical properties, and release profiles met the criteria for inhalation. Bioactivity assays have revealed a high degree of anti-inflammation. The above-mentioned approach enabled the production of inhalable particles in research laboratories in general, using the simple table-top microdevice. The microparticles enable the inhalable delivery of anti-inflammation medicine to the lungs, thus providing treatment for diseases such as pulmonary fibrosis and COVID-19.
Collapse
Affiliation(s)
- Matthew J. Owen
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Umit Celik
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | | | - Jasper H. N. Yik
- Tesio Pharmaceuticals, Inc., Davis, CA 95616, USA
- Department of Orthopedic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | | | | | - Dominik R. Haudenschild
- Department of Orthopedic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Gang-yu Liu
- Department of Chemistry, University of California, Davis, CA 95616, USA
| |
Collapse
|
8
|
Intra-articular injection of flavopiridol-loaded microparticles for treatment of post-traumatic osteoarthritis. Acta Biomater 2022; 149:347-358. [PMID: 35779774 DOI: 10.1016/j.actbio.2022.06.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/23/2022]
Abstract
Rapid joint clearance of small molecule drugs is the major limitation of current clinical approaches to osteoarthritis and its subtypes, including post-traumatic osteoarthritis (PTOA). Particulate systems such as nano/microtechnology could provide a potential avenue for improved joint retention of small molecule drugs. One drug of interest for PTOA treatment is flavopiridol, which inhibits cyclin-dependent kinase 9 (CDK9). Herein, polylactide-co-glycolide microparticles encapsulating flavopiridol were formulated, characterized, and evaluated as a strategy to mitigate PTOA-associated inflammation through the inhibition of CDK9. Characterization of the microparticles, including the drug loading, hydrodynamic diameter, stability, and release profile was performed. The mean hydrodynamic diameter of flavopiridol particles was ∼15 µm, indicating good syringeability and low potential for phagocytosis. The microparticles showed no cytotoxicity in-vitro, and drug activity was maintained after encapsulation, even after prolonged exposure to high temperatures (60 °C). Flavopiridol-loaded microparticles or blank (unloaded) microparticles were administered by intraarticular injection in a rat knee injury model of PTOA. We observed significant joint retention of flavopiridol microparticles compared to the soluble flavopiridol, confirming the sustained release behavior of the particles. Matrix metalloprotease (MMP) activity, an indicator of joint inflammation, was significantly reduced by flavopiridol microparticles 3 days post-injury. Histopathological analysis showed that flavopiridol microparticles reduced PTOA severity 28 days post-injury. Taken altogether, this work demonstrates a promising biomaterial platform for sustained small molecule drug delivery to the joint space as a therapeutic measure for post-traumatic osteoarthritis. STATEMENT OF SIGNIFICANCE: Post-traumatic osteoarthritis (PTOA) begins with the deterioration of subchondral bone and cartilage after acute injuries. In spite of the prevalence of PTOA and its associated financial and psychological burdens, therapeutic measures remain elusive. A number of small molecule drugs are now under investigation to replace FDA-approved palliative measures, including cyclin-dependent kinase 9 (CDK9) inhibitors which work by targeting early inflammatory programming after injury. However, the short half-life of these drugs is a major hurdle to their success. Here, we show that biomaterial encapsulation of Flavopiridol (CDK9 inhibitor) in poly (lactic-co-glycolic acid) microparticles is a promising route for direct delivery and improved drug retention time in the knee joint. Moreover, administration of the flavopiridol microparticles reduced the severity of PTOA.
Collapse
|
9
|
Kaveh A, Bruton FA, Oremek MEM, Tucker CS, Taylor JM, Mullins JJ, Rossi AG, Denvir MA. Selective Cdk9 inhibition resolves neutrophilic inflammation and enhances cardiac regeneration in larval zebrafish. Development 2022; 149:272181. [PMID: 34523672 PMCID: PMC8601713 DOI: 10.1242/dev.199636] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/20/2021] [Indexed: 11/23/2022]
Abstract
Sustained neutrophilic inflammation is detrimental for cardiac repair and associated with adverse outcomes following myocardial infarction (MI). An attractive therapeutic strategy to treat MI is to reduce or remove infiltrating neutrophils to promote downstream reparative mechanisms. CDK9 inhibitor compounds enhance the resolution of neutrophilic inflammation; however, their effects on cardiac repair/regeneration are unknown. We have devised a cardiac injury model to investigate inflammatory and regenerative responses in larval zebrafish using heartbeat-synchronised light-sheet fluorescence microscopy. We used this model to test two clinically approved CDK9 inhibitors, AT7519 and flavopiridol, examining their effects on neutrophils, macrophages and cardiomyocyte regeneration. We found that AT7519 and flavopiridol resolve neutrophil infiltration by inducing reverse migration from the cardiac lesion. Although continuous exposure to AT7519 or flavopiridol caused adverse phenotypes, transient treatment accelerated neutrophil resolution while avoiding these effects. Transient treatment with AT7519, but not flavopiridol, augmented wound-associated macrophage polarisation, which enhanced macrophage-dependent cardiomyocyte number expansion and the rate of myocardial wound closure. Using cdk9−/− knockout mutants, we showed that AT7519 is a selective CDK9 inhibitor, revealing the potential of such treatments to promote cardiac repair/regeneration. Summary: This study is the first to show that resolving neutrophilic inflammation using a clinically approved immunomodulatory drug (AT7519) improves heart regeneration in zebrafish.
Collapse
Affiliation(s)
- Aryan Kaveh
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Finnius A Bruton
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Magdalena E M Oremek
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Carl S Tucker
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | | | - John J Mullins
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Adriano G Rossi
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Martin A Denvir
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
10
|
A Green Approach to Producing Polymer Microparticles for Local Sustained Release of Flavopiridol. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1262-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Huang S, Luo W, Wu G, Shen Q, Zhuang Z, Yang D, Qian J, Hu X, Cai Y, Chattipakorn N, Huang W, Liang G. Inhibition of CDK9 attenuates atherosclerosis by inhibiting inflammation and phenotypic switching of vascular smooth muscle cells. Aging (Albany NY) 2021; 13:14892-14909. [PMID: 34102609 PMCID: PMC8221363 DOI: 10.18632/aging.202998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Recent studies have demonstrated a key role of vascular smooth muscle cell (VSMC) dysfunction in atherosclerosis. Cyclin-dependent kinases 9 (CDK9), a potential biomarker of atherosclerosis, was significantly increased in coronary artery disease patient serum and played an important role in inflammatory diseases. This study was to explore the pharmacological role of CDK9 inhibition in attenuating atherosclerosis. METHODS A small-molecule CDK9 inhibitor, LDC000067, was utilized to treat the high fat diet (HFD)-fed ApoE-/- mice and human VSMCs. RESULTS The results showed that inflammation and phenotypic switching of VSMCs were observed in HFD-induced atherosclerosis in ApoE-/- mice, which were accompanied with increased CDK9 in the serum and atherosclerotic lesions where it colocalized with VSMCs. LDC000067 treatment significantly suppressed HFD-induced inflammation, proliferation and phenotypic switching of VSMCs, resulting in reduced atherosclerosis in the ApoE-/- mice, while had no effect on plasma lipids. Further in vitro studies confirmed that LDC000067 and siRNA-mediated CDK9 knockdown reversed ox-LDL-induced inflammation and phenotypic switching of VSMCs from a contractile phenotype to a synthetic phenotype via inhibiting NF-κB signaling pathway in human VSMCs. CONCLUSION These results indicate that inhibition of CDK9 may be a novel therapeutic target for the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Shushi Huang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Affiliated Cangnan Hospital, Wenzhou Medical University, Cangnan, Zhejiang 325000, China
| | - Gaojun Wu
- Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qirui Shen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zaishou Zhuang
- Affiliated Cangnan Hospital, Wenzhou Medical University, Cangnan, Zhejiang 325000, China
| | - Daona Yang
- Affiliated Cangnan Hospital, Wenzhou Medical University, Cangnan, Zhejiang 325000, China
| | - Jinfu Qian
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiang Hu
- Department of Endocrinology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yan Cai
- Affiliated Cangnan Hospital, Wenzhou Medical University, Cangnan, Zhejiang 325000, China
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Weijian Huang
- Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Affiliated Cangnan Hospital, Wenzhou Medical University, Cangnan, Zhejiang 325000, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| |
Collapse
|
12
|
Fukui T, Yik JHN, Doyran B, Davis J, Haudenschild AK, Adamopoulos IE, Han L, Haudenschild DR. Bromodomain-containing-protein-4 and cyclin-dependent-kinase-9 inhibitors interact synergistically in vitro and combined treatment reduces post-traumatic osteoarthritis severity in mice. Osteoarthritis Cartilage 2021; 29:68-77. [PMID: 33164842 PMCID: PMC7785706 DOI: 10.1016/j.joca.2020.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 06/30/2020] [Accepted: 07/20/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Joint injury rapidly induces expression of primary response genes (PRGs), which activate a cascade of secondary genes that destroy joint tissues and initiate post-traumatic osteoarthritis (PTOA). Bromodomain-containing-protein-4 (Brd4) and cyclin-dependent-kinase-9 (CDK9) cooperatively control the rate-limiting step of PRG transactivation, including pro-inflammatory genes. This study investigated whether Brd4 and CDK9 inhibitors suppress inflammation and prevent PTOA development in vitro and in a mouse PTOA model. METHODS The effects of Brd4 and CDK9 inhibitors (JQ1 and Flavopiridol) on PRG and associated secondary damage were rigorously tested in different settings. Short-term effects of inflammatory stimuli (IL-1β, IL-6, TNF) on human chondrocyte PRG expression were assessed by RT-PCR and microarray after 5-h. We quantified glycosaminoglycan release from IL-1β-treated bovine cartilage explants after 3-6 days, and osteoarthritic changes in mice after ACL-rupture using RT-PCR (2-24hrs), in vivo imaging of MMP activity (24hrs), AFM-nanoindentation (3-7days), and histology (3days-4wks). RESULTS Flavopiridol and JQ1 inhibitors act synergistically, and a combination of both almost completely prevented the activation of most IL-1β-induced PRGs in vitro by microarray analysis, and prevented IL-1β-induced glycosaminoglycan release from cartilage explants. Mice given the drug combination showed reduced IL-1β and IL-6 expression, less in vivo MMP activity, and lower synovitis (1.5 vs 4.9) and OARSI scores (2.8 vs 6.0) than untreated mice with ACL-rupture. CONCLUSIONS JQ1 and Flavopiridol work synergistically to reduce injury response after joint trauma, suggesting that targeting Brd4 and/or CDK9 could be a viable strategy for PTOA prevention and treatment of early OA.
Collapse
Affiliation(s)
- Tomoaki Fukui
- Department of Orthopaedic Surgery, University of California Davis School of Medicine, 4635 Second Avenue, Sacramento, CA 95817 USA Tel:916-734-5015 Fax:916-734-5750
| | - Jasper H. N. Yik
- Department of Orthopaedic Surgery, University of California Davis School of Medicine, 4635 Second Avenue, Sacramento, CA 95817 USA Tel:916-734-5015 Fax:916-734-5750
| | - Basak Doyran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Jack Davis
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children-Northern California, Sacramento, CA, USA
| | - Anne K. Haudenschild
- Department of Biomedical Engineering, University of California Davis, Davis, CA USA
| | - Iannis E. Adamopoulos
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, USA,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children-Northern California, Sacramento, CA, USA
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Dominik R. Haudenschild
- Department of Orthopaedic Surgery, University of California Davis School of Medicine, 4635 Second Avenue, Sacramento, CA 95817 USA Tel:916-734-5015 Fax:916-734-5750
| |
Collapse
|
13
|
Rai MF. Nip it in the bud: potential for the early treatment of osteoarthritis. Osteoarthritis Cartilage 2021; 29:6-7. [PMID: 33075482 DOI: 10.1016/j.joca.2020.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/05/2020] [Accepted: 09/27/2020] [Indexed: 02/02/2023]
Affiliation(s)
- M F Rai
- Department of Orthopedic Surgery, Washington University School of Medicine, St Louis, MO, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
14
|
Ni W, Zhang F, Zheng L, Wang L, Liang Y, Ding Y, Yik JHN, Haudenschild DR, Fan S, Hu Z. Cyclin-Dependent Kinase 9 (CDK9) Inhibitor Atuveciclib Suppresses Intervertebral Disk Degeneration via the Inhibition of the NF-κB Signaling Pathway. Front Cell Dev Biol 2020; 8:579658. [PMID: 33015073 PMCID: PMC7511812 DOI: 10.3389/fcell.2020.579658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/20/2020] [Indexed: 12/30/2022] Open
Abstract
Intervertebral disk degeneration (IVDD) is a spinal disk condition caused by an inflammatory response induced by various proinflammatory cytokines, such as interleukin (IL)-1β and tumor necrosis factor (TNF)-α. cyclin-dependent kinase 9 (CDK9) is a transcriptional regulator and potential therapeutic target for many diseases, especially in regulating the activation of primary inflammatory response genes. Our study investigated a highly selective CDK9 inhibitor, atuveciclib, which protects nucleus pulposus (NP) cells from proinflammatory stimuli-induced catabolism. The effects of CDK9 inhibition were determined in human and rat NP cells treated with IL-1β in the presence or absence of atuveciclib or small interfering RNA target CDK9. Inhibition of CDK9 led to the attenuation of inflammatory response. In addition, rat intervertebral disk (IVD) explants were used to determine the role of CDK9 inhibition in extracellular matrix degradation. The rat IVDD model also proved that CDK9 inhibition attenuated IVDD, as validated using magnetic resonance imaging and immunohistochemistry. Taken together, CDK9 is a potential therapeutic target to prevent IVDD.
Collapse
Affiliation(s)
- Weiyu Ni
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research, Zhejiang University School of Medicine, Hangzhou, China
| | - Feizhou Zhang
- The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Zheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research, Zhejiang University School of Medicine, Hangzhou, China
| | - Lili Wang
- School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou, China
| | - Yi Liang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuhong Ding
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research, Zhejiang University School of Medicine, Hangzhou, China
| | - Jasper H N Yik
- Department of Orthopaedic Surgery, UC Davis Medical Center, Sacramento, CA, United States
| | - Dominik R Haudenschild
- Department of Orthopaedic Surgery, UC Davis Medical Center, Sacramento, CA, United States
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research, Zhejiang University School of Medicine, Hangzhou, China
| | - Ziang Hu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
15
|
P-TEFb as A Promising Therapeutic Target. Molecules 2020; 25:molecules25040838. [PMID: 32075058 PMCID: PMC7070488 DOI: 10.3390/molecules25040838] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 01/19/2023] Open
Abstract
The positive transcription elongation factor b (P-TEFb) was first identified as a general factor that stimulates transcription elongation by RNA polymerase II (RNAPII), but soon afterwards it turned out to be an essential cellular co-factor of human immunodeficiency virus (HIV) transcription mediated by viral Tat proteins. Studies on the mechanisms of Tat-dependent HIV transcription have led to radical advances in our knowledge regarding the mechanism of eukaryotic transcription, including the discoveries that P-TEFb-mediated elongation control of cellular transcription is a main regulatory step of gene expression in eukaryotes, and deregulation of P-TEFb activity plays critical roles in many human diseases and conditions in addition to HIV/AIDS. P-TEFb is now recognized as an attractive and promising therapeutic target for inflammation/autoimmune diseases, cardiac hypertrophy, cancer, infectious diseases, etc. In this review article, I will summarize our knowledge about basic P-TEFb functions, the regulatory mechanism of P-TEFb-dependent transcription, P-TEFb’s involvement in biological processes and diseases, and current approaches to manipulating P-TEFb functions for the treatment of these diseases.
Collapse
|
16
|
Li J, Shi J, Pan Y, Zhao Y, Yan F, Li H, Lei L. Transcription modulation by CDK9 regulates inflammatory genes and RIPK3-MLKL-mediated necroptosis in periodontitis progression. Sci Rep 2019; 9:17369. [PMID: 31758083 PMCID: PMC6874675 DOI: 10.1038/s41598-019-53910-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023] Open
Abstract
Cyclin-dependent kinase 9 (CDK9), one crucial molecule in promoting the transition from transcription pausing to elongation, is a critical modulator of cell survival and death. However, the pathological function of CDK9 in bacterial inflammatory diseases has never been explored. CDK9 inhibition or knock-down attenuated Porphyromonas gingivalis-triggered inflammatory gene expression. Gene-expression microarray analysis of monocytes revealed that knock-down of CDK9 not only affected inflammatory responses, but also impacted cell death network, especially the receptor-interacting protein kinase 3 (RIPK3)-mixed lineage kinase domain-like (MLKL)-mediated necroptosis after P. gingivalis infection. Inhibition of CDK9 significantly decreased necroptosis with downregulation of both MLKL and phosphorylated MLKL. By regulating caspase-8 and cellular FLICE inhibitory protein (cFLIP), key molecules in regulating cell survival and death, CDK9 affected not only the classic RIPK1-RIPK3-mediated necroptosis, but also the alternate TIR-domain-containing adapter-inducing interferon-β-RIPK3-mediated necroptosis. CDK9 inhibition dampened pro-inflammatory gene production in the acute infection process in the subcutaneous chamber model in vivo. Moreover, CDK9 inhibition contributed to the decreased periodontal bone loss and inflammatory response induced by P. gingivalis in the periodontal micro-environment. In conclusion, by modulating the RIPK3-MLKL-mediated necroptosis, CDK9 inhibition provided a novel mechanism to impact the progress of bacterial infection in the periodontal milieu.
Collapse
Affiliation(s)
- Jiao Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jiahong Shi
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Periodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yue Pan
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yunhe Zhao
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fuhua Yan
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Periodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Houxuan Li
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.
- Department of Periodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Lang Lei
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
17
|
Wang J, Liu J, Tian F, Zhan Y, Kong D. Cyclin-dependent kinase 9 expression and its association with CD8 + T cell infiltration in microsatellite-stable colorectal cancer. Oncol Lett 2019; 18:6046-6056. [PMID: 31788079 PMCID: PMC6865572 DOI: 10.3892/ol.2019.10970] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 08/20/2019] [Indexed: 12/24/2022] Open
Abstract
Programmed death 1 (PD-1)-targeted therapy has benefited patients with microsatellite instability-high metastatic colorectal cancer (mCRC). However, the efficacy of PD-1-targeted therapy is poor in patients with microsatellite-stable (MSS) mCRC. Therefore, it is imperative to explore additional co-inhibitory molecular signalling pathways to improve the efficacy of immunotherapy in MSS mCRC treatment. In the present study, the association between cyclin-dependent kinase 9 (CDK9) expression and the survival of patients with CRC was analysed using RNA sequencing data from 605 patients, including 121 cases of mortality, from human cancer datasets. Furthermore, 35 clinical MSS stage III–IV CRC specimens were collected to assess CDK9 protein expression by immunohistochemistry, and the frequency of tumor-infiltrating CD8+ T cells was assessed by flow cytometry. The human cancer datasets demonstrated that upregulation CDK9 significantly shortened the survival of patients with stage II–IV colon cancer. Additionally, CDK9 mRNA expression was positively correlated with the expression levels of genes associated with immune evasion in the tumor. Notably, CDK9 was expression was upregulated in stage IV CRC compared with para-cancerous tissues and early-stage tumors. Interestingly, CDK9 expression was negatively associated with the infiltration of CD8+ T cells at the tumor site. In addition, the expression levels of T-cell immunoglobulin mucin family member 3 and CD39, proteins associated with exhaustion, on tumor-infiltrating CD8+ T cells were significantly elevated in patients with abnormal CDK9 expression levels. The present study demonstrated that CDK9 expression was negatively associated with CD8+ T cell infiltration and positively associated with CD8+ T cell exhaustion in MSS mCRC. In conclusion, CDK9 may be utilized to evaluate the prognosis and the immune-type of the tumor microenvironment in patients with MSS mCRC.
Collapse
Affiliation(s)
- Jiefu Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Jia Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Fei Tian
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Yang Zhan
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Dalu Kong
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| |
Collapse
|
18
|
Xue S, Shao Q, Zhu LB, Jiang YF, Wang C, Xue B, Lu HM, Sang WL, Ma JZ. LDC000067 suppresses RANKL-induced osteoclastogenesis in vitro and prevents LPS-induced osteolysis in vivo. Int Immunopharmacol 2019; 75:105826. [DOI: 10.1016/j.intimp.2019.105826] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 12/22/2022]
|
19
|
CDK9 attenuation exerts protective effects on catabolism and hypertrophy in chondrocytes and ameliorates osteoarthritis development. Biochem Biophys Res Commun 2019; 517:132-139. [DOI: 10.1016/j.bbrc.2019.07.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023]
|
20
|
Cartwright JA, Lucas CD, Rossi AG. Inflammation Resolution and the Induction of Granulocyte Apoptosis by Cyclin-Dependent Kinase Inhibitor Drugs. Front Pharmacol 2019; 10:55. [PMID: 30886578 PMCID: PMC6389705 DOI: 10.3389/fphar.2019.00055] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/18/2019] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a necessary dynamic tissue response to injury or infection and it's resolution is essential to return tissue homeostasis and function. Defective or dysregulated inflammation resolution contributes significantly to the pathogenesis of many, often common and challenging to treat human conditions. The transition of inflammation to resolution is an active process, involving the clearance of inflammatory cells (granulocytes), a change of mediators and their receptors, and prevention of further inflammatory cell infiltration. This review focuses on the use of cyclin dependent kinase inhibitor drugs to pharmacologically target this inflammatory resolution switch, specifically through inducing granulocyte apoptosis and phagocytic clearance of apoptotic cells (efferocytosis). The key processes and pathways required for granulocyte apoptosis, recruitment of phagocytes and mechanisms of engulfment are discussed along with the cumulating evidence for cyclin dependent kinase inhibitor drugs as pro-resolution therapeutics.
Collapse
Affiliation(s)
- Jennifer A. Cartwright
- Queen's Medical Research Institute, University of Edinburgh Centre for Inflammation Research, Edinburgh BioQuarter, Edinburgh, United Kingdom
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Christopher D. Lucas
- Queen's Medical Research Institute, University of Edinburgh Centre for Inflammation Research, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Adriano G. Rossi
- Queen's Medical Research Institute, University of Edinburgh Centre for Inflammation Research, Edinburgh BioQuarter, Edinburgh, United Kingdom
| |
Collapse
|
21
|
Hu Z, Chen Y, Song L, Yik JHN, Haudenschild DR, Fan S. Flavopiridol Protects Bone Tissue by Attenuating RANKL Induced Osteoclast Formation. Front Pharmacol 2018; 9:174. [PMID: 29773986 PMCID: PMC5944179 DOI: 10.3389/fphar.2018.00174] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 02/15/2018] [Indexed: 01/23/2023] Open
Abstract
Bone resorption and homeostasis is carried out by osteoclasts, whose differentiation and activity are regulated by the RANK/RANKL axis. Our previous studies using a mouse model of joint injury show that joint trauma induces local inflammation followed by bone remodeling. The transcription factor cyclin-dependent kinase 9 (CDK9) is the major regulator of inflammation, as CDK9 inhibitor flavopiridol effectively suppress injury-induced inflammatory response. The objective of this study was to investigate the underlying mechanism through which flavopiridol regulates bone resorption. The effects of CDK9 inhibition, by the specific-inhibitor flavopiridol, on bone resorption were determined in vivo using two distinct and clinically relevant bone remodeling models. The first model involved titanium particle-induced acute osteolysis, and the second model was ovariectomy-induced chronic osteoporosis. The effects and mechanism of CDK9 inhibition on osteoclastogenesis were examined using in vitro culture of bone marrow macrophages (BMMs). Our results indicated that flavopiridol potently suppressed bone resorption in both in vivo bone-remodeling models. In addition, CDK9 inhibition suppressed in vitro osteoclastogenesis of BMM and reduced their expression of osteoclast-specific genes. Finally, we determined that flavopiridol suppressed RANKL signaling pathway via inhibition of p65 phosphorylation and nuclear translocation of NF-κB. Summary, CDK9 is a potential therapeutic target to prevent osteolysis and osteoporosis by flavopiridol treatment.
Collapse
Affiliation(s)
- Zi'ang Hu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yilei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lijiang Song
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jasper H N Yik
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California, Davis, Davis, CA, United States
| | - Dominik R Haudenschild
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California, Davis, Davis, CA, United States
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Deng S, Zhou JL, Peng H, Fang HS, Liu F, Weng JQ. Local intra‑articular injection of vascular endothelial growth factor accelerates articular cartilage degeneration in rat osteoarthritis model. Mol Med Rep 2018; 17:6311-6318. [PMID: 29488610 PMCID: PMC5928607 DOI: 10.3892/mmr.2018.8652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/28/2017] [Indexed: 01/20/2023] Open
Abstract
In the pathophysiology of osteoarthritis (OA), articular cartilage degeneration exhibits a significant role. Vascular endothelial growth factor (VEGF) is considered to be an effective angiogenic factor and a crucial regulator of articular cartilage degeneration in the development of OA. Therefore, the present study aimed to investigate the underlying influences of exogenous VEGF on articular cartilage degeneration in OA model rat. A total of 24 male Sprague-Dawley rats were randomly allocated into 3 groups. In the normal saline (NS) and VEGF groups, animals received bilateral anterior cruciate ligament (ACL) transection to establish the OA model; at 4 weeks post-surgery, the rats received local intra-articular injections of 100 µl NS or VEGF solution, respectively, every week for 4 weeks. The Control group received neither surgery nor injections. All animals were sacrificed at 12 weeks following surgery. Prominent cartilage degeneration was observed in rats in the NS- and VEGF-injected groups. The extent and the grade of cartilage damage in the VEGF-injected group were notably more severe compared with those in the NS-treated group. Western blotting results demonstrated that the expression levels of aggrecan and type II collagen were significantly reduced in OA model rats that were treated with VEGF. In addition, the expression levels of matrix metalloproteinase (MMP)-3, MMP-9, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs (a disintegrin and metalloproteinase; ADAMTS)-4, −5 and −12, type III collagen and transforming growth factor-β1 were significantly increased following VEGF administration. Results from the present study indicated that VEGF may exhibit a promoting role in the development of OA by destroying articular cartilage matrix.
Collapse
Affiliation(s)
- Shuang Deng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jian-Lin Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hao Peng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hong-Song Fang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Feng Liu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jin-Qing Weng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
23
|
Zhan Y, Han Y, Sun H, Liang T, Zhang C, Song J, Hou G. Down-regulating cyclin-dependent kinase 9 of alloreactive CD4+ T cells prolongs allograft survival. Oncotarget 2018; 7:24983-94. [PMID: 27102157 PMCID: PMC5041884 DOI: 10.18632/oncotarget.8804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/06/2016] [Indexed: 01/27/2023] Open
Abstract
CDK9 (Cyclin-dependent kinase 9)/Cyclin T1/RNA polymerase II pathway has been demonstrated to promote the development of several inflammatory diseases, such as arthritis or atherosclerosis, however, its roles in allotransplantation rejection have not been addressed. Here, we found that CDK9/Cyclin T1 were apparently up-regulated in the allogeneic group, which was positively correlated with allograft damage. CDK9 was inhibited obviously in naive splenic CD4+ T cells treated 6 h with 3 μM PHA767491 (a CDK9 inhibitor), and adoptive transfer of these CD4+ T cells into allografted SCID mice resulted in prolonged survival compared with the group without PHA767491 pretreated. Decelerated rejection was correlated with enhanced IL-4 and IL-10 production and with decreased IFN-γ production by alloreactive T cells. More interestingly, we found that CDK942, not CDK955, was high expressed in allorejection group, which could be prominently dampened with PHA767491 treatment. The expression of CDK942 was consistent with its downstream molecule RNA polymerase II. Altogether, our findings revealed the crucial role of CDK9/Cyclin T1/Pol II pathway in promoting allorejection at multiple levels and may provide a new approach for transplantation tolerance induction through targeting CDK9.
Collapse
Affiliation(s)
- Yang Zhan
- Laboratory of Experimental Teratology, Ministry of Education and Institute of Experimental Nuclear Medicine, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Yeming Han
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Hukui Sun
- Laboratory of Experimental Teratology, Ministry of Education and Institute of Experimental Nuclear Medicine, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Ting Liang
- Laboratory of Experimental Teratology, Ministry of Education and Institute of Experimental Nuclear Medicine, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Chao Zhang
- Laboratory of Experimental Teratology, Ministry of Education and Institute of Experimental Nuclear Medicine, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Jing Song
- Laboratory of Experimental Teratology, Ministry of Education and Institute of Experimental Nuclear Medicine, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Guihua Hou
- Laboratory of Experimental Teratology, Ministry of Education and Institute of Experimental Nuclear Medicine, School of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
24
|
Tiwari M. Glucose 6 phosphatase dehydrogenase (G6PD) and neurodegenerative disorders: Mapping diagnostic and therapeutic opportunities. Genes Dis 2017; 4:196-203. [PMID: 30258923 PMCID: PMC6150112 DOI: 10.1016/j.gendis.2017.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/08/2017] [Indexed: 02/06/2023] Open
Abstract
Glucose 6 phosphate dehydrogenase (G6PD) is a key and rate limiting enzyme in the pentose phosphate pathway (PPP). The physiological significance of enzyme is providing reduced energy to specific cells like erythrocyte by maintaining co-enzyme nicotinamide adenine dinucleotide phosphate (NADPH). There are preponderance research findings that demonstrate the enzyme (G6PD) role in the energy balance, and it is associated with blood-related diseases and disorders, primarily the anemia resulted from G6PD deficiency. The X-linked genetic deficiency of G6PD and associated non-immune hemolytic anemia have been studied widely across the globe. Recent advancement in biology, more precisely neuroscience has revealed that G6PD is centrally involved in many neurological and neurodegenerative disorders. The neuroprotective role of the enzyme (G6PD) has also been established, as well as the potential of G6PD in oxidative damage and the Reactive Oxygen Species (ROS) produced in cerebral ischemia. Though G6PD deficiency remains a global health issue, however, a paradigm shift in research focusing the potential of the enzyme in neurological and neurodegenerative disorders will surely open a new avenue in diagnostics and enzyme therapeutics. Here, in this study, more emphasis was made on exploring the role of G6PD in neurological and inflammatory disorders as well as non-immune hemolytic anemia, thus providing diagnostic and therapeutic opportunities.
Collapse
Key Words
- ALS, Amyotrophic lateral sclerosis
- DOPA, L-3, 4-dihydroxyphenylalanine
- EC, enzyme commission
- G6 PD, glucose 6 phosphatase dehydrogenase
- Glucose 6 phosphate dehydrogenase
- Hemolytic anemia
- MND, motor neuron disease
- MS, multiples sclerosis
- Metabolic disorders
- Neurodegenerative disorders
- PPP, pentose phosphate pathway
- RBCs, red blood cells
- ROS, reactive oxygen species
- pQ, poly-glutamine
Collapse
Affiliation(s)
- Manju Tiwari
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, Madhya Pradesh, India
| |
Collapse
|
25
|
Nguyen QT, Jacobsen TD, Chahine NO. Effects of Inflammation on Multiscale Biomechanical Properties of Cartilaginous Cells and Tissues. ACS Biomater Sci Eng 2017; 3:2644-2656. [PMID: 29152560 PMCID: PMC5686563 DOI: 10.1021/acsbiomaterials.6b00671] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/24/2017] [Indexed: 12/20/2022]
Abstract
![]()
Cells
within cartilaginous tissues are mechanosensitive and thus
require mechanical loading for regulation of tissue homeostasis and
metabolism. Mechanical loading plays critical roles in cell differentiation,
proliferation, biosynthesis, and homeostasis. Inflammation is an important
event occurring during multiple processes, such as aging, injury,
and disease. Inflammation has significant effects on biological processes
as well as mechanical function of cells and tissues. These effects
are highly dependent on cell/tissue type, timing, and magnitude. In
this review, we summarize key findings pertaining to effects of inflammation
on multiscale mechanical properties at subcellular, cellular, and
tissue level in cartilaginous tissues, including alterations in mechanotransduction
and mechanosensitivity. The emphasis is on articular cartilage and
the intervertebral disc, which are impacted by inflammatory insults
during degenerative conditions such as osteoarthritis, joint pain,
and back pain. To recapitulate the pro-inflammatory cascades that
occur in vivo, different inflammatory stimuli have been used for in
vitro and in situ studies, including tumor necrosis factor (TNF),
various interleukins (IL), and lipopolysaccharide (LPS). Therefore,
this review will focus on the effects of these stimuli because they
are the best studied pro-inflammatory cytokines in cartilaginous tissues.
Understanding the current state of the field of inflammation and cell/tissue
biomechanics may potentially identify future directions for novel
and translational therapeutics with multiscale biomechanical considerations.
Collapse
Affiliation(s)
- Q T Nguyen
- Bioengineering-Biomechanics Laboratory The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, New York 11030, United States
| | - T D Jacobsen
- Bioengineering-Biomechanics Laboratory The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, New York 11030, United States.,Hofstra Northwell School of Medicine, Hempstead, New York 11549, United States
| | - N O Chahine
- Bioengineering-Biomechanics Laboratory The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, New York 11030, United States.,Hofstra Northwell School of Medicine, Hempstead, New York 11549, United States
| |
Collapse
|
26
|
Han Y, Zhao S, Gong Y, Hou G, Li X, Li L. Serum cyclin-dependent kinase 9 is a potential biomarker of atherosclerotic inflammation. Oncotarget 2016; 7:1854-62. [PMID: 26636538 PMCID: PMC4811502 DOI: 10.18632/oncotarget.6443] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/16/2015] [Indexed: 11/25/2022] Open
Abstract
Atherosclerotic coronary artery disease (CAD) is one of the most prevalent diseases worldwide. Atherosclerosis was considered to be the single most important contributor to CAD. In this study, a distinct serum protein expression pattern in CAD patients was demonstrated by proteomic analysis with two-dimensional gel electrophoresis coupled with mass spectrometry. In particular, CDK9 was found to be highly elevated in serum, monocytes and artery plaque samples of CAD patients. Furthermore, there was high infiltration of CD14+ monocytes/macrophages within artery plaques correlated with the expression of CDK9. Moreover, Flavopiridol (CDK9 inhibitor) could inhibit THP-1 cell (monocytic acute leukemia cell line) proliferation by targeting CDK9. Altogether, These findings indicate that CDK9 represent an important role for inflammation in the pathogenesis of atherosclerosis. It may be a potential biomarker of atherosclerotic inflammation and offer insights into the pathophysiology and targeted therapy for atherosclerotic CAD.
Collapse
Affiliation(s)
- Yeming Han
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of of Cardiology, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Shanshan Zhao
- Laboratory of Experimental Teratology, Ministry of Education, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yaoqin Gong
- Laboratory of Experimental Teratology, Ministry of Education, School of Medicine, Shandong University, Jinan, Shandong, 250012, China.,Department of Genetics, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Guihua Hou
- Laboratory of Experimental Teratology, Ministry of Education, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xi Li
- Laboratory of Experimental Teratology, Ministry of Education, School of Medicine, Shandong University, Jinan, Shandong, 250012, China.,Department of Genetics, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Li Li
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of of Cardiology, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
27
|
Al-Jaderi Z, Maghazachi AA. Utilization of Dimethyl Fumarate and Related Molecules for Treatment of Multiple Sclerosis, Cancer, and Other Diseases. Front Immunol 2016; 7:278. [PMID: 27499754 PMCID: PMC4956641 DOI: 10.3389/fimmu.2016.00278] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/06/2016] [Indexed: 11/16/2022] Open
Abstract
Several drugs have been approved for treatment of multiple sclerosis (MS). Dimethyl fumarate (DMF) is utilized as an oral drug to treat this disease and is proven to be potent with less side effects than several other drugs. On the other hand, monomethyl fumarate (MMF), a related compound, has not been examined in greater details although it has the potential as a therapeutic drug for MS and other diseases. The mechanism of action of DMF or MMF is related to their ability to enhance the antioxidant pathways and to inhibit reactive oxygen species. However, other mechanisms have also been described, which include effects on monocytes, dendritic cells, T cells, and natural killer cells. It is also reported that DMF might be useful for treating psoriasis, asthma, aggressive breast cancers, hematopoeitic tumors, inflammatory bowel disease, intracerebral hemorrhage, osteoarthritis, chronic pancreatitis, and retinal ischemia. In this article, we will touch on some of these diseases with an emphasis on the effects of DMF and MMF on various immune cells.
Collapse
Affiliation(s)
- Zaidoon Al-Jaderi
- Department of Clinical Sciences, College of Medicine and Sahrjah Institute for Medical Research, University of Sharjah , Sharjah , United Arab Emirates
| | - Azzam A Maghazachi
- Department of Clinical Sciences, College of Medicine and Sahrjah Institute for Medical Research, University of Sharjah , Sharjah , United Arab Emirates
| |
Collapse
|
28
|
Kar S, Smith DW, Gardiner BS, Li Y, Wang Y, Grodzinsky AJ. Modeling IL-1 induced degradation of articular cartilage. Arch Biochem Biophys 2016; 594:37-53. [PMID: 26874194 DOI: 10.1016/j.abb.2016.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/12/2022]
Abstract
In this study, we develop a computational model to simulate the in vitro biochemical degradation of articular cartilage explants sourced from the femoropatellar grooves of bovine calves. Cartilage explants were incubated in culture medium with and without the inflammatory cytokine IL-1α. The spatio-temporal evolution of the cartilage explant's extracellular matrix components is modelled. Key variables in the model include chondrocytes, aggrecan, collagen, aggrecanase, collagenase and IL-1α. The model is first calibrated for aggrecan homeostasis of cartilage in vivo, then for data on (explant) controls, and finally for data on the IL-1α driven proteolysis of aggrecan and collagen over a 4-week period. The model was found to fit the experimental data best when: (i) chondrocytes continue to synthesize aggrecan during the cytokine challenge, (ii) a one to two day delay is introduced between the addition of IL-1α to the culture medium and subsequent aggrecanolysis, (iii) collagen degradation does not commence until the total concentration of aggrecan (i.e. both intact and degraded aggrecan) at any specific location within the explant becomes ≤ 1.5 mg/ml and (iv) degraded aggrecan formed due to the IL-1α induced proteolysis of intact aggrecan protects the collagen network while collagen degrades in a two-step process which, together, significantly modulate the collagen network degradation. Under simulated in vivo conditions, the model predicts increased aggrecan turnover rates in the presence of synovial IL-1α, consistent with experimental observations. Such models may help to infer the course of events in vivo following traumatic joint injury, and may also prove useful in quantitatively evaluating the efficiency of various therapeutic molecules that could be employed to avoid or modify the course of cartilage disease states.
Collapse
Affiliation(s)
- Saptarshi Kar
- School of Computer Science and Software Engineering, University of Western Australia, Crawley, WA, Australia
| | - David W Smith
- School of Computer Science and Software Engineering, University of Western Australia, Crawley, WA, Australia.
| | - Bruce S Gardiner
- School of Computer Science and Software Engineering, University of Western Australia, Crawley, WA, Australia
| | - Yang Li
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yang Wang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alan J Grodzinsky
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
29
|
Ji Q, Xu X, Xu Y, Fan Z, Kang L, Li L, Liang Y, Guo J, Hong T, Li Z, Zhang Q, Ye Q, Wang Y. miR-105/Runx2 axis mediates FGF2-induced ADAMTS expression in osteoarthritis cartilage. J Mol Med (Berl) 2016; 94:681-94. [PMID: 26816250 DOI: 10.1007/s00109-016-1380-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/27/2015] [Accepted: 01/10/2016] [Indexed: 12/21/2022]
Abstract
UNLABELLED Fibroblast growth factor 2 (FGF2) plays an important role in the development of osteoarthritis (OA) through the regulation of cartilage degradation. However, the molecular mechanism underlying FGF2-induced OA is poorly characterized. MicroRNAs (miRNAs) maintain cartilage homeostasis. To examine whether FGF2 regulates OA through the modulation of miRNA, we screened potential miRNA molecules that could be regulated through FGF2 using microarray analysis. The results showed that microRNA-105 (miR-105) was significantly downregulated in chondrocytes stimulated with FGF2. Runt-related transcription factor 2 (Runx2), a key transcription factor involved in OA, has been identified as a novel potential target of miR-105. FGF2 suppressed miR-105 expression through the recruitment of the subunit of the nuclear factor kappa B transcription complex p65 to the miR-105 promoter. The knockdown of Runx2 mimicked the effect of miR-105 and abolished the ability of miR-105 to regulate the expression of a disintegrin-like and metalloproteinase with thrombospondin 4 (ADAMTS4), ADAMTS5, ADAMTS7 and ADAMTS12, both of which are responsible for the degradation of collagen 2A1 (COL2A1) and aggrecan (ACAN). miR-105 is also required for FGF2/p65-induced Runx2 activation and ADAMTS expression. Moreover, miR-105 expression was downregulated in OA patients and inversely correlated with the expression of Runx2, ADAMTS7 and ADAMTS12, which were upregulated in OA patients. These data highlight that the FGF2/p65/miR-105/Runx2/ADAMTS axis might play an important role in OA pathogenesis and that miR-105 might be a potential diagnostic target and useful strategy for OA treatment. KEY MESSAGE Runx2 was identified as a novel direct target of miR-105. FGF2 inhibits miR-105 transcription through recruitment of p65 to miR-105 promoter. p65/miR-105 is essential for FGF2-mediated Runx2 and ADAMTS upregulation. miR-105 is downregulated in OA and inversely correlated with Runx2 expression.
Collapse
Affiliation(s)
- Quanbo Ji
- Department of Orthopaedics, General Hospital of Chinese People's Liberation Army, Beijing, 100853, China
| | - Xiaojie Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Yameng Xu
- Department of Traditional Chinese Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhongyi Fan
- Department of Oncology, General Hospital of Chinese People's Liberation Army, Beijing, 100853, China
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Ling Li
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Yingchun Liang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Jing Guo
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Tian Hong
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Zhongli Li
- Department of Orthopaedics, General Hospital of Chinese People's Liberation Army, Beijing, 100853, China
| | - Qiang Zhang
- Department of Orthopaedics, General Hospital of Chinese People's Liberation Army, Beijing, 100853, China. .,Department of Orthopaedic Surgery, Royal Liverpool University Hospital, Prescot Street, Liverpool, UK.
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China.
| | - Yan Wang
- Department of Orthopaedics, General Hospital of Chinese People's Liberation Army, Beijing, 100853, China.
| |
Collapse
|
30
|
Hu Z, Yik J, Cissell D, Michelier P, Athanasiou K, Haudenschild D, Haudenschild DR. Inhibition of CDK9 prevents mechanical injury-induced inflammation, apoptosis and matrix degradation in cartilage explants. Eur Cell Mater 2016; 30:200-9. [PMID: 26859911 PMCID: PMC4750484 DOI: 10.22203/ecm.v030a14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Joint injury often leads to post-traumatic osteoarthritis (PTOA). Acute injury responses to trauma induce production of pro-inflammatory cytokines and catabolic enzymes, which promote chondrocyte apoptosis and degrade cartilage to potentiate PTOA development. Recent studies show that the rate-limiting step for transcriptional activation of injury response genes is controlled by cyclin-dependent kinase 9 (CDK9), and thus it is an attractive target for limiting the injury response. Here, we determined the effects of CDK9 inhibition in suppressing the injury response in mechanically-injured cartilage explants. Bovine cartilage explants were injured by a single compressive load of 30 % strain at 100 %/s, and then treated with the CDK9 inhibitor Flavopiridol. To assess acute injury responses, we measured the mRNA expression of pro-inflammatory cytokines, catabolic enzymes, and apoptotic genes by RT-PCR, and chondrocyte viability and apoptosis by TUNEL staining. For long-term outcome, cartilage matrix degradation was assessed by soluble glycosaminoglycan release, and by determining the mechanical properties with instantaneous and relaxation moduli. Our data showed CDK9 inhibitor markedly reduced injury-induced inflammatory cytokine and catabolic gene expression. CDK9 inhibitor also attenuated chondrocyte apoptosis and reduced cartilage matrix degradation. Lastly, the mechanical properties of the injured explants were preserved by CDK9 inhibitor. Our results provide a temporal profile connecting the chain of events from mechanical impact, acute injury responses, to the subsequent induction of chondrocyte apoptosis and cartilage matrix deterioration. Thus, CDK9 is a potential disease-modifying agent for injury response after knee trauma to prevent or delay PTOA development.
Collapse
Affiliation(s)
- Z. Hu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016 PR China,University of California Davis, Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, Research Building 1 Suite 2000, 4635 Second Avenue, Sacramento, CA 95817, USA
| | - J.H.N. Yik
- University of California Davis, Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, Research Building 1 Suite 2000, 4635 Second Avenue, Sacramento, CA 95817, USA
| | - D.D. Cissell
- Department of Biomedical Engineering, College of Engineering, University of California, Davis, California 95618, USA
| | - P.V. Michelier
- University of California Davis, Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, Research Building 1 Suite 2000, 4635 Second Avenue, Sacramento, CA 95817, USA
| | - K.A. Athanasiou
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016 PR China,Department of Biomedical Engineering, College of Engineering, University of California, Davis, California 95618, USA
| | - D.R. Haudenschild
- University of California Davis, Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, Research Building 1 Suite 2000, 4635 Second Avenue, Sacramento, CA 95817, USA,Address for correspondence: Dominik R. Haudenschild, University of California Davis, Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, Research Building 1 Suite 2000, 4635 Second Avenue, Sacramento, CA 95817, USA, Tel: +1 916-734-5015, Fax: +1 916-734-5750,
| | | |
Collapse
|
31
|
Li Y, Tang J, Hu Y. Dimethyl fumarate protection against collagen II degradation. Biochem Biophys Res Commun 2014; 454:257-61. [DOI: 10.1016/j.bbrc.2014.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
|
32
|
Chung HY. Contradictory results of gene expression analysis affected by flavopiridol: comment on the article by Yik et Al. Arthritis Rheumatol 2014; 66:3525-6. [PMID: 25155262 DOI: 10.1002/art.38820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hye Yoon Chung
- Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|