1
|
Escribano-Núñez A, Cornelis FMF, De Roover A, Sermon A, Cailotto F, Lories RJ, Monteagudo S. IGF1 drives Wnt-induced joint damage and is a potential therapeutic target for osteoarthritis. Nat Commun 2024; 15:9170. [PMID: 39448593 PMCID: PMC11502680 DOI: 10.1038/s41467-024-53604-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Osteoarthritis is the most common joint disease and a global leading cause of pain and disability. Current treatment is limited to symptom relief, yet there is no disease-modifying therapy. Its multifactorial etiology includes excessive activation of Wnt signaling, but how Wnt causes joint destruction remains poorly understood. Here, we identify that Wnt signaling promotes the transcription of insulin-like growth factor 1 (IGF1) in articular chondrocytes and that IGF1 is a major driver of Wnt-induced joint damage. Male mice with cartilage-specific Igf1 deficiency are protected from Wnt-triggered joint disease. Mechanistically, Wnt-induced IGF1 transcription depends on β-catenin and binding of Wnt transcription factor TCF4 to the IGF1 gene promoter. In a clinically relevant mouse model of post-traumatic osteoarthritis, cartilage-specific deletion of Igf1 protects against the disease in male mice. IGF1 silencing in chondrocytes from patients with osteoarthritis restores a healthy molecular profile. Our findings reveal that reducing Wnt-induced IGF1 is a potential therapeutic strategy for osteoarthritis.
Collapse
Affiliation(s)
- Ana Escribano-Núñez
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Centre, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Frederique M F Cornelis
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Centre, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Astrid De Roover
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Centre, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - An Sermon
- Division of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium
- Locomotor and Neurological Disorders Unit, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Frédéric Cailotto
- CNRS-University of Lorraine, Molecular Engineering and Articular Physiopathology, Biopôle, University of Lorraine; Campus Biologie-Santé, Vandœuvre-Lès-Nancy, France
| | - Rik J Lories
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Centre, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Division of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - Silvia Monteagudo
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Centre, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Wang J, Liu Y, Jing Y, Fu M. Genistein promotes cartilage repair and inhibits synovial inflammatory response after anterior cruciate ligament transection in rats by regulating the Wnt/β-catenin axis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8053-8068. [PMID: 38775854 DOI: 10.1007/s00210-024-03168-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/14/2024] [Indexed: 10/04/2024]
Abstract
To confirm the protective mechanism of genistein on osteoarthritis (OA). Firstly, we constructed an anterior cruciate ligament transection (ACLT) rat model and administered two doses of genistein via gavage. The effects of the drug on cartilage damage repair and synovitis in OA rats were evaluated through pain-related behavioral assessments, pathological staining, detection of inflammatory factors, and western blot analysis. Secondly, we constructed IL-1-induced chondrocytes and synovial fibroblast models, co-incubated them with genistein, and evaluated the protective effects of genistein on both types of cells through cell apoptosis and cytoskeleton staining. To verify the role of this pathway, we applied the GSK3β inhibitor TWS119 and the Wnt/β-catenin inhibitor XAV939 to ACLT rats and two types of cells to analyze the potential mechanism of genistein's action on OA. Our results confirmed the protective effect of genistein on joint cartilage injury in ACLT rats and its alleviating effect on synovitis. The results of cell experiments showed that genistein can protect IL-1β-induced chondrocytes and synovial fibroblasts, inhibit IL-1β-induced cell apoptosis, increase the fluorescence intensity of F-actin, and inhibit inflammatory response. The results of in vivo and in vitro mechanism studies indicated that TWS119 and XAV939 can attenuate the protective effects of genistein on OA rats and IL-1-induced cell damage. Our research confirmed that genistein may be an effective drug for treating osteoarthritis. Furthermore, we discussed and confirmed that the GSK3β/Wnt/β-catenin axis serves as a downstream signaling pathway of genistein, providing theoretical support for its application.
Collapse
Affiliation(s)
- Jianhang Wang
- Trauma department of orthopedics, Yantaishan Hospital, 10087 Keji Avenue, Laishan District, Yantai, Shandong, China.
| | - Yunyan Liu
- Trauma department of orthopedics, Yantaishan Hospital, 10087 Keji Avenue, Laishan District, Yantai, Shandong, China
| | - Yulong Jing
- Trauma department of orthopedics, Yantaishan Hospital, 10087 Keji Avenue, Laishan District, Yantai, Shandong, China
| | - Mingfu Fu
- Trauma department of orthopedics, Yantaishan Hospital, 10087 Keji Avenue, Laishan District, Yantai, Shandong, China
| |
Collapse
|
3
|
Wei J, Wang Y, Tu S, Zhang S, Feng Y, Hou Y, Ai H, Chen Z. Circadian rhythm disruption upregulating Per1 in mandibular condylar chondrocytes mediating temporomandibular joint osteoarthritis via GSK3β/β-CATENIN pathway. J Transl Med 2024; 22:662. [PMID: 39010104 PMCID: PMC11251328 DOI: 10.1186/s12967-024-05475-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Temporomandibular joint osteoarthritis (TMJOA) has a high incidence rate, but its pathogenesis remains unclear. Circadian rhythm is an important oscillation in the human body and influences various biological activities. However, it is still unclear whether circadian rhythm affects the onset and development of TMJOA. METHODS We disrupted the normal rhythm of rats and examined the expression of core clock genes in the mandibular condylar cartilage of the jaw and histological changes in condyles. After isolating rat mandibular condylar chondrocytes, we upregulated or downregulated the clock gene Per1, examined the expression of cartilage matrix-degrading enzymes, tested the activation of the GSK3β/β-CATENIN pathway and verified it using agonists and inhibitors. Finally, after downregulating the expression of Per1 in the mandibular condylar cartilage of rats with jet lag, we examined the expression of cartilage matrix-degrading enzymes and histological changes in condyles. RESULTS Jet lag led to TMJOA-like lesions in the rat mandibular condyles, and the expression of the clock gene Per1 and cartilage matrix-degrading enzymes increased in the condylar cartilage of rats. When Per1 was downregulated or upregulated in mandibular condylar chondrocytes, the GSK3β/β-CATENIN pathway was inhibited or activated, and the expression of cartilage matrix-degrading enzymes decreased or increased, which can be rescued by activator and inhibitor of the GSK3β/β-CATENIN pathway. Moreover, after down-regulation of Per1 in mandibular condylar cartilage in vivo, significant alleviation of cartilage degradation, cartilage loss, subchondral bone loss induced by jet lag, and inhibition of the GSK3β/β-CATENIN signaling pathway were observed. Circadian rhythm disruption can lead to TMJOA. The clock gene Per1 can promote the occurrence of TMJOA by activating the GSK3β/β-CATENIN pathway and promoting the expression of cartilage matrix-degrading enzymes. The clock gene Per1 is a target for the prevention and treatment of TMJOA.
Collapse
Affiliation(s)
- Jiaming Wei
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 500630, China
| | - Yuxuan Wang
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 500630, China
- Department of Stomatology, Shenzhen Sixth People's Hospital (Nanshan Hospital), Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Shaoqin Tu
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 500630, China
| | - Sai Zhang
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 500630, China
| | - Yi Feng
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 500630, China
| | - Yuluan Hou
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 500630, China
| | - Hong Ai
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 500630, China.
| | - Zheng Chen
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 500630, China.
| |
Collapse
|
4
|
Glycogen Synthase Kinase 3β inhibits BMSCs Chondrogenesis in Inflammation via the Cross-Reaction between NF-κB and β-Catenin in the Nucleus. Stem Cells Int 2022; 2022:5670403. [PMID: 36132167 PMCID: PMC9484947 DOI: 10.1155/2022/5670403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammation can influence the pluripotency and self-renewal of mesenchymal stem cells (MSCs), thereby altering their cartilage regeneration ability. Sprague-Dawley (SD) rat bone marrow mesenchymal stem cells (BMSCs) were isolated and found to be defective in differentiation potential in the interleukin-1β- (IL-1β-) induced inflammatory microenvironment. Glycogen synthase kinase-3β (GSK-3β) is an evolutionarily conserved serine/threonine kinase that plays a role in numerous cellular processes. The role of GSK-3β in inflammation may be related to the nuclear factor-κB (NF-κB) signaling pathway and the Wnt/β-catenin signaling pathway, whose mechanism remains unclear. In this study, we found that GSK-3β can inhibit chondrogenesis of IL-1β-impaired BMSCs by disrupting metabolic balance and promoting cell apoptosis. By using the inhibitors LiCl and SN50, we demonstrated that GSK-3β regulates the chondrogenesis via the NF-κB and Wnt/β-catenin signaling pathways and possibly mediates the cross-reaction between NF-κB and β-catenin in the nucleus. Given the molecular mechanisms of GSK-3β in chondrogenic differentiation in inflammation, GSK-3β is a crucial target for the treatment of inflammation-induced cartilage disease.
Collapse
|
5
|
Zhang X, Weng M, Chen Z. Fibroblast Growth Factor 9 (FGF9) negatively regulates the early stage of chondrogenic differentiation. PLoS One 2021; 16:e0241281. [PMID: 33529250 PMCID: PMC7853451 DOI: 10.1371/journal.pone.0241281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/12/2020] [Indexed: 01/02/2023] Open
Abstract
Fibroblast growth factor signaling is essential for mammalian bone morphogenesis and growth, involving membranous ossification and endochondral ossification. FGF9 has been shown to be an important regulator of endochondral ossification; however, its role in the early differentiation of chondrocytes remains unknown. Therefore, in this study, we aimed to determine the role of FGF9 in the early differentiation of chondrogenesis. We found an increase in FGF9 expression during proliferating chondrocyte hypertrophy in the mouse growth plate. Silencing of FGF9 promotes the growth of ATDC5 cells and promotes insulin-induced differentiation of ATDC5 chondrocytes, which is due to increased cartilage matrix formation and type II collagen (col2a1) and X (col10a1), Acan, Ihh, Mmp13 gene expression. Then, we evaluated the effects of AKT, GSK-3β, and mTOR. Inhibition of FGF9 significantly inhibits phosphorylation of AKT and GSK-3β, but does not affected the activation of mTOR. Furthermore, phosphorylation of inhibited AKT and GSK-3β was compensated using the AKT activator SC79, and differentiation of ATDC5 cells was inhibited. In conclusion, our results indicate that FGF9 acts as an important regulator of early chondrogenesis partly through the AKT/GSK-3β pathway.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- Department of Orthodontics, The Affiliated Stomatology Hospital of Tongji University, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Mengjia Weng
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenqi Chen
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
6
|
Chen C, Xu Y. RETRACTED: Long noncoding RNA LINC00671 exacerbates osteoarthritis by promoting ONECUT2-mediated Smurf2 expression and extracellular matrix degradation. Int Immunopharmacol 2021; 90:106846. [PMID: 33168412 DOI: 10.1016/j.intimp.2020.106846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 12/15/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Authors and Editor-in-Chief. The corresponding author contacted the journal and stated: “…we have obtained different results from this paper (onecut2 targeted regulation of Smurf2 / GSK-3 β part), and repeated experiments cannot fully verify this result”. The authors requested retraction of the article. Concern was also raised about the integrity of an image in Figure 1H, which appears to also be found in another publication, as detailed here: https://pubpeer.com/publications/FBECF0BCB952DCC563AA5C4D760B32 and here: https://docs.google.com/spreadsheets/d/1r0MyIYpagBc58BRF9c3luWNlCX8VUvUuPyYYXzxWvgY/edit#gid=262337249. The journal requested the corresponding author comment on these concerns and provide the raw data. The authors were unable to satisfactorily fulfill this request. The Editor-in-Chief assessed the case and decided to retract the article.
Collapse
Affiliation(s)
- Chengwei Chen
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, PR China; Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Yaozeng Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, PR China.
| |
Collapse
|
7
|
Catheline SE, Hoak D, Chang M, Ketz JP, Hilton MJ, Zuscik MJ, Jonason JH. Chondrocyte-Specific RUNX2 Overexpression Accelerates Post-traumatic Osteoarthritis Progression in Adult Mice. J Bone Miner Res 2019; 34:1676-1689. [PMID: 31189030 PMCID: PMC7047611 DOI: 10.1002/jbmr.3737] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/18/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022]
Abstract
RUNX2 is a transcription factor critical for chondrocyte maturation and normal endochondral bone formation. It promotes the expression of factors catabolic to the cartilage extracellular matrix and is upregulated in human osteoarthritic cartilage and in murine articular cartilage following joint injury. To date, in vivo studies of RUNX2 overexpression in cartilage have been limited to forced expression in osteochondroprogenitor cells preventing investigation into the effects of chondrocyte-specific RUNX2 overexpression in postnatal articular cartilage. Here, we used the Rosa26Runx2 allele in combination with the inducible Col2a1CreERT2 transgene or the inducible AcanCreERT2 knock-in allele to achieve chondrocyte-specific RUNX2 overexpression (OE) during embryonic development or in the articular cartilage of adult mice, respectively. RUNX2 OE was induced at embryonic day 13.5 (E13.5) for all developmental studies. Histology and in situ hybridization analyses suggest an early onset of chondrocyte hypertrophy and accelerated terminal maturation in the limbs of the RUNX2 OE embryos compared to control embryos. For all postnatal studies, RUNX2 OE was induced at 2 months of age. Surprisingly, no histopathological signs of cartilage degeneration were observed even 6 months following induction of RUNX2 OE. Using the meniscal/ligamentous injury (MLI), a surgical model of knee joint destabilization and meniscal injury, however, we found that RUNX2 OE accelerates the progression of cartilage degeneration following joint trauma. One month following MLI, the numbers of MMP13-positive and TUNEL-positive chondrocytes were significantly greater in the articular cartilage of the RUNX2 OE joints compared to control joints and 2 months following MLI, histomorphometry and Osteoarthritis Research Society International (OARSI) scoring revealed decreased cartilage area in the RUNX2 OE joints. Collectively, these results suggest that although RUNX2 overexpression alone may not be sufficient to initiate the OA degenerative process, it may predetermine the rate of OA onset and/or progression following traumatic joint injury. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Sarah E Catheline
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Donna Hoak
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Martin Chang
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - John P Ketz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Matthew J Hilton
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
| | - Michael J Zuscik
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Orthopedic Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer H Jonason
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
8
|
Fernández-Torres J, Martínez-Nava GA, Zamudio-Cuevas Y, Martínez-Flores K, Gutiérrez-Ruíz MC, Gómez-Quiroz LE, Garrido-Rodríguez D, Muñoz-Valle JF, Oregón-Romero E, Lozada C, Cornejo DC, Pineda C, López-Reyes A. Impact of the gene-gene interactions related to the HIF-1α signaling pathway with the knee osteoarthritis development. Clin Rheumatol 2019; 38:2897-2907. [PMID: 31236747 DOI: 10.1007/s10067-019-04635-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/03/2019] [Accepted: 06/04/2019] [Indexed: 12/20/2022]
Abstract
INTRODUCTION/OBJECTIVES Articular cartilage is the target tissue of osteoarthritis (OA), and because it lacks capillary networks, the microenvironment is hypoxic. Hypoxia inducible factor-1 alpha (HIF-1α) regulates the homeostasis of this tissue. The aim of this study was to investigate whether genetic polymorphisms of the HIF-1α signaling pathway are involved in the development of knee OA. METHOD We performed a case-control association study and genotyped 134 knee OA patients and 267 healthy controls. All participants were genotyped in order to evaluate 42 SNPs from 22 genes involved in the HIF-1α signaling pathway using the OpenArray technology. Gene-gene interactions (epistasis) were analyzed using the multifactor dimensionality reduction (MDR) method. RESULTS The MDR analysis showed epistasis between AKT2 (rs8100018) and IGF1 (rs2288377), AKT2 (rs8100018) and IGF1 (rs35767), IGF1 (rs35767) and COL2A1 (rs1793953), and between GSK3B (rs6438552) and IGF1 (rs35767) polymorphisms, with information gain values of 21.24%, 8.37%, 9.93%, and 5.73%, respectively. Additionally, our model allowed us to identify high- and low-risk genotypes among COL2A1 rs1793953, GSK3B rs6438552, AKT2 rs8100018, and IGF1 rs35767 polymorphisms. CONCLUSIONS Knowing the interactions of these polymorphisms involved in HIF-1α signaling pathway could provide a new diagnostic support tool to identify individuals at high risk of developing knee OA.
Collapse
Affiliation(s)
- Javier Fernández-Torres
- Synovial Fluid Laboratory, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Mexico City, Mexico.,Biological and Health Sciences PhD Program, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | | | - Yessica Zamudio-Cuevas
- Synovial Fluid Laboratory, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Mexico City, Mexico
| | - Karina Martínez-Flores
- Synovial Fluid Laboratory, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Mexico City, Mexico
| | | | | | - Daniela Garrido-Rodríguez
- Center for Research in Infectious Diseases, National Institute of Respiratory Diseases, Mexico City, Mexico
| | - José Francisco Muñoz-Valle
- Departamento de Biología Molecular y Genómica, Instituto de Investigación en Ciencias Biomédicas (IICB), Universidad de Guadalajara, Guadalajara, Mexico
| | - Edith Oregón-Romero
- Departamento de Biología Molecular y Genómica, Instituto de Investigación en Ciencias Biomédicas (IICB), Universidad de Guadalajara, Guadalajara, Mexico
| | - Carlos Lozada
- Rheumatology Service, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Mexico City, Mexico
| | - Denise Clavijo Cornejo
- Musculoskeletal and Rheumatic Diseases Division, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Mexico City, Mexico
| | - Carlos Pineda
- Musculoskeletal and Rheumatic Diseases Division, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Mexico City, Mexico
| | - Alberto López-Reyes
- Synovial Fluid Laboratory, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Mexico City, Mexico.
| |
Collapse
|
9
|
Rong J, Pool B, Zhu M, Munro J, Cornish J, McCarthy GM, Dalbeth N, Poulsen R. Basic Calcium Phosphate Crystals Induce Osteoarthritis-Associated Changes in Phenotype Markers in Primary Human Chondrocytes by a Calcium/Calmodulin Kinase 2-Dependent Mechanism. Calcif Tissue Int 2019; 104:331-343. [PMID: 30456555 DOI: 10.1007/s00223-018-0494-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/12/2018] [Indexed: 01/09/2023]
Abstract
Chondrocytes in osteoarthritis undergo a phenotype shift leading to increased production of cartilage-degrading enzymes. There are similarities between the phenotype of osteoarthritic chondrocytes and those of growth plate chondrocytes. Hydroxyapatite can promote chondrocyte differentiation in the growth plate. Basic calcium phosphate (BCP) crystals (which consist of hydroxyapatite, octacalcium apatite and tricalcium phosphate) are frequently found in osteoarthritic joints. The objective of this study was to determine whether BCP crystals induce disease-associated changes in phenotypic marker expression in chondrocytes. Primary human chondrocytes isolated from macroscopically normal cartilage were treated with BCP for up to 48 h. Expression of indian hedgehog (IHH), matrix metalloproteinase 13 (MMP13), interleukin-6 (IL-6) and type X collagen (COLX) were higher, and expression of sry-box 9 (SOX9) lower, in BCP-treated chondrocytes (50 µg/mL) compared to untreated controls. COLX protein was also present in BCP-treated chondrocytes. Intracellular calcium and levels of phosphorylated and total calcium/calmodulin kinase 2 (CaMK2) were elevated following BCP treatment due to BCP-induced release of calcium from intracellular stores. CaMK2 inhibition or knockdown ameliorated the BCP-induced changes in SOX9, IHH, COLX, IL-6 and MMP13 expression. BCP crystals induce osteoarthritis-associated changes in phenotypic marker expression in chondrocytes by calcium-mediated activation of CaMK2. The presence of BCP crystals in osteoarthritic joints may contribute to disease progression.
Collapse
Affiliation(s)
- Jing Rong
- Department of Medicine, School of Medicine, University of Auckland, Auckland, New Zealand
| | - Bregina Pool
- Department of Medicine, School of Medicine, University of Auckland, Auckland, New Zealand
| | - Mark Zhu
- Department of Medicine, School of Medicine, University of Auckland, Auckland, New Zealand
- Department of Surgery, School of Medicine, University of Auckland, Auckland, New Zealand
| | - Jacob Munro
- Department of Surgery, School of Medicine, University of Auckland, Auckland, New Zealand
| | - Jillian Cornish
- Department of Medicine, School of Medicine, University of Auckland, Auckland, New Zealand
| | | | - Nicola Dalbeth
- Department of Medicine, School of Medicine, University of Auckland, Auckland, New Zealand
| | - Raewyn Poulsen
- Department of Medicine, School of Medicine, University of Auckland, Auckland, New Zealand.
- Faculty of Medical & Health Sciences, University of Auckland, 85 Park Rd Grafton, 1023, Auckland, New Zealand.
| |
Collapse
|
10
|
Arioka M, Takahashi-Yanaga F. Glycogen synthase kinase-3 inhibitor as a multi-targeting anti-rheumatoid drug. Biochem Pharmacol 2019; 165:207-213. [PMID: 30776323 DOI: 10.1016/j.bcp.2019.02.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/14/2019] [Indexed: 01/01/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory joint disease that causes swelling, bone erosion, and joint disorder. Patients with RA therefore suffer from pain and physiological disability, and have a decreased quality of life. During the progression of RA, many different types of cells and inflammatory factors influence each other with an important role. A better understanding of the pathology of RA should therefore lead to the development of effective anti-rheumatoid drugs, such as the anti-TNFα antibody. Glycogen synthase kinase-3 (GSK-3) is a cytoplasmic serine/threonine protein kinase that is involved in a large number of key cellular processes and is dysregulated in a wide variety of diseases, including inflammation and osteoporosis. The accumulated evidence has suggested that GSK-3 could be involved in multiple steps in the progression of RA. In the present review, the mechanisms of the pathogenesis of RA are summarized, and recent developments and potential new drugs targeting GSK-3 are discussed.
Collapse
Affiliation(s)
- Masaki Arioka
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Fumi Takahashi-Yanaga
- Department of Pharmacology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.
| |
Collapse
|
11
|
Role of Forkhead Box O Transcription Factors in Oxidative Stress-Induced Chondrocyte Dysfunction: Possible Therapeutic Target for Osteoarthritis? Int J Mol Sci 2018. [PMID: 30487470 DOI: 10.3390/ijms19123794.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chondrocyte dysfunction occurs during the development of osteoarthritis (OA), typically resulting from a deleterious increase in oxidative stress. Accordingly, strategies for arresting oxidative stress-induced chondrocyte dysfunction may lead to new potential therapeutic targets for OA treatment. Forkhead box O (FoxO) transcription factors have recently been shown to play a protective role in chondrocyte dysfunction through the regulation of inflammation, autophagy, aging, and oxidative stress. They also regulate growth, maturation, and matrix synthesis in chondrocytes. In this review, we discuss the recent progress made in the field of oxidative stress-induced chondrocyte dysfunction. We also discuss the protective role of FoxO transcription factors as potential molecular targets for the treatment of OA. Understanding the function of FoxO transcription factors in the OA pathology may provide new insights that will facilitate the development of next-generation therapies to prevent OA development and to slow OA progression.
Collapse
|
12
|
Wang R, Zhang S, Previn R, Chen D, Jin Y, Zhou G. Role of Forkhead Box O Transcription Factors in Oxidative Stress-Induced Chondrocyte Dysfunction: Possible Therapeutic Target for Osteoarthritis? Int J Mol Sci 2018; 19:ijms19123794. [PMID: 30487470 PMCID: PMC6321605 DOI: 10.3390/ijms19123794] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/22/2018] [Accepted: 11/24/2018] [Indexed: 12/11/2022] Open
Abstract
Chondrocyte dysfunction occurs during the development of osteoarthritis (OA), typically resulting from a deleterious increase in oxidative stress. Accordingly, strategies for arresting oxidative stress-induced chondrocyte dysfunction may lead to new potential therapeutic targets for OA treatment. Forkhead box O (FoxO) transcription factors have recently been shown to play a protective role in chondrocyte dysfunction through the regulation of inflammation, autophagy, aging, and oxidative stress. They also regulate growth, maturation, and matrix synthesis in chondrocytes. In this review, we discuss the recent progress made in the field of oxidative stress-induced chondrocyte dysfunction. We also discuss the protective role of FoxO transcription factors as potential molecular targets for the treatment of OA. Understanding the function of FoxO transcription factors in the OA pathology may provide new insights that will facilitate the development of next-generation therapies to prevent OA development and to slow OA progression.
Collapse
Affiliation(s)
- Rikang Wang
- Shenzhen Key Laboratory for Anti-ageing and Regenerative Medicine, Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Medical Cell Biology and Genetics, Shenzhen University Health Science Center, Shenzhen 518060, China.
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China.
| | - Shuai Zhang
- Shenzhen Key Laboratory for Anti-ageing and Regenerative Medicine, Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Medical Cell Biology and Genetics, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Rahul Previn
- Shenzhen Key Laboratory for Anti-ageing and Regenerative Medicine, Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Medical Cell Biology and Genetics, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Yi Jin
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China.
| | - Guangqian Zhou
- Shenzhen Key Laboratory for Anti-ageing and Regenerative Medicine, Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Medical Cell Biology and Genetics, Shenzhen University Health Science Center, Shenzhen 518060, China.
| |
Collapse
|
13
|
Emerging Players at the Intersection of Chondrocyte Loss of Maturational Arrest, Oxidative Stress, Senescence and Low-Grade Inflammation in Osteoarthritis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3075293. [PMID: 29599894 PMCID: PMC5828476 DOI: 10.1155/2018/3075293] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/10/2017] [Indexed: 02/07/2023]
Abstract
The prevalence of Osteoarthritis (OA) is increasing because of the progressive aging and unhealthy lifestyle. These risk factors trigger OA by removing constraints that keep the tightly regulated low turnover of the extracellular matrix (ECM) of articular cartilage, the correct chondrocyte phenotype, and the functionality of major homeostatic mechanisms, such as mitophagy, that allows for the clearance of dysfunctional mitochondria, preventing increased production of reactive oxygen species, oxidative stress, and senescence. After OA onset, the presence of ECM degradation products is perceived as a “danger” signal by the chondrocytes and the synovial macrophages that release alarmins with autocrine/paracrine effects on the same cells. Alarmins trigger innate immunity in the joint, with important systemic crosstalks that explain the beneficial effects of dietary interventions and improved lifestyle. Alarmins also boost low-grade inflammation: the release of inflammatory molecules and chemokines sustained by continuous triggering of NF-κB within an altered cellular setting that allows its higher transcriptional activity. Chemokines exert pleiotropic functions in OA, including the recruitment of inflammatory cells and the induction of ECM remodeling. Some chemokines have been successfully targeted to attenuate structural damage or pain in OA animal models. This represents a promising strategy for the future management of human OA.
Collapse
|
14
|
Glycogen Synthase Kinase-3β Inhibition Links Mitochondrial Dysfunction, Extracellular Matrix Remodelling and Terminal Differentiation in Chondrocytes. Sci Rep 2017; 7:12059. [PMID: 28935982 PMCID: PMC5608843 DOI: 10.1038/s41598-017-12129-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 07/14/2017] [Indexed: 12/11/2022] Open
Abstract
Following inflammatory stimuli, GSK3 inhibition functions as a hub with pleiotropic effects leading to cartilage degradation. However, little is known about the effects triggered by its direct inhibition as well as the effects on mitochondrial pathology, that contributes to osteoarthritis pathogenesis. To this aim we assessed the molecular mechanisms triggered by GSK3β inactivating stimuli on 3-D (micromass) cultures of human articular chondrocytes. Stimuli were delivered either at micromass seeding (long term) or after maturation (short term) to explore “late” effects on terminal differentiation or “early” mitochondrial effects, respectively. GSK3β inhibition significantly enhanced mitochondrial oxidative stress and damage and endochondral ossification based on increased nuclear translocation of Runx-2 and β-catenin, calcium deposition, cell death and enhanced remodelling of the extracellular matrix as demonstrated by the increased collagenolytic activity of supernatants, despite unmodified (MMP-1) or even reduced (MMP-13) collagenase gene/protein expression. Molecular dissection of the underlying mechanisms showed that GSK3β inhibition achieved with pharmacological/silencing strategies impacted on the control of collagenolytic activity, via both decreased inhibition (reduced TIMP-3) and increased activation (increased MMP-10 and MMP-14). To conclude, the inhibition of GSK3β enhances terminal differentiation via concerted effects on ECM and therefore its activity represents a tool to keep articular cartilage homeostasis.
Collapse
|
15
|
Wilkinson DJ, Wang H, Habgood A, Lamb HK, Thompson P, Hawkins AR, Désilets A, Leduc R, Steinmetzer T, Hammami M, Lee MS, Craik CS, Watson S, Lin H, Milner JM, Rowan AD. Matriptase Induction of Metalloproteinase-Dependent Aggrecanolysis In Vitro and In Vivo: Promotion of Osteoarthritic Cartilage Damage by Multiple Mechanisms. Arthritis Rheumatol 2017; 69:1601-1611. [PMID: 28464560 PMCID: PMC5599990 DOI: 10.1002/art.40133] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/18/2017] [Indexed: 01/23/2023]
Abstract
Objective To assess the ability of matriptase, a type II transmembrane serine proteinase, to promote aggrecan loss from the cartilage of patients with osteoarthritis (OA) and to determine whether its inhibition can prevent aggrecan loss and cartilage damage in experimental OA. Methods Aggrecan release from human OA cartilage explants and human stem cell–derived cartilage discs was evaluated, and cartilage‐conditioned media were used for Western blotting. Gene expression was analyzed by real‐time polymerase chain reaction. Murine OA was induced by surgical destabilization of the medial meniscus, and matriptase inhibitors were administered via osmotic minipump or intraarticular injection. Cartilage damage was scored histologically and aggrecan cleavage was visualized immunohistochemically using specific neoepitope antibodies. Results The addition of soluble recombinant matriptase promoted a time‐dependent release of aggrecan (and collagen) from OA cartilage, which was sensitive to metalloproteinase inhibition and protease‐activated receptor 2 antagonism. Although engineered human (normal) cartilage discs failed to release aggrecan following matriptase addition, both matrix metalloproteinase– and aggrecanase‐mediated cleavages of aggrecan were detected in human OA cartilage. Additionally, while matriptase did not directly degrade aggrecan, it promoted the accumulation of low‐density lipoprotein receptor–related protein 1 (LRP‐1) in conditioned media of the OA cartilage explants. Matriptase inhibition via neutralizing antibody or small molecule inhibitor significantly reduced cartilage damage scores in murine OA, which was associated with reduced generation of metalloproteinase‐mediated aggrecan cleavage. Conclusion Matriptase potently induces the release of metalloproteinase‐generated aggrecan fragments as well as soluble LRP‐1 from OA cartilage. Therapeutic targeting of matriptase proteolytic activity reduces metalloproteinase activity, further suggesting that this serine proteinase may have potential as a disease‐modifying therapy in OA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Richard Leduc
- Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | | | | | | - Hua Lin
- Newcastle University, Newcastle upon Tyne, UK
| | | | | |
Collapse
|
16
|
Chondroprotective activity of N-acetyl phenylalanine glucosamine derivative on knee joint structure and inflammation in a murine model of osteoarthritis. Osteoarthritis Cartilage 2017; 25:589-599. [PMID: 27836674 DOI: 10.1016/j.joca.2016.10.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Osteoarthritis (OA), the most common chronic degenerative joint disease, is characterized by joint structure changes and inflammation, both mediated by the IκB kinase (IKK) signalosome complex. The ability of N-acetyl phenylalanine derivative (NAPA) to increase cartilage matrix components and to reduce inflammatory cytokines, inhibiting IKKα kinase activity, has been observed in vitro. The present study aims to further clarify the effect of NAPA in counteracting OA progression, in an in vivo mouse model after destabilization of the medial meniscus (DMM). DESIGN 26 mice were divided into three groups: (1) DMM surgery without treatment; (2) DMM surgery treated after 2 weeks with one intra-articular injection of NAPA (2.5 mM) and (3) no DMM surgery. At the end of experimental times, both knee joints of the animals were analyzed through histology, histomorphometry, immunohistochemistry and microhardness of subchondral bone (SB) tests. RESULTS The injection of NAPA significantly improved cartilage thickness (CT) and reduced Chambers and Mankin modified scores and fibrillation index (FI), with weaker MMP13, ADAMTS5, MMP10 and IKKα staining. The microhardness measurements did not shown statistically significant differences between the different groups. CONCLUSIONS NAPA markedly improved the physical structure of articular cartilage while reducing catabolic enzymes, extracellular matrix (ECM) remodeling and IKKα expression, showing to be able to exert a chondroprotective activity in vivo.
Collapse
|
17
|
Wei Y, Bai L. Recent advances in the understanding of molecular mechanisms of cartilage degeneration, synovitis and subchondral bone changes in osteoarthritis. Connect Tissue Res 2016; 57:245-61. [PMID: 27285430 DOI: 10.1080/03008207.2016.1177036] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Osteoarthritis (OA), the most common form of degenerative joint disease, is linked to high morbidity. It is predicted to be the single greatest cause of disability in the general population by 2030. The development of disease-modifying therapy for OA currently face great obstacle mainly because the onset and development of the disease involve complex molecular mechanisms. In this review, we will comprehensively summarize biological and pathological mechanisms of three key aspects: degeneration of articular cartilage, synovial immunopathogenesis, and changes in subchondral bone. For each tissue, we will focus on the molecular receptors, cytokines, peptidases, related cell, and signal pathways. Agents that specifically block mechanisms involved in synovial inflammation, degeneration of articular cartilage, and subchondral bone remodeling can potentially be exploited to produce targeted therapy for OA. Such new comprehensive agents will benefit affected patients and bring exciting new hope for the treatment of OA.
Collapse
Affiliation(s)
- Yingliang Wei
- a Department of Orthopedic Surgery, Sheng-Jing Hospital , China Medical University , ShenYang , China
| | - Lunhao Bai
- a Department of Orthopedic Surgery, Sheng-Jing Hospital , China Medical University , ShenYang , China
| |
Collapse
|
18
|
Thompson CL, Wiles A, Poole CA, Knight MM. Lithium chloride modulates chondrocyte primary cilia and inhibits Hedgehog signaling. FASEB J 2016; 30:716-26. [PMID: 26499268 DOI: 10.1096/fj.15-274944] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 10/05/2015] [Indexed: 11/28/2024]
Abstract
Lithium chloride (LiCl) exhibits significant therapeutic potential as a treatment for osteoarthritis. Hedgehog signaling is activated in osteoarthritis, where it promotes chondrocyte hypertrophy and cartilage matrix catabolism. Hedgehog signaling requires the primary cilium such that maintenance of this compartment is essential for pathway activity. Here we report that LiCl (50 mM) inhibits Hedgehog signaling in bovine articular chondrocytes such that the induction of GLI1 and PTCH1 expression is reduced by 71 and 55%, respectively. Pathway inhibition is associated with a 97% increase in primary cilia length from 2.09 ± 0.7 μm in untreated cells to 4.06 ± 0.9 μm in LiCl-treated cells. We show that cilia elongation disrupts trafficking within the axoneme with a 38% reduction in Arl13b ciliary localization at the distal region of the cilium, consistent with the role of Arl13b in modulating Hedgehog signaling. In addition, we demonstrate similar increases in cilia length in human chondrocytes in vitro and after administration of dietary lithium to Wistar rats in vivo. Our data provide new insights into the effects of LiCl on chondrocyte primary cilia and Hedgehog signaling and shows for the first time that pharmaceutical targeting of the primary cilium may have therapeutic benefits in the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Clare L Thompson
- *Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom; and Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Anna Wiles
- *Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom; and Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - C Anthony Poole
- *Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom; and Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Martin M Knight
- *Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom; and Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
19
|
Guidotti S, Minguzzi M, Platano D, Cattini L, Trisolino G, Mariani E, Borzì RM. Lithium Chloride Dependent Glycogen Synthase Kinase 3 Inactivation Links Oxidative DNA Damage, Hypertrophy and Senescence in Human Articular Chondrocytes and Reproduces Chondrocyte Phenotype of Obese Osteoarthritis Patients. PLoS One 2015; 10:e0143865. [PMID: 26618897 PMCID: PMC4664288 DOI: 10.1371/journal.pone.0143865] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/09/2015] [Indexed: 12/12/2022] Open
Abstract
Introduction Recent evidence suggests that GSK3 activity is chondroprotective in osteoarthritis (OA), but at the same time, its inactivation has been proposed as an anti-inflammatory therapeutic option. Here we evaluated the extent of GSK3β inactivation in vivo in OA knee cartilage and the molecular events downstream GSK3β inactivation in vitro to assess their contribution to cell senescence and hypertrophy. Methods In vivo level of phosphorylated GSK3β was analyzed in cartilage and oxidative damage was assessed by 8-oxo-deoxyguanosine staining. The in vitro effects of GSK3β inactivation (using either LiCl or SB216763) were evaluated on proliferating primary human chondrocytes by combined confocal microscopy analysis of Mitotracker staining and reactive oxygen species (ROS) production (2',7'-dichlorofluorescin diacetate staining). Downstream effects on DNA damage and senescence were investigated by western blot (γH2AX, GADD45β and p21), flow cytometric analysis of cell cycle and light scattering properties, quantitative assessment of senescence associated β galactosidase activity, and PAS staining. Results In vivo chondrocytes from obese OA patients showed higher levels of phosphorylated GSK3β, oxidative damage and expression of GADD45β and p21, in comparison with chondrocytes of nonobese OA patients. LiCl mediated GSK3β inactivation in vitro resulted in increased mitochondrial ROS production, responsible for reduced cell proliferation, S phase transient arrest, and increase in cell senescence, size and granularity. Collectively, western blot data supported the occurrence of a DNA damage response leading to cellular senescence with increase in γH2AX, GADD45β and p21. Moreover, LiCl boosted 8-oxo-dG staining, expression of IKKα and MMP-10. Conclusions In articular chondrocytes, GSK3β activity is required for the maintenance of proliferative potential and phenotype. Conversely, GSK3β inactivation, although preserving chondrocyte survival, results in functional impairment via induction of hypertrophy and senescence. Indeed, GSK3β inactivation is responsible for ROS production, triggering oxidative stress and DNA damage response.
Collapse
Affiliation(s)
- Serena Guidotti
- Laboratorio di Immunoreumatologia e Rigenerazione Tessutale, Istituto Ortopedico Rizzoli, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche-DIMEC, Università di Bologna, Bologna, Italy
| | - Manuela Minguzzi
- Laboratorio di Immunoreumatologia e Rigenerazione Tessutale, Istituto Ortopedico Rizzoli, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche-DIMEC, Università di Bologna, Bologna, Italy
| | - Daniela Platano
- Laboratorio di Immunoreumatologia e Rigenerazione Tessutale, Istituto Ortopedico Rizzoli, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche-DIMEC, Università di Bologna, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie-DIBINEM, Università di Bologna, Bologna, Italy
| | - Luca Cattini
- Laboratorio di Immunoreumatologia e Rigenerazione Tessutale, Istituto Ortopedico Rizzoli, Bologna, Italy
- Dipartimento RIT, Laboratorio RAMSES, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giovanni Trisolino
- Chirurgia ricostruttiva articolare dell’anca e del ginocchio, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Erminia Mariani
- Laboratorio di Immunoreumatologia e Rigenerazione Tessutale, Istituto Ortopedico Rizzoli, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche-DIMEC, Università di Bologna, Bologna, Italy
- Dipartimento RIT, Laboratorio RAMSES, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Rosa Maria Borzì
- Laboratorio di Immunoreumatologia e Rigenerazione Tessutale, Istituto Ortopedico Rizzoli, Bologna, Italy
- Dipartimento RIT, Laboratorio RAMSES, Istituto Ortopedico Rizzoli, Bologna, Italy
- * E-mail:
| |
Collapse
|
20
|
Thompson CL, Yasmin H, Varone A, Wiles A, Poole CA, Knight MM. Lithium chloride prevents interleukin-1β induced cartilage degradation and loss of mechanical properties. J Orthop Res 2015; 33:1552-9. [PMID: 26174175 PMCID: PMC4973828 DOI: 10.1002/jor.22913] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/23/2015] [Indexed: 02/04/2023]
Abstract
Osteoarthritis is a chronic degenerative disease that affects the articular cartilage. Recent studies have demonstrated that lithium chloride exhibits significant efficacy as a chondroprotective agent, blocking cartilage degradation in response to inflammatory cytokines. However, conflicting literature suggests lithium may affect the physicochemical properties of articular cartilage and thus long-term exposure may negatively affect the mechanical functionality of this tissue. This study aims to investigate the effect of lithium chloride on the biomechanical properties of healthy and interleukin-1β treated cartilage in vitro and examines the consequences of long-term exposure to lithium on cartilage health in vivo. Bovine cartilage explants were treated with lithium chloride for 12 days. Chondrocyte viability, matrix catabolism and the biomechanical properties of bovine cartilage explants were not significantly altered following treatment. Consistent with these findings, long term-exposure (9 months) to dietary lithium did not induce osteoarthritis in rats, as determined by histological staining. Moreover, lithium chloride did not induce the expression of catabolic enzymes in human articular chondrocytes. In an inflammatory model of cartilage destruction, lithium chloride blocked interleukin-1β signaling in the form of nitric oxide and prostaglandin E2 release and prevented matrix catabolism such that the loss of mechanical integrity observed with interleukin-1β alone was inhibited. This study provides further support for lithium chloride as a novel compound for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Clare L. Thompson
- Institute of Bioengineering and School of Engineering and Materials ScienceQueen Mary University of LondonLondonUnited Kingdom
| | - Habiba Yasmin
- Institute of Bioengineering and School of Engineering and Materials ScienceQueen Mary University of LondonLondonUnited Kingdom
| | - Anna Varone
- Institute of Bioengineering and School of Engineering and Materials ScienceQueen Mary University of LondonLondonUnited Kingdom
| | - Anna Wiles
- Dunedin School of MedicineUniversity of OtagoDunedinNew Zealand
| | | | - Martin M. Knight
- Institute of Bioengineering and School of Engineering and Materials ScienceQueen Mary University of LondonLondonUnited Kingdom
| |
Collapse
|
21
|
|
22
|
Hui W, Young DA, Rowan AD, Xu X, Cawston TE, Proctor CJ. Oxidative changes and signalling pathways are pivotal in initiating age-related changes in articular cartilage. Ann Rheum Dis 2014; 75:449-58. [PMID: 25475114 PMCID: PMC4752670 DOI: 10.1136/annrheumdis-2014-206295] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 11/15/2014] [Indexed: 11/28/2022]
Abstract
Objective To use a computational approach to investigate the cellular and extracellular matrix changes that occur with age in the knee joints of mice. Methods Knee joints from an inbred C57/BL1/6 (ICRFa) mouse colony were harvested at 3–30 months of age. Sections were stained with H&E, Safranin-O, Picro-sirius red and antibodies to matrix metalloproteinase-13 (MMP-13), nitrotyrosine, LC-3B, Bcl-2, and cleaved type II collagen used for immunohistochemistry. Based on this and other data from the literature, a computer simulation model was built using the Systems Biology Markup Language using an iterative approach of data analysis and modelling. Individual parameters were subsequently altered to assess their effect on the model. Results A progressive loss of cartilage matrix occurred with age. Nitrotyrosine, MMP-13 and activin receptor-like kinase-1 (ALK1) staining in cartilage increased with age with a concomitant decrease in LC-3B and Bcl-2. Stochastic simulations from the computational model showed a good agreement with these data, once transforming growth factor-β signalling via ALK1/ALK5 receptors was included. Oxidative stress and the interleukin 1 pathway were identified as key factors in driving the cartilage breakdown associated with ageing. Conclusions A progressive loss of cartilage matrix and cellularity occurs with age. This is accompanied with increased levels of oxidative stress, apoptosis and MMP-13 and a decrease in chondrocyte autophagy. These changes explain the marked predisposition of joints to develop osteoarthritis with age. Computational modelling provides useful insights into the underlying mechanisms involved in age-related changes in musculoskeletal tissues.
Collapse
Affiliation(s)
- Wang Hui
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing (CIMA), Musculoskeletal Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - David A Young
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing (CIMA), Musculoskeletal Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew D Rowan
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing (CIMA), Musculoskeletal Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Xin Xu
- Biomedicine Biobank, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Tim E Cawston
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing (CIMA), Musculoskeletal Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Carole J Proctor
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing (CIMA), Musculoskeletal Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, UK Newcastle University Institute for Ageing, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| |
Collapse
|