1
|
Chung MK, Wang S, Alshanqiti I, Hu J, Ro JY. The degeneration-pain relationship in the temporomandibular joint: Current understandings and rodent models. FRONTIERS IN PAIN RESEARCH 2023; 4:1038808. [PMID: 36846071 PMCID: PMC9947567 DOI: 10.3389/fpain.2023.1038808] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
Temporomandibular disorders (TMD) represent a group of musculoskeletal conditions involving the temporomandibular joints (TMJ), the masticatory muscles and associated structures. Painful TMD are highly prevalent and conditions afflict 4% of US adults annually. TMD include heterogenous musculoskeletal pain conditions, such as myalgia, arthralgia, and myofascial pain. A subpopulations of TMD patients show structural changes in TMJ, including disc displacement or degenerative joint diseases (DJD). DJD is a slowly progressing, degenerative disease of the TMJ characterized by cartilage degradation and subchondral bone remodeling. Patients with DJD often develop pain (TMJ osteoarthritis; TMJ OA), but do not always have pain (TMJ osteoarthrosis). Therefore, pain symptoms are not always associated with altered TMJ structures, which suggests that a causal relationship between TMJ degeneration and pain is unclear. Multiple animal models have been developed for determining altered joint structure and pain phenotypes in response to various TMJ injuries. Rodent models of TMJOA and pain include injections to induce inflammation or cartilage destruction, sustained opening of the oral cavity, surgical resection of the articular disc, transgenic approaches to knockout or overexpress key genes, and an integrative approach with superimposed emotional stress or comorbidities. In rodents, TMJ pain and degeneration occur during partially overlapping time periods in these models, which suggests that common biological factors may mediate TMJ pain and degeneration over different time courses. While substances such as intra-articular pro-inflammatory cytokines commonly cause pain and joint degeneration, it remains unclear whether pain or nociceptive activities are causally associated with structural degeneration of TMJ and whether structural degeneration of TMJ is necessary for producing persistent pain. A thorough understanding of the determining factors of pain-structure relationships of TMJ during the onset, progression, and chronification by adopting novel approaches and models should improve the ability to simultaneously treat TMJ pain and TMJ degeneration.
Collapse
Affiliation(s)
- Man-Kyo Chung
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, United States
| | | | | | | | | |
Collapse
|
2
|
Mirabelli E, Elkabes S. Neuropathic Pain in Multiple Sclerosis and Its Animal Models: Focus on Mechanisms, Knowledge Gaps and Future Directions. Front Neurol 2022; 12:793745. [PMID: 34975739 PMCID: PMC8716468 DOI: 10.3389/fneur.2021.793745] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/17/2021] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is a multifaceted, complex and chronic neurological disease that leads to motor, sensory and cognitive deficits. MS symptoms are unpredictable and exceedingly variable. Pain is a frequent symptom of MS and manifests as nociceptive or neuropathic pain, even at early disease stages. Neuropathic pain is one of the most debilitating symptoms that reduces quality of life and interferes with daily activities, particularly because conventional pharmacotherapies do not adequately alleviate neuropathic pain. Despite advances, the mechanisms underlying neuropathic pain in MS remain elusive. The majority of the studies investigating the pathophysiology of MS-associated neuropathic pain have been performed in animal models that replicate some of the clinical and neuropathological features of MS. Experimental autoimmune encephalomyelitis (EAE) is one of the best-characterized and most commonly used animal models of MS. As in the case of individuals with MS, rodents affected by EAE manifest increased sensitivity to pain which can be assessed by well-established assays. Investigations on EAE provided valuable insights into the pathophysiology of neuropathic pain. Nevertheless, additional investigations are warranted to better understand the events that lead to the onset and maintenance of neuropathic pain in order to identify targets that can facilitate the development of more effective therapeutic interventions. The goal of the present review is to provide an overview of several mechanisms implicated in neuropathic pain in EAE by summarizing published reports. We discuss current knowledge gaps and future research directions, especially based on information obtained by use of other animal models of neuropathic pain such as nerve injury.
Collapse
Affiliation(s)
- Ersilia Mirabelli
- Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, United States.,Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA, United States
| | - Stella Elkabes
- Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
3
|
Pain Mechanism in Rheumatoid Arthritis: From Cytokines to Central Sensitization. Mediators Inflamm 2020; 2020:2076328. [PMID: 33005097 PMCID: PMC7503123 DOI: 10.1155/2020/2076328] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/13/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Pain is the most common symptom in patients with rheumatoid arthritis (RA). Although in recent years, through the implementation of targeted treatment and the introduction of disease-modifying antirheumatic drugs (DMARDs), the treatment of RA patients has made a significant progress, a large proportion of patients still feel pain. Finding appropriate treatment to alleviate the pain is very important for RA patients. Current research showed that, in addition to inflammation, RA pain involves peripheral sensitization and abnormalities in the central nervous system (CNS) pain regulatory mechanisms. This review summarized the literature on pain mechanisms of RA published in recent years. A better understanding of pain mechanisms will help to develop new analgesic targets and deploy new and existing therapies.
Collapse
|
4
|
Brinzeu A, Berthiller J, Caillet J, Staquet H, Mertens P. Ziconotide for spinal cord injury‐related pain. Eur J Pain 2019; 23:1688-1700. [DOI: 10.1002/ejp.1445] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 05/27/2019] [Accepted: 06/20/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Andrei Brinzeu
- Neurosurgical Department Pierre Wertheimer Hospital, Hospices Civils de Lyon, Lyon 1 University Lyon France
- Pain Center “Pierre Wertheimer” Hospital, Hospices Civils de Lyon Lyon France
- University of Medicine and Pharmacy “Victor Babes” Timisoara Timisoara Romania
| | - Julien Berthiller
- Neurosurgical Department Pierre Wertheimer Hospital, Hospices Civils de Lyon, Lyon 1 University Lyon France
| | | | - Helene Staquet
- Neurosurgical Department Pierre Wertheimer Hospital, Hospices Civils de Lyon, Lyon 1 University Lyon France
- Neurosurgical Department Beaujon University Hospital‐APHP Clichy France
| | - Patrick Mertens
- Neurosurgical Department Pierre Wertheimer Hospital, Hospices Civils de Lyon, Lyon 1 University Lyon France
- Pain Center “Pierre Wertheimer” Hospital, Hospices Civils de Lyon Lyon France
| |
Collapse
|
5
|
|
6
|
Caparros-Martin JA, Aglan MS, Temtamy S, Otaify GA, Valencia M, Nevado J, Vallespin E, Del Pozo A, Prior de Castro C, Calatrava-Ferreras L, Gutierrez P, Bueno AM, Sagastizabal B, Guillen-Navarro E, Ballesta-Martinez M, Gonzalez V, Basaran SY, Buyukoglan R, Sarikepe B, Espinoza-Valdez C, Cammarata-Scalisi F, Martinez-Glez V, Heath KE, Lapunzina P, Ruiz-Perez VL. Molecular spectrum and differential diagnosis in patients referred with sporadic or autosomal recessive osteogenesis imperfecta. Mol Genet Genomic Med 2016; 5:28-39. [PMID: 28116328 PMCID: PMC5241205 DOI: 10.1002/mgg3.257] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/12/2016] [Accepted: 10/19/2016] [Indexed: 11/08/2022] Open
Abstract
Background Osteogenesis imperfecta (OI) is a heterogeneous bone disorder characterized by recurrent fractures. Although most cases of OI have heterozygous mutations in COL1A1 or COL1A2 and show autosomal dominant inheritance, during the last years there has been an explosion in the number of genes responsible for both recessive and dominant forms of this condition. Herein, we have analyzed a cohort of patients with OI, all offspring of unaffected parents, to determine the spectrum of variants accounting for these cases. Twenty patients had nonrelated parents and were sporadic, and 21 were born to consanguineous relationships. Methods Mutation analysis was performed using a next‐generation sequencing gene panel, homozygosity mapping, and whole exome sequencing (WES). Results Patients offspring of nonconsanguineous parents were mostly identified with COL1A1 or COL1A2 heterozygous changes, although there were also a few cases with IFITM5 and WNT1 heterozygous mutations. Only one sporadic patient was a compound heterozygote for two recessive mutations. Patients offspring of consanguineous parents showed homozygous changes in a variety of genes including CRTAP,FKBP10,LEPRE1,PLOD2,PPIB,SERPINF1,TMEM38B, and WNT1. In addition, two patients born to consanguineous parents were found to have de novo COL1A1 heterozygous mutations demonstrating that causative variants in the collagen I structural genes cannot be overlooked in affected children from consanguineous couples. Further to this, WES analysis in probands lacking mutations in OI genes revealed deleterious variants in SCN9A,NTRK1, and SLC2A2, which are associated with congenital indifference to pain (CIP) and Fanconi–Bickel syndrome (FBS). Conclusion This work provides useful information for clinical and genetic diagnosis of OI patients with no positive family history of this disease. Our data also indicate that CIP and FBS are conditions to be considered in the differential diagnosis of OI and suggest a positive role of SCN9A and NTRK1 in bone development.
Collapse
Affiliation(s)
- Jose A Caparros-Martin
- Instituto de Investigaciones BiomédicasConsejo Superior de Investigaciones Científicas-Universidad Autónoma de MadridMadridSpain; CIBER de enfermedades Raras (CIBERER)MadridSpain
| | - Mona S Aglan
- Human Genetics and Genome Research Division Centre of Excellence of Human Genetics National Research Centre Cairo Egypt
| | - Samia Temtamy
- Human Genetics and Genome Research Division Centre of Excellence of Human Genetics National Research Centre Cairo Egypt
| | - Ghada A Otaify
- Human Genetics and Genome Research Division Centre of Excellence of Human Genetics National Research Centre Cairo Egypt
| | | | - Julián Nevado
- Instituto de Genética Médica y Molecular (INGEMM) Hospital Universitario La Paz-IdiPaz Universidad Autónoma de Madrid Madrid Spain
| | - Elena Vallespin
- Instituto de Genética Médica y Molecular (INGEMM) Hospital Universitario La Paz-IdiPaz Universidad Autónoma de Madrid Madrid Spain
| | - Angela Del Pozo
- Instituto de Genética Médica y Molecular (INGEMM) Hospital Universitario La Paz-IdiPaz Universidad Autónoma de Madrid Madrid Spain
| | - Carmen Prior de Castro
- Instituto de Genética Médica y Molecular (INGEMM) Hospital Universitario La Paz-IdiPaz Universidad Autónoma de Madrid Madrid Spain
| | - Lucia Calatrava-Ferreras
- Instituto de Investigaciones BiomédicasConsejo Superior de Investigaciones Científicas-Universidad Autónoma de MadridMadridSpain; CIBER de enfermedades Raras (CIBERER)MadridSpain
| | - Pilar Gutierrez
- Orthopedic Surgery Department and Endocrinology Department Hospital Universitario de Getafe Madrid Spain
| | - Ana M Bueno
- Orthopedic Surgery Department and Endocrinology Department Hospital Universitario de Getafe Madrid Spain
| | - Belen Sagastizabal
- Orthopedic Surgery Department and Endocrinology Department Hospital Universitario de Getafe Madrid Spain
| | - Encarna Guillen-Navarro
- CIBER de enfermedades Raras (CIBERER)MadridSpain; Unidad de Genética MédicaServicio de PediatríaHospital Universitario Virgen de la ArrixacaMurciaSpain
| | - Maria Ballesta-Martinez
- Unidad de Genética Médica Servicio de Pediatría Hospital Universitario Virgen de la Arrixaca Murcia Spain
| | - Vanesa Gonzalez
- Unidad de Genética Médica Servicio de Pediatría Hospital Universitario Virgen de la Arrixaca Murcia Spain
| | - Sarenur Y Basaran
- Department of Medical Genetics Faculty of Medicine Istanbul Medeniyet University Istanbul Turkey
| | - Ruksan Buyukoglan
- Department of Genetics Faculty of Medicine Erciyes University Kayseri Turkey
| | - Bilge Sarikepe
- Department of Genetics School of Medicine Pamukkale University Denizli Turkey
| | | | | | - Victor Martinez-Glez
- CIBER de enfermedades Raras (CIBERER)MadridSpain; Instituto de Genética Médica y Molecular (INGEMM)Hospital Universitario La Paz-IdiPazUniversidad Autónoma de MadridMadridSpain
| | - Karen E Heath
- CIBER de enfermedades Raras (CIBERER)MadridSpain; Instituto de Genética Médica y Molecular (INGEMM)Hospital Universitario La Paz-IdiPazUniversidad Autónoma de MadridMadridSpain; Skeletal Dysplasia Multidisciplinary Unit (UMDE)Hospital Universitario La PazMadridSpain
| | - Pablo Lapunzina
- CIBER de enfermedades Raras (CIBERER)MadridSpain; Instituto de Genética Médica y Molecular (INGEMM)Hospital Universitario La Paz-IdiPazUniversidad Autónoma de MadridMadridSpain; Skeletal Dysplasia Multidisciplinary Unit (UMDE)Hospital Universitario La PazMadridSpain
| | - Victor L Ruiz-Perez
- Instituto de Investigaciones BiomédicasConsejo Superior de Investigaciones Científicas-Universidad Autónoma de MadridMadridSpain; CIBER de enfermedades Raras (CIBERER)MadridSpain; Skeletal Dysplasia Multidisciplinary Unit (UMDE)Hospital Universitario La PazMadridSpain
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW This article reviews and outlines recent advances in the field of bone remodeling in psoriatic disease and identify avenues for further research. RECENT FINDINGS High-resolution imaging revealed that new bone formation, observed in psoriatic arthritis (PsA) is centered at enthesial sites in contrast to hand osteoarthritis, and new bone formation is also present in psoriasis patients without arthritis. Accumulating evidence strongly suggests that the IL-23/IL-17 pathway is directly involved in altered bone phenotypes in PsA. Apart from Th17 and Th22 cells, CD8IL-17 T cells, γδT cells, and type 3 innate lymphoid cells also secrete IL-17 and IL-22. Further studies will be needed to clarify the role of these cells in bone remodeling in the context of psoriatic disease. Recent research also strengthened the earlier viewpoint that mechanical stress can serve as a trigger for joint inflammation and arthritis development. Recent findings suggest that inflammation beginning in the skin may become more generalized and involve musculoskeletal structures. Other reports suggest that gut microbiota might have a role in joint inflammatory responses and bone remodeling in psoriatic disease. Successful application of omics approaches and advance imaging studies also revealed many novel aspects of psoriatic diseases and joint-related pathologies which will likely help pinpoint causal genes, pathways, and novel biomarkers in the near future. SUMMARY Imaging studies have provided new insights into new bone formation phenotypes in PsA. The IL-23/IL-17 pathway is of central importance in psoriatic bone remodeling where, apart from CD4 T helper cells, other IL-17 and IL-22-secreting innate and adaptive cells may also be involved. Insights from study of the microbiome and from omics technologies will set the stage for new advances in our understanding of bone disorders in psoriatic diseases.
Collapse
Affiliation(s)
- Ananta Paine
- Allergy, Immunology and Rheumatology Division, University of Rochester Medical Center, Rochester, New York, USA
| | | |
Collapse
|
8
|
Ibeas Bih C, Chen T, Nunn AVW, Bazelot M, Dallas M, Whalley BJ. Molecular Targets of Cannabidiol in Neurological Disorders. Neurotherapeutics 2015; 12:699-730. [PMID: 26264914 PMCID: PMC4604182 DOI: 10.1007/s13311-015-0377-3] [Citation(s) in RCA: 390] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Cannabis has a long history of anecdotal medicinal use and limited licensed medicinal use. Until recently, alleged clinical effects from anecdotal reports and the use of licensed cannabinoid medicines are most likely mediated by tetrahydrocannabinol by virtue of: 1) this cannabinoid being present in the most significant quantities in these preparations; and b) the proportion:potency relationship between tetrahydrocannabinol and other plant cannabinoids derived from cannabis. However, there has recently been considerable interest in the therapeutic potential for the plant cannabinoid, cannabidiol (CBD), in neurological disorders but the current evidence suggests that CBD does not directly interact with the endocannabinoid system except in vitro at supraphysiological concentrations. Thus, as further evidence for CBD's beneficial effects in neurological disease emerges, there remains an urgent need to establish the molecular targets through which it exerts its therapeutic effects. Here, we conducted a systematic search of the extant literature for original articles describing the molecular pharmacology of CBD. We critically appraised the results for the validity of the molecular targets proposed. Thereafter, we considered whether the molecular targets of CBD identified hold therapeutic potential in relevant neurological diseases. The molecular targets identified include numerous classical ion channels, receptors, transporters, and enzymes. Some CBD effects at these targets in in vitro assays only manifest at high concentrations, which may be difficult to achieve in vivo, particularly given CBD's relatively poor bioavailability. Moreover, several targets were asserted through experimental designs that demonstrate only correlation with a given target rather than a causal proof. When the molecular targets of CBD that were physiologically plausible were considered for their potential for exploitation in neurological therapeutics, the results were variable. In some cases, the targets identified had little or no established link to the diseases considered. In others, molecular targets of CBD were entirely consistent with those already actively exploited in relevant, clinically used, neurological treatments. Finally, CBD was found to act upon a number of targets that are linked to neurological therapeutics but that its actions were not consistent withmodulation of such targets that would derive a therapeutically beneficial outcome. Overall, we find that while >65 discrete molecular targets have been reported in the literature for CBD, a relatively limited number represent plausible targets for the drug's action in neurological disorders when judged by the criteria we set. We conclude that CBD is very unlikely to exert effects in neurological diseases through modulation of the endocannabinoid system. Moreover, a number of other molecular targets of CBD reported in the literature are unlikely to be of relevance owing to effects only being observed at supraphysiological concentrations. Of interest and after excluding unlikely and implausible targets, the remaining molecular targets of CBD with plausible evidence for involvement in therapeutic effects in neurological disorders (e.g., voltage-dependent anion channel 1, G protein-coupled receptor 55, CaV3.x, etc.) are associated with either the regulation of, or responses to changes in, intracellular calcium levels. While no causal proof yet exists for CBD's effects at these targets, they represent the most probable for such investigations and should be prioritized in further studies of CBD's therapeutic mechanism of action.
Collapse
Affiliation(s)
- Clementino Ibeas Bih
- School of Chemistry, Food and Nutritional Sciences, and Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AP, UK
| | - Tong Chen
- School of Chemistry, Food and Nutritional Sciences, and Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AP, UK
| | | | - Michaël Bazelot
- School of Chemistry, Food and Nutritional Sciences, and Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AP, UK
- GW Pharmaceuticals Ltd, Sovereign House, Vision Park, Chivers Way, Histon, Cambridge, CB24 9BZ, UK
| | - Mark Dallas
- School of Chemistry, Food and Nutritional Sciences, and Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AP, UK
| | - Benjamin J Whalley
- School of Chemistry, Food and Nutritional Sciences, and Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AP, UK.
| |
Collapse
|
9
|
Ashraf S. Editorial: voltage-gated calcium 2.2 channels: therapeutic target for chronic arthritic pain? Arthritis Rheumatol 2015; 67:1416-8. [PMID: 25733131 DOI: 10.1002/art.39092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 02/24/2015] [Indexed: 11/05/2022]
|