1
|
Li X, Yu H, Li D, Liu N. LINE-1 transposable element renaissance in aging and age-related diseases. Ageing Res Rev 2024; 100:102440. [PMID: 39059477 DOI: 10.1016/j.arr.2024.102440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024]
Abstract
Transposable elements (TEs) are essential components of eukaryotic genomes and subject to stringent regulatory mechanisms to avoid their potentially deleterious effects. However, numerous studies have verified the resurrection of TEs, particularly long interspersed nuclear element-1 (LINE-1), during preimplantation development, aging, cancer, and other age-related diseases. The LINE-1 family has also been implicated in several aging-related processes, including genomic instability, loss of heterochromatin, DNA methylation, and the senescence-associated secretory phenotype (SASP). Additionally, the role of the LINE-1 family in cancer development has also been substantiated. Research in this field has offered valuable insights into the functional mechanisms underlying LINE-1 activity, enhancing our understanding of aging regulation. This review provides a comprehensive summary of current findings on LINE-1 and their roles in aging and age-related diseases.
Collapse
Affiliation(s)
- Xiang Li
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Huaxin Yu
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Dong Li
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Na Liu
- School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
2
|
Tsokos GC. The immunology of systemic lupus erythematosus. Nat Immunol 2024; 25:1332-1343. [PMID: 39009839 DOI: 10.1038/s41590-024-01898-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/17/2024] [Indexed: 07/17/2024]
Abstract
Understanding the pathogenesis and clinical manifestations of systemic lupus erythematosus (SLE) has been a great challenge. Reductionist approaches to understand the nature of the disease have identified many pathogenetic contributors that parallel clinical heterogeneity. This Review outlines the immunological control of SLE and looks to experimental tools and approaches that are improving our understanding of the complex contribution of interacting genetics, environment, sex and immunoregulatory factors and their interface with processes inherent to tissue parenchymal cells. Efforts to advance precision medicine in the care of patients with SLE along with treatment strategies to correct the immune system hold hope and are also examined.
Collapse
Affiliation(s)
- George C Tsokos
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Moadab F, Sohrabi S, Wang X, Najjar R, Wolters JC, Jiang H, Miao W, Romero D, Zaller DM, Tran M, Bays A, Taylor MS, Kapeller R, LaCava J, Mustelin T. Subcellular location of L1 retrotransposon-encoded ORF1p, reverse transcription products, and DNA sensors in lupus granulocytes. Mob DNA 2024; 15:14. [PMID: 38937837 PMCID: PMC11212426 DOI: 10.1186/s13100-024-00324-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with an unpredictable course of recurrent exacerbations alternating with more stable disease. SLE is characterized by broad immune activation and autoantibodies against double-stranded DNA and numerous proteins that exist in cells as aggregates with nucleic acids, such as Ro60, MOV10, and the L1 retrotransposon-encoded ORF1p. RESULTS Here we report that these 3 proteins are co-expressed and co-localized in a subset of SLE granulocytes and are concentrated in cytosolic dots that also contain DNA: RNA heteroduplexes and the DNA sensor ZBP1, but not cGAS. The DNA: RNA heteroduplexes vanished from the neutrophils when they were treated with a selective inhibitor of the L1 reverse transcriptase. We also report that ORF1p granules escape neutrophils during the extrusion of neutrophil extracellular traps (NETs) and, to a lesser degree, from neutrophils dying by pyroptosis, but not apoptosis. CONCLUSIONS These results bring new insights into the composition of ORF1p granules in SLE neutrophils and may explain, in part, why proteins in these granules become targeted by autoantibodies in this disease.
Collapse
Affiliation(s)
- Fatemeh Moadab
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Sepideh Sohrabi
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Xiaoxing Wang
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rayan Najjar
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Justina C Wolters
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hua Jiang
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | | | | | | | - Megan Tran
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Alison Bays
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Martin S Taylor
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA.
- University of Washington, 750 Republican Street, Room E507, Seattle, WA, 98109, USA.
| |
Collapse
|
4
|
Mustelin T, Andrade F. Autoimmunity: the neoantigen hypothesis. Front Immunol 2024; 15:1432985. [PMID: 38994353 PMCID: PMC11236689 DOI: 10.3389/fimmu.2024.1432985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Affiliation(s)
- Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Felipe Andrade
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
5
|
Baldwin ET, van Eeuwen T, Hoyos D, Zalevsky A, Tchesnokov EP, Sánchez R, Miller BD, Di Stefano LH, Ruiz FX, Hancock M, Işik E, Mendez-Dorantes C, Walpole T, Nichols C, Wan P, Riento K, Halls-Kass R, Augustin M, Lammens A, Jestel A, Upla P, Xibinaku K, Congreve S, Hennink M, Rogala KB, Schneider AM, Fairman JE, Christensen SM, Desrosiers B, Bisacchi GS, Saunders OL, Hafeez N, Miao W, Kapeller R, Zaller DM, Sali A, Weichenrieder O, Burns KH, Götte M, Rout MP, Arnold E, Greenbaum BD, Romero DL, LaCava J, Taylor MS. Structures, functions and adaptations of the human LINE-1 ORF2 protein. Nature 2024; 626:194-206. [PMID: 38096902 PMCID: PMC10830420 DOI: 10.1038/s41586-023-06947-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
The LINE-1 (L1) retrotransposon is an ancient genetic parasite that has written around one-third of the human genome through a 'copy and paste' mechanism catalysed by its multifunctional enzyme, open reading frame 2 protein (ORF2p)1. ORF2p reverse transcriptase (RT) and endonuclease activities have been implicated in the pathophysiology of cancer2,3, autoimmunity4,5 and ageing6,7, making ORF2p a potential therapeutic target. However, a lack of structural and mechanistic knowledge has hampered efforts to rationally exploit it. We report structures of the human ORF2p 'core' (residues 238-1061, including the RT domain) by X-ray crystallography and cryo-electron microscopy in several conformational states. Our analyses identified two previously undescribed folded domains, extensive contacts to RNA templates and associated adaptations that contribute to unique aspects of the L1 replication cycle. Computed integrative structural models of full-length ORF2p show a dynamic closed-ring conformation that appears to open during retrotransposition. We characterize ORF2p RT inhibition and reveal its underlying structural basis. Imaging and biochemistry show that non-canonical cytosolic ORF2p RT activity can produce RNA:DNA hybrids, activating innate immune signalling through cGAS/STING and resulting in interferon production6-8. In contrast to retroviral RTs, L1 RT is efficiently primed by short RNAs and hairpins, which probably explains cytosolic priming. Other biochemical activities including processivity, DNA-directed polymerization, non-templated base addition and template switching together allow us to propose a revised L1 insertion model. Finally, our evolutionary analysis demonstrates structural conservation between ORF2p and other RNA- and DNA-dependent polymerases. We therefore provide key mechanistic insights into L1 polymerization and insertion, shed light on the evolutionary history of L1 and enable rational drug development targeting L1.
Collapse
Affiliation(s)
| | - Trevor van Eeuwen
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - David Hoyos
- Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arthur Zalevsky
- Department of Bioengineering and Therapeutic Sciences University of California, San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biology Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Egor P Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Bryant D Miller
- Department of Pathology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Luciano H Di Stefano
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Francesc Xavier Ruiz
- Center for Advanced Biotechnology and Medicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Matthew Hancock
- Department of Bioengineering and Therapeutic Sciences University of California, San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biology Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Esin Işik
- Department of Pathology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Carlos Mendez-Dorantes
- Department of Pathology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Thomas Walpole
- Charles River Laboratories, Chesterford Research Park, Saffron Walden, UK
| | - Charles Nichols
- Charles River Laboratories, Chesterford Research Park, Saffron Walden, UK
| | - Paul Wan
- Charles River Laboratories, Chesterford Research Park, Saffron Walden, UK
| | - Kirsi Riento
- Charles River Laboratories, Chesterford Research Park, Saffron Walden, UK
| | - Rowan Halls-Kass
- Charles River Laboratories, Chesterford Research Park, Saffron Walden, UK
| | | | - Alfred Lammens
- Proteros Biostructures GmbH, Martinsried, Planegg, Germany
| | - Anja Jestel
- Proteros Biostructures GmbH, Martinsried, Planegg, Germany
| | - Paula Upla
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Kera Xibinaku
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | | | | | - Kacper B Rogala
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Anna M Schneider
- Structural Biology of Selfish RNA, Department of Protein Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences University of California, San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biology Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Oliver Weichenrieder
- Structural Biology of Selfish RNA, Department of Protein Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | - Kathleen H Burns
- Department of Pathology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA.
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA.
| | - Benjamin D Greenbaum
- Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA.
| | | | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA.
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands.
| | - Martin S Taylor
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Luqman-Fatah A, Nishimori K, Amano S, Fumoto Y, Miyoshi T. Retrotransposon life cycle and its impacts on cellular responses. RNA Biol 2024; 21:11-27. [PMID: 39396200 PMCID: PMC11485995 DOI: 10.1080/15476286.2024.2409607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/30/2024] [Accepted: 09/16/2024] [Indexed: 10/14/2024] Open
Abstract
Approximately 45% of the human genome is comprised of transposable elements (TEs), also known as mobile genetic elements. However, their biological function remains largely unknown. Among them, retrotransposons are particularly abundant, and some of the copies are still capable of mobilization within the genome through RNA intermediates. This review focuses on the life cycle of human retrotransposons and summarizes their regulatory mechanisms and impacts on cellular processes. Retrotransposons are generally epigenetically silenced in somatic cells, but are transcriptionally reactivated under certain conditions, such as tumorigenesis, development, stress, and ageing, potentially leading to genetic instability. We explored the dual nature of retrotransposons as genomic parasites and regulatory elements, focusing on their roles in genetic diversity and innate immunity. Furthermore, we discuss how host factors regulate retrotransposon RNA and cDNA intermediates through their binding, modification, and degradation. The interplay between retrotransposons and the host machinery provides insight into the complex regulation of retrotransposons and the potential for retrotransposon dysregulation to cause aberrant responses leading to inflammation and autoimmune diseases.
Collapse
Affiliation(s)
- Ahmad Luqman-Fatah
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kei Nishimori
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shota Amano
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yukiko Fumoto
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tomoichiro Miyoshi
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Taylor MS, Wu C, Fridy PC, Zhang SJ, Senussi Y, Wolters JC, Cajuso T, Cheng WC, Heaps JD, Miller BD, Mori K, Cohen L, Jiang H, Molloy KR, Chait BT, Goggins MG, Bhan I, Franses JW, Yang X, Taplin ME, Wang X, Christiani DC, Johnson BE, Meyerson M, Uppaluri R, Egloff AM, Denault EN, Spring LM, Wang TL, Shih IM, Fairman JE, Jung E, Arora KS, Yilmaz OH, Cohen S, Sharova T, Chi G, Norden BL, Song Y, Nieman LT, Pappas L, Parikh AR, Strickland MR, Corcoran RB, Mustelin T, Eng G, Yilmaz ÖH, Matulonis UA, Chan AT, Skates SJ, Rueda BR, Drapkin R, Klempner SJ, Deshpande V, Ting DT, Rout MP, LaCava J, Walt DR, Burns KH. Ultrasensitive Detection of Circulating LINE-1 ORF1p as a Specific Multicancer Biomarker. Cancer Discov 2023; 13:2532-2547. [PMID: 37698949 PMCID: PMC10773488 DOI: 10.1158/2159-8290.cd-23-0313] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/09/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023]
Abstract
Improved biomarkers are needed for early cancer detection, risk stratification, treatment selection, and monitoring treatment response. Although proteins can be useful blood-based biomarkers, many have limited sensitivity or specificity for these applications. Long INterspersed Element-1 (LINE-1) open reading frame 1 protein (ORF1p) is a transposable element protein overexpressed in carcinomas and high-risk precursors during carcinogenesis with negligible expression in normal tissues, suggesting ORF1p could be a highly specific cancer biomarker. To explore ORF1p as a blood-based biomarker, we engineered ultrasensitive digital immunoassays that detect mid-attomolar (10-17 mol/L) ORF1p concentrations in plasma across multiple cancers with high specificity. Plasma ORF1p shows promise for early detection of ovarian cancer, improves diagnostic performance in a multianalyte panel, provides early therapeutic response monitoring in gastroesophageal cancers, and is prognostic for overall survival in gastroesophageal and colorectal cancers. Together, these observations nominate ORF1p as a multicancer biomarker with potential utility for disease detection and monitoring. SIGNIFICANCE The LINE-1 ORF1p transposon protein is pervasively expressed in many cancers and is a highly specific biomarker of multiple common, lethal carcinomas and their high-risk precursors in tissue and blood. Ultrasensitive ORF1p assays from as little as 25 μL plasma are novel, rapid, cost-effective tools in cancer detection and monitoring. See related commentary by Doucet and Cristofari, p. 2502. This article is featured in Selected Articles from This Issue, p. 2489.
Collapse
Affiliation(s)
- Martin S. Taylor
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts
| | - Connie Wu
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | - Peter C. Fridy
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York
| | - Stephanie J. Zhang
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | - Yasmeen Senussi
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | - Justina C. Wolters
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Tatiana Cajuso
- Department of Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Wen-Chih Cheng
- Department of Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - John D. Heaps
- Department of Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Bryant D. Miller
- Department of Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Kei Mori
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts
- Healthcare Optics Research Laboratory, Canon U.S.A., Inc., Cambridge, Massachusetts
| | - Limor Cohen
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - Hua Jiang
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York
| | - Kelly R. Molloy
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York
| | - Brian T. Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York
| | | | - Irun Bhan
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Joseph W. Franses
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Xiaoyu Yang
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Mary-Ellen Taplin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Xinan Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - David C. Christiani
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Bruce E. Johnson
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Ravindra Uppaluri
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ann Marie Egloff
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Elyssa N. Denault
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Laura M. Spring
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Tian-Li Wang
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ie-Ming Shih
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Euihye Jung
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kshitij S. Arora
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts
| | - Osman H. Yilmaz
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Sonia Cohen
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Tatyana Sharova
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Gary Chi
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Bryanna L. Norden
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Yuhui Song
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Linda T. Nieman
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Leontios Pappas
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Aparna R. Parikh
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Matthew R. Strickland
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ryan B. Corcoran
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, Washington
| | - George Eng
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts
- The David H. Koch Institute for Integrative Cancer Research at MIT, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ömer H. Yilmaz
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts
- The David H. Koch Institute for Integrative Cancer Research at MIT, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ursula A. Matulonis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Andrew T. Chan
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Steven J. Skates
- MGH Biostatistics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Bo R. Rueda
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Ronny Drapkin
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Samuel J. Klempner
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Vikram Deshpande
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts
| | - David T. Ting
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Michael P. Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York
| | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, the Netherlands
| | - David R. Walt
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | - Kathleen H. Burns
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
8
|
Vylegzhanina AV, Bespalov IA, Novototskaya-Vlasova KA, Hall BM, Gleiberman AS, Yu H, Leontieva OV, Leonova KI, Kurnasov OV, Osterman AL, Dy GK, Komissarov AA, Vasilieva E, Gehlhausen J, Iwasaki A, Ambrosone CB, Tsuji T, Matsuzaki J, Odunsi K, Andrianova EL, Gudkov AV. Cancer Relevance of Circulating Antibodies Against LINE-1 Antigens in Humans. CANCER RESEARCH COMMUNICATIONS 2023; 3:2256-2267. [PMID: 37870410 PMCID: PMC10631453 DOI: 10.1158/2767-9764.crc-23-0289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/16/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
Long interspersed nuclear element-1 (LINE-1 or L1), the most abundant family of autonomous retrotransposons occupying over 17% of human DNA, is epigenetically silenced in normal tissues by the mechanisms involving p53 but is frequently derepressed in cancer, suggesting that L1-encoded proteins may act as tumor-associated antigens recognized by the immune system. In this study, we established an immunoassay to detect circulating autoantibodies against L1 proteins in human blood. Using this assay in >2,800 individuals with or without cancer, we observed significantly higher IgG titers against L1-encoded ORF1p and ORF2p in patients with lung, pancreatic, ovarian, esophageal, and liver cancers than in healthy individuals. Remarkably, elevated levels of anti-ORF1p-reactive IgG were observed in patients with cancer with disease stages 1 and 2, indicating that the immune response to L1 antigens can occur in the early phases of carcinogenesis. We concluded that the antibody response against L1 antigens could contribute to the diagnosis and determination of immunoreactivity of tumors among cancer types that frequently escape early detection. SIGNIFICANCE The discovery of autoantibodies against antigens encoded by L1 retrotransposons in patients with five poorly curable cancer types has potential implications for the detection of an ongoing carcinogenic process and tumor immunoreactivity.
Collapse
Affiliation(s)
| | | | | | | | | | - Han Yu
- Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | | | | | - Oleg V. Kurnasov
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Andrei L. Osterman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Grace K. Dy
- Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Alexey A. Komissarov
- I.V. Davydovsky Clinical City Hospital, Moscow, Russia
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Elena Vasilieva
- I.V. Davydovsky Clinical City Hospital, Moscow, Russia
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | | | - Akiko Iwasaki
- Yale University, New Haven, Connecticut
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | | | - Takemasa Tsuji
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, Illinois
| | - Junko Matsuzaki
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, Illinois
| | - Kunle Odunsi
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, Illinois
| | | | - Andrei V. Gudkov
- Genome Protection, Inc., Buffalo, New York
- Roswell Park Comprehensive Cancer Center, Buffalo, New York
| |
Collapse
|
9
|
Luqman-Fatah A, Miyoshi T. Human LINE-1 retrotransposons: impacts on the genome and regulation by host factors. Genes Genet Syst 2023; 98:121-154. [PMID: 36436935 DOI: 10.1266/ggs.22-00038] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Genome sequencing revealed that nearly half of the human genome is comprised of transposable elements. Although most of these elements have been rendered inactive due to mutations, full-length intact long interspersed element-1 (LINE-1 or L1) copies retain the ability to mobilize through RNA intermediates by a so-called "copy-and-paste" mechanism, termed retrotransposition. L1 is the only known autonomous mobile genetic element in the genome, and its retrotransposition contributes to inter- or intra-individual genetic variation within the human population. However, L1 retrotransposition also poses a threat to genome integrity due to gene disruption and chromosomal instability. Moreover, recent studies suggest that aberrant L1 expression can impact human health by causing diseases such as cancer and chronic inflammation that might lead to autoimmune disorders. To counteract these adverse effects, the host cells have evolved multiple layers of defense mechanisms at the epigenetic, RNA and protein levels. Intriguingly, several host factors have also been reported to facilitate L1 retrotransposition, suggesting that there is competition between negative and positive regulation of L1 by host factors. Here, we summarize the known host proteins that regulate L1 activity at different stages of the replication cycle and discuss how these factors modulate disease-associated phenotypes caused by L1.
Collapse
Affiliation(s)
- Ahmad Luqman-Fatah
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University
- Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University
| | - Tomoichiro Miyoshi
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University
- Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University
| |
Collapse
|
10
|
Moadab F, Wang X, Najjar R, Ukadike KC, Hu S, Hulett T, Bengtsson AA, Lood C, Mustelin T. Argonaute, Vault, and Ribosomal Proteins Targeted by Autoantibodies in Systemic Lupus Erythematosus. J Rheumatol 2023; 50:1136-1144. [PMID: 37127324 PMCID: PMC10524170 DOI: 10.3899/jrheum.2022-1327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
OBJECTIVE To expand, in an unbiased manner, our knowledge of autoantigens and autoantibodies in patients with systemic lupus erythematosus (SLE) and evaluate their associations with serological and clinical variables. METHODS Human proteome arrays (> 21,000 proteins) were screened with serum from patients with SLE (n = 12) and healthy controls (n = 6) for IgG and IgA binding. Top hits were validated with 2 cohorts of patients with SLE (cohort 1, n = 49; cohort 2, n = 46) and other rheumatic diseases by ELISA. Clinical associations of the autoantibodies were tested. RESULTS Ro60 was the top hit in the screen, and the 10 following proteins included 2 additional known SLE autoantigens plus 8 novel autoantigens involved in microRNA processing (Argonaute protein 1 [AGO1], AGO2, and AGO3), ribosomes (ribosomal protein lateral stalk subunit P2 and ovarian tumor deubiquitinase 5 [OTUD5]), RNA transport by the vault (major vault protein), and the immune proteasome (proteasome activator complex subunit 3). Patient serum contained IgG reactive with these proteins and IgA against the AGO proteins. Using the 95th percentile of healthy donor reactivity, 5-43% were positive for the novel antigens, with OTUD5 and AGO1 showing the highest percentages of positivity. Autoantibodies against AGO1 proteins were more prevalent in patients with oral ulcers in a statistically significant manner. IgG autoantibodies against AGO proteins were also seen in other rheumatic diseases. CONCLUSION We discovered new autoantigens existing in cytosolic macromolecular protein assemblies containing RNA (except the proteasome) in cells. A more comprehensive list of autoantigens will allow for a better analysis of how proteins are targeted by the autoimmune response. Future research will also reveal whether specific autoantibodies have utility in the diagnosis or management of SLE.
Collapse
Affiliation(s)
- Fatemeh Moadab
- F. Moadab, MD, X. Wang, PhD, R. Najjar, MD, C. Lood, PhD, T. Mustelin, MD, PhD, Division of Rheumatology, University of Washington, Seattle, Washington, USA
| | - Xiaoxing Wang
- F. Moadab, MD, X. Wang, PhD, R. Najjar, MD, C. Lood, PhD, T. Mustelin, MD, PhD, Division of Rheumatology, University of Washington, Seattle, Washington, USA
| | - Rayan Najjar
- F. Moadab, MD, X. Wang, PhD, R. Najjar, MD, C. Lood, PhD, T. Mustelin, MD, PhD, Division of Rheumatology, University of Washington, Seattle, Washington, USA
| | - Kennedy C Ukadike
- K.C. Ukadike, MD, Division of Rheumatology, University of Washington, Seattle, Washington, now with Renown Rheumatology, Department of Internal Medicine, Renown Health, and University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Shaohui Hu
- S. Hu, PhD, T. Hulett, PhD, CDI Laboratories, Baltimore, Maryland, USA, and Mayaguez, Puerto Rico
| | - Tyler Hulett
- S. Hu, PhD, T. Hulett, PhD, CDI Laboratories, Baltimore, Maryland, USA, and Mayaguez, Puerto Rico
| | - Anders A Bengtsson
- A.A. Bengtsson, MD, PhD, Division of Rheumatology, Lund University, Lund, Sweden
| | - Christian Lood
- F. Moadab, MD, X. Wang, PhD, R. Najjar, MD, C. Lood, PhD, T. Mustelin, MD, PhD, Division of Rheumatology, University of Washington, Seattle, Washington, USA
| | - Tomas Mustelin
- F. Moadab, MD, X. Wang, PhD, R. Najjar, MD, C. Lood, PhD, T. Mustelin, MD, PhD, Division of Rheumatology, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
11
|
Ukadike KC, Najjar R, Ni K, Laine A, Wang X, Bays A, Taylor MS, LaCava J, Mustelin T. Expression of L1 retrotransposons in granulocytes from patients with active systemic lupus erythematosus. Mob DNA 2023; 14:5. [PMID: 37165451 PMCID: PMC10170740 DOI: 10.1186/s13100-023-00293-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Patients with systemic lupus erythematosus (SLE) have autoantibodies against the L1-encoded open-reading frame 1 protein (ORF1p). Here, we report (i) which immune cells ORF1p emanates from, (ii) which L1 loci are transcriptionally active, (iii) whether the cells express L1-dependent interferon and interferon-stimulated genes, and (iv) the effect of inhibition of L1 ORF2p by reverse transcriptase inhibitors. RESULTS L1 ORF1p was detected by flow cytometry primarily in SLE CD66b+CD15+ regular and low-density granulocytes, but much less in other immune cell lineages. The amount of ORF1p was higher in neutrophils from patients with SLE disease activity index (SLEDAI) > 6 (p = 0.011) compared to patients with inactive disease, SLEDAI < 4. Patient neutrophils transcribed seven to twelve human-specific L1 loci (L1Hs), but only 3 that are full-length and with an intact ORF1. Besides serving as a source of detectable ORF1p, the most abundant transcript encoded a truncated ORF2p reverse transcriptase predicted to remain cytosolic, while the two other encoded an intact full-length ORF2p. A number of genes encoding proteins that influence L1 transcription positively or negatively were altered in patients, particularly those with active disease, compared to healthy controls. Components of nucleic acid sensing and interferon induction were also altered. SLE neutrophils also expressed type I interferon-inducible genes and interferon β, which were substantially reduced after treatment of the cells with drugs known to inhibit ORF2p reverse transcriptase activity. CONCLUSIONS We identified L1Hs loci that are transcriptionally active in SLE neutrophils, and a reduction in the epigenetic silencing mechanisms that normally counteract L1 transcription. SLE neutrophils contained L1-encoded ORF1p protein, as well as activation of the type I interferon system, which was inhibited by treatment with reverse transcriptase inhibitors. Our findings will enable a deeper analysis of L1 dysregulation and its potential role in SLE pathogenesis.
Collapse
Affiliation(s)
- Kennedy C Ukadike
- Department of Medicine, Division of Rheumatology, University of Washington, 750 Republican Street, Room E507, Seattle, WA, 99108, USA
- Department of Internal Medicine, Renown Rheumatology, Renown Health - University of Nevada, Reno School of Medicine, 75 Pringle Way, Suite 701, Reno, NV, 89502, USA
| | - Rayan Najjar
- Department of Medicine, Division of Rheumatology, University of Washington, 750 Republican Street, Room E507, Seattle, WA, 99108, USA
| | - Kathryn Ni
- Department of Medicine, Division of Rheumatology, University of Washington, 750 Republican Street, Room E507, Seattle, WA, 99108, USA
| | - Amanda Laine
- Department of Medicine, Division of Rheumatology, University of Washington, 750 Republican Street, Room E507, Seattle, WA, 99108, USA
| | - Xiaoxing Wang
- Department of Medicine, Division of Rheumatology, University of Washington, 750 Republican Street, Room E507, Seattle, WA, 99108, USA
| | - Alison Bays
- Department of Medicine, Division of Rheumatology, University of Washington, 750 Republican Street, Room E507, Seattle, WA, 99108, USA
| | - Martin S Taylor
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Tomas Mustelin
- Department of Medicine, Division of Rheumatology, University of Washington, 750 Republican Street, Room E507, Seattle, WA, 99108, USA.
| |
Collapse
|
12
|
Sil S, Keegan S, Ettefa F, Denes LT, Boeke JD, Holt LJ. Condensation of LINE-1 is critical for retrotransposition. eLife 2023; 12:e82991. [PMID: 37114770 PMCID: PMC10202459 DOI: 10.7554/elife.82991] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 04/27/2023] [Indexed: 04/29/2023] Open
Abstract
LINE-1 (L1) is the only autonomously active retrotransposon in the human genome, and accounts for 17% of the human genome. The L1 mRNA encodes two proteins, ORF1p and ORF2p, both essential for retrotransposition. ORF2p has reverse transcriptase and endonuclease activities, while ORF1p is a homotrimeric RNA-binding protein with poorly understood function. Here, we show that condensation of ORF1p is critical for L1 retrotransposition. Using a combination of biochemical reconstitution and live-cell imaging, we demonstrate that electrostatic interactions and trimer conformational dynamics together tune the properties of ORF1p assemblies to allow for efficient L1 ribonucleoprotein (RNP) complex formation in cells. Furthermore, we relate the dynamics of ORF1p assembly and RNP condensate material properties to the ability to complete the entire retrotransposon life-cycle. Mutations that prevented ORF1p condensation led to loss of retrotransposition activity, while orthogonal restoration of coiled-coil conformational flexibility rescued both condensation and retrotransposition. Based on these observations, we propose that dynamic ORF1p oligomerization on L1 RNA drives the formation of an L1 RNP condensate that is essential for retrotransposition.
Collapse
Affiliation(s)
- Srinjoy Sil
- Institute for Systems Genetics, New York University Langone Medical CenterNew YorkUnited States
| | - Sarah Keegan
- Institute for Systems Genetics, New York University Langone Medical CenterNew YorkUnited States
| | - Farida Ettefa
- Institute for Systems Genetics, New York University Langone Medical CenterNew YorkUnited States
| | - Lance T Denes
- Institute for Systems Genetics, New York University Langone Medical CenterNew YorkUnited States
| | - Jef D Boeke
- Institute for Systems Genetics, New York University Langone Medical CenterNew YorkUnited States
| | - Liam J Holt
- Institute for Systems Genetics, New York University Langone Medical CenterNew YorkUnited States
| |
Collapse
|
13
|
Abstract
Our defenses against infection rely on the ability of the immune system to distinguish invading pathogens from self. This task is exceptionally challenging, if not seemingly impossible, in the case of retroviruses that have integrated almost seamlessly into the host. This review examines the limits of innate and adaptive immune responses elicited by endogenous retroviruses and other retroelements, the targets of immune recognition, and the consequences for host health and disease. Contrary to theoretical expectation, endogenous retroelements retain substantial immunogenicity, which manifests most profoundly when their epigenetic repression is compromised, contributing to autoinflammatory and autoimmune disease and age-related inflammation. Nevertheless, recent evidence suggests that regulated immune reactivity to endogenous retroelements is integral to immune system development and function, underpinning cancer immunosurveillance, resistance to infection, and responses to the microbiota. Elucidation of the interaction points with endogenous retroelements will therefore deepen our understanding of immune system function and contribution to disease.
Collapse
Affiliation(s)
- George Kassiotis
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, United Kingdom;
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
14
|
Taylor MS, Connie W, Fridy PC, Zhang SJ, Senussi Y, Wolters JC, Cheng WC, Heaps J, Miller BD, Mori K, Cohen L, Jiang H, Molloy KR, Norden BL, Chait BT, Goggins M, Bhan I, Franses JW, Yang X, Taplin ME, Wang X, Christiani DC, Johnson BE, Meyerson M, Uppaluri R, Egloff AM, Denault EN, Spring LM, Wang TL, Shih IM, Jung E, Arora KS, Zukerberg LR, Yilmaz OH, Chi G, Matulonis UA, Song Y, Nieman L, Parikh AR, Strickland M, Corcoran RB, Mustelin T, Eng G, Yilmaz ÃMH, Skates SJ, Rueda BR, Drapkin R, Klempner SJ, Deshpande V, Ting DT, Rout MP, LaCava J, Walt DR, Burns KH. Ultrasensitive detection of circulating LINE-1 ORF1p as a specific multi-cancer biomarker. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525462. [PMID: 36747644 PMCID: PMC9900799 DOI: 10.1101/2023.01.25.525462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Improved biomarkers are needed for early cancer detection, risk stratification, treatment selection, and monitoring treatment response. While proteins can be useful blood-based biomarkers, many have limited sensitivity or specificity for these applications. Long INterspersed Element-1 (LINE-1, L1) open reading frame 1 protein (ORF1p) is a transposable element protein overexpressed in carcinomas and high-risk precursors during carcinogenesis with negligible detectable expression in corresponding normal tissues, suggesting ORF1p could be a highly specific cancer biomarker. To explore the potential of ORF1p as a blood-based biomarker, we engineered ultrasensitive digital immunoassays that detect mid-attomolar (10-17 M) ORF1p concentrations in patient plasma samples across multiple cancers with high specificity. Plasma ORF1p shows promise for early detection of ovarian cancer, improves diagnostic performance in a multi-analyte panel, and provides early therapeutic response monitoring in gastric and esophageal cancers. Together, these observations nominate ORF1p as a multi-cancer biomarker with potential utility for disease detection and monitoring.
Collapse
|
15
|
Zhang C, Raveney B, Takahashi F, Yeh TW, Hohjoh H, Yamamura T, Oki S. Pathogenic Microglia Orchestrate Neurotoxic Properties of Eomes-Expressing Helper T Cells. Cells 2023; 12:cells12060868. [PMID: 36980209 PMCID: PMC10047905 DOI: 10.3390/cells12060868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
In addition to disease-associated microglia (DAM), microglia with MHC-II and/or IFN-I signatures may form additional pathogenic subsets that are relevant to neurodegeneration. However, the significance of such MHC-II and IFN-I signatures remains elusive. We demonstrate here that these microglial subsets play intrinsic roles in orchestrating neurotoxic properties of neurotoxic Eomes+ Th cells under the neurodegeneration-associated phase of experimental autoimmune encephalomyelitis (EAE) that corresponds to progressive multiple sclerosis (MS). Microglia acquire IFN-signature after sensing ectopically expressed long interspersed nuclear element-1 (L1) gene. Furthermore, ORF1, an L1-encoded protein aberrantly expressed in the diseased central nervous system (CNS), stimulated Eomes+ Th cells after Trem2-dependent ingestion and presentation in MHC-II context by microglia. Interestingly, administration of an L1 inhibitor significantly ameliorated neurodegenerative symptoms of EAE concomitant with reduced accumulation of Eomes+ Th cells in the CNS. Collectively, our data highlight a critical contribution of new microglia subsets as a neuroinflammatory hub in immune-mediated neurodegeneration.
Collapse
Affiliation(s)
- Chenyang Zhang
- Department of Immunology, National Institute of Neuroscience, NCNP, Tokyo 187-8502, Japan
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Ben Raveney
- Department of Immunology, National Institute of Neuroscience, NCNP, Tokyo 187-8502, Japan
| | - Fumio Takahashi
- Department of Immunology, National Institute of Neuroscience, NCNP, Tokyo 187-8502, Japan
| | - Tzu-wen Yeh
- Department of Immunology, National Institute of Neuroscience, NCNP, Tokyo 187-8502, Japan
| | - Hirohiko Hohjoh
- Department of Molecular Pharmacology, National Institute of Neuroscience, NCNP, Tokyo 187-8502, Japan
| | - Takashi Yamamura
- Department of Immunology, National Institute of Neuroscience, NCNP, Tokyo 187-8502, Japan
- Correspondence: (T.Y.); (S.O.); Tel.: +81-42-341-2711 (T.Y. & S.O.)
| | - Shinji Oki
- Department of Immunology, National Institute of Neuroscience, NCNP, Tokyo 187-8502, Japan
- Correspondence: (T.Y.); (S.O.); Tel.: +81-42-341-2711 (T.Y. & S.O.)
| |
Collapse
|
16
|
Gómez-Bañuelos E, Fava A, Andrade F. An update on autoantibodies in systemic lupus erythematosus. Curr Opin Rheumatol 2023; 35:61-67. [PMID: 36695053 PMCID: PMC9881844 DOI: 10.1097/bor.0000000000000922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PURPOSE OF REVIEW Autoantibodies are cornerstone biomarkers in systemic lupus erythematosus (SLE), an autoimmune disease characterized by autoantibody-mediated tissue damage. Autoantibodies can inform about disease susceptibility, clinical course, outcomes and the cause of SLE. Identifying pathogenic autoantibodies in SLE, however, remains a significant challenge. This review summarizes recent advances in the field of autoantibodies in SLE. RECENT FINDINGS High-throughput technologies and innovative hypothesis have been applied to identify autoantibodies linked to pathogenic pathways in SLE. This work has led to the discovery of functional autoantibodies targeting key components is SLE pathogenesis (e.g. DNase1L3, cytokines, extracellular immunoregulatory receptors), as well as the identification of endogenous retroelements and interferon-induced proteins as sources of autoantigens in SLE. Others have reinvigorated the study of mitochondria, which has antigenic parallels with bacteria, as a trigger of autoantibodies in SLE, and identified faecal IgA to nuclear antigens as potential biomarkers linking gut permeability and microbial translocation in SLE pathogenesis. Recent studies showed that levels of autoantibodies against dsDNA, C1q, chromatin, Sm and ribosomal P may serve as biomarkers of proliferative lupus nephritis, and identified novel autoantibodies to several unique species of Ro52 overexpressed by SLE neutrophils. SUMMARY Autoantibodies hold promise as biomarkers of pathogenic mechanisms in SLE.
Collapse
Affiliation(s)
- Eduardo Gómez-Bañuelos
- Division of Rheumatology, The Johns Hopkins University School of Medicine. Baltimore, MD, 21224. U.S.A
| | - Andrea Fava
- Division of Rheumatology, The Johns Hopkins University School of Medicine. Baltimore, MD, 21224. U.S.A
| | - Felipe Andrade
- Division of Rheumatology, The Johns Hopkins University School of Medicine. Baltimore, MD, 21224. U.S.A
| |
Collapse
|
17
|
Antiochos B, Paz M, Li J, Goldman DW, Petri M, Darrah E, Cashman K, Sanz I, Burns KH, Ardeljan D, Andrade F, Rosen A. Autoantibodies targeting LINE-1-encoded ORF1p are associated with systemic lupus erythematosus diagnosis but not disease activity. Clin Exp Rheumatol 2022; 40:1636-1641. [PMID: 34665712 PMCID: PMC10424221 DOI: 10.55563/clinexprheumatol/bfz387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/13/2021] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Long Interspersed Element 1 (LINE-1) is an endogenous retroelement that constitutes a significant portion of the human genome and has been implicated in the pathogenesis of systemic lupus erythematosus (SLE). The LINE-1 RNA chaperone protein ORF1p was recently identified as an SLE autoantigen. Here we analyse ORF1p for qualities underlying SLE autoantigen status, compared anti-ORF1p antibodies to markers of SLE disease activity, and performed screening for antibodies against LINE-1 reverse transcriptase ORF2p. METHODS ORF1p was examined in epithelial cell lines treated with cytotoxic lymphocyte granules and UV irradiation. Anti-ORF1p and anti-ORF2p antibodies were assayed by ELISA and analysed in two SLE cohorts. RESULTS We found that ORF1p localises to cytoplasmic RNA-containing blebs in apoptotic cells, and is a substrate of the cytotoxic protease granzyme B (GrB). Anti-ORF1p antibodies were present in 4.2% of healthy controls, compared to 15.8% (p=0.0157) and 15.5% (p=0.036) of subjects in the two SLE cohorts. Anti-ORF1p antibodies were not associated with SLE disease activity nor peripheral blood markers of interferon (IFN) activation. Anti-ORF1p titres demonstrated stability over serial time points. Anti-ORF1p antibodies were not associated with anti-DNA, anti-RNP, or other SLE autoantibodies. There was no difference in anti-ORF2p ELISA results in controls versus SLE patients. CONCLUSIONS LINE-1 ORF1p is a component of apoptotic blebs and a substrate for GrB. Anti-ORF1p antibodies are enriched in SLE subjects but are not associated with dynamic markers of disease activity. These data support a potential role for LINE-1 dysregulation in SLE pathogenesis.
Collapse
Affiliation(s)
- Brendan Antiochos
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Merlin Paz
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jessica Li
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel W Goldman
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michelle Petri
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Erika Darrah
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kevin Cashman
- Division of Rheumatology, Emory University, Atlanta, GA, USA
| | - Ignacio Sanz
- Division of Rheumatology, Emory University, Atlanta, GA, USA
| | - Kathleen H Burns
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MS, and Department of Haematologic Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel Ardeljan
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Felipe Andrade
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Antony Rosen
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
18
|
Takahashi F, Zhang C, Hohjoh H, Raveney B, Yamamura T, Hayashi N, Oki S. Immune-mediated neurodegenerative trait provoked by multimodal derepression of long-interspersed nuclear element-1. iScience 2022; 25:104278. [PMID: 35573205 PMCID: PMC9097630 DOI: 10.1016/j.isci.2022.104278] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/25/2022] [Accepted: 04/18/2022] [Indexed: 11/25/2022] Open
Abstract
Neurodegeneration is a process involving both cell autonomous and non-cell autonomous neuron loss, followed by a collapse of neural networks, but its pathogenesis is poorly understood. We have previously demonstrated that Eomes-positive helper T (Eomes + Th) cells recognizing LINE-1(L1)-derived prototypic antigen ORF1 mediate neurotoxicity associated with the neurodegenerative pathology of experimental autoimmune encephalomyelitis (EAE). Here, we show that Eomes + Th cells accumulate in the CNS of mouse models of authentic neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease (AD), and secrete the neurotoxic granzyme B after encounter with ORF1 antigen. Multimodal derepression of neuronal L1 transcription is observed in EAE and ALS/AD models during neurodegeneration in active and cell cycle-mediated manner, respectively. These data suggest that the adventitious concurrence of immune-mediated neurodegenerative traits by Eomes + Th cells and ectopic expression of L1-derived antigen(s) in the inflamed CNS may materialize a communal and previously unappreciated pathogenesis of neurodegeneration. Eomes + Th cells accumulate in the CNS with undergoing neurodegeneration in common Multimodal L1 derepression is emerged in neuron cells under neurodegeneration Eomes + Th cells recognize L1-ORF1 antigen to exert neurotoxicity via granzyme B Immune-mediated neurotoxicity may embody a novel pathogenesis of neurodegeneration
Collapse
Affiliation(s)
- Fumio Takahashi
- Department of Immunology, National Institute of Neuroscience, NCNP, Tokyo, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Chenyang Zhang
- Department of Immunology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Hirohiko Hohjoh
- Department of Molecular Pharmacology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Ben Raveney
- Department of Immunology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Takashi Yamamura
- Department of Immunology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Nobuhiro Hayashi
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Shinji Oki
- Department of Immunology, National Institute of Neuroscience, NCNP, Tokyo, Japan
- Corresponding author
| |
Collapse
|
19
|
Koch BF. SARS-CoV-2 and human retroelements: a case for molecular mimicry? BMC Genom Data 2022; 23:27. [PMID: 35395708 PMCID: PMC8992427 DOI: 10.1186/s12863-022-01040-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/16/2022] [Indexed: 01/12/2023] Open
Abstract
Background The factors driving the late phase of COVID-19 are still poorly understood. However, autoimmunity is an evolving theme in COVID-19’s pathogenesis. Additionally, deregulation of human retroelements (RE) is found in many viral infections, and has also been reported in COVID-19. Results Unexpectedly, coronaviruses (CoV) – including SARS-CoV-2 – harbour many RE-identical sequences (up to 35 base pairs), and some of these sequences are part of SARS-CoV-2 epitopes associated to COVID-19 severity. Furthermore, RE are expressed in healthy controls and human cells and become deregulated after SARS-CoV-2 infection, showing mainly changes in long interspersed nuclear element (LINE1) expression, but also in endogenous retroviruses. Conclusion CoV and human RE share coding sequences, which are targeted by antibodies in COVID-19 and thus could induce an autoimmune loop by molecular mimicry. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-022-01040-2.
Collapse
Affiliation(s)
- Benjamin Florian Koch
- Department of Internal Medicine, Nephrology, Goethe University Hospital, Johann Wolfgang Goethe University Frankfurt/Main, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
20
|
Coordination of retrotransposons and type I interferon with distinct interferon pathways in dermatomyositis, systemic lupus erythematosus and autoimmune blistering disease. Sci Rep 2021; 11:23146. [PMID: 34848794 PMCID: PMC8632942 DOI: 10.1038/s41598-021-02522-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 11/18/2021] [Indexed: 01/05/2023] Open
Abstract
Type I interferon (IFN) plays a crucial role in innate and adaptive immunity, and aberrant IFN responses are involved in systemic autoimmune diseases, such as systemic lupus erythematosus (SLE) and dermatomyositis (DM). Type I IFNs can be induced by transcribed retrotransposons. The regulation of retrotransposons and type I IFN and the downstream IFN pathways in SLE, DM, and autoimmune blistering disease (AIBD) were investigated. The gene expression levels of retrotransposons, including LINE-1, type I-III IFNs, and IFN-stimulated genes (ISGs) in peripheral blood cells from patients with DM (n = 24), SLE (n = 19), AIBD (n = 14) and healthy controls (HCs, n = 10) were assessed by quantitative polymerase chain reaction. Upregulation of retrotransposons and IFNs was detected in DM patient samples, as is characteristic, compared to HCs; however, ISGs were not uniformly upregulated. In contrast, retrotransposons and IFNs, except for type II IFN, such as IFN-γ, were not upregulated in SLE. In AIBD, only some retrotransposons and type I interferons were upregulated. The DM, SLE, and AIBD samples showed coordinated expression of retrotransposons and type I IFNs and distinct spectra of IFN signaling. A positive correlation between LINE-1 and IFN-β1 was also detected in human cell lines. These factors may participate in the development of these autoimmune diseases.
Collapse
|
21
|
Ramos KS, Bojang P, Bowers E. Role of long interspersed nuclear element-1 in the regulation of chromatin landscapes and genome dynamics. Exp Biol Med (Maywood) 2021; 246:2082-2097. [PMID: 34304633 PMCID: PMC8524765 DOI: 10.1177/15353702211031247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/27/2022] Open
Abstract
LINE-1 retrotransposon, the most active mobile element of the human genome, is subject to tight regulatory control. Stressful environments and disease modify the recruitment of regulatory proteins leading to unregulated activation of LINE-1. The activation of LINE-1 influences genome dynamics through altered chromatin landscapes, insertion mutations, deletions, and modulation of cellular plasticity. To date, LINE-1 retrotransposition has been linked to various cancer types and may in fact underwrite the genetic basis of various other forms of chronic human illness. The occurrence of LINE-1 polymorphisms in the human population may define inter-individual differences in susceptibility to disease. This review is written in honor of Dr Peter Stambrook, a friend and colleague who carried out highly impactful cancer research over many years of professional practice. Dr Stambrook devoted considerable energy to helping others live up to their full potential and to navigate the complexities of professional life. He was an inspirational leader, a strong advocate, a kind mentor, a vocal supporter and cheerleader, and yes, a hard critic and tough friend when needed. His passionate stand on issues, his witty sense of humor, and his love for humanity have left a huge mark in our lives. We hope that that the knowledge summarized here will advance our understanding of the role of LINE-1 in cancer biology and expedite the development of innovative cancer diagnostics and treatments in the ways that Dr Stambrook himself had so passionately envisioned.
Collapse
Affiliation(s)
- Kenneth S Ramos
- Institute of Biosciences and Technology, Texas A&M Health, Houston, TX 77030, USA
| | - Pasano Bojang
- University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Emma Bowers
- Institute of Biosciences and Technology, Texas A&M Health, Houston, TX 77030, USA
| |
Collapse
|
22
|
Gorbunova V, Seluanov A, Mita P, McKerrow W, Fenyö D, Boeke JD, Linker SB, Gage FH, Kreiling JA, Petrashen AP, Woodham TA, Taylor JR, Helfand SL, Sedivy JM. The role of retrotransposable elements in ageing and age-associated diseases. Nature 2021; 596:43-53. [PMID: 34349292 PMCID: PMC8600649 DOI: 10.1038/s41586-021-03542-y] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
The genomes of virtually all organisms contain repetitive sequences that are generated by the activity of transposable elements (transposons). Transposons are mobile genetic elements that can move from one genomic location to another; in this process, they amplify and increase their presence in genomes, sometimes to very high copy numbers. In this Review we discuss new evidence and ideas that the activity of retrotransposons, a major subgroup of transposons overall, influences and even promotes the process of ageing and age-related diseases in complex metazoan organisms, including humans. Retrotransposons have been coevolving with their host genomes since the dawn of life. This relationship has been largely competitive, and transposons have earned epithets such as 'junk DNA' and 'molecular parasites'. Much of our knowledge of the evolution of retrotransposons reflects their activity in the germline and is evident from genome sequence data. Recent research has provided a wealth of information on the activity of retrotransposons in somatic tissues during an individual lifespan, the molecular mechanisms that underlie this activity, and the manner in which these processes intersect with our own physiology, health and well-being.
Collapse
Affiliation(s)
- Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, New York 14627, USA
| | - Andrei Seluanov
- Departments of Biology and Medicine, University of Rochester, Rochester, New York 14627, USA
| | - Paolo Mita
- Institute for Systems Genetics, and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, New York 10016, USA
| | - Wilson McKerrow
- Institute for Systems Genetics, and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, New York 10016, USA
| | - David Fenyö
- Institute for Systems Genetics, and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, New York 10016, USA
| | - Jef D. Boeke
- Institute for Systems Genetics, and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, New York 10016, USA.,Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn 11201, NY, USA
| | - Sara B. Linker
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Fred H. Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Jill A. Kreiling
- Center on the Biology of Aging, and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Anna P. Petrashen
- Center on the Biology of Aging, and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Trenton A. Woodham
- Center on the Biology of Aging, and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Jackson R. Taylor
- Center on the Biology of Aging, and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Stephen L. Helfand
- Center on the Biology of Aging, and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - John M. Sedivy
- Center on the Biology of Aging, and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA.,Corresponding author
| |
Collapse
|
23
|
IgG and IgA autoantibodies against L1 ORF1p expressed in granulocytes correlate with granulocyte consumption and disease activity in pediatric systemic lupus erythematosus. Arthritis Res Ther 2021; 23:153. [PMID: 34051843 PMCID: PMC8164314 DOI: 10.1186/s13075-021-02538-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 05/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Most patients with systemic lupus erythematosus (SLE) have IgG autoantibodies against the RNA-binding p40 (ORF1p) protein encoded by the L1 retroelement. This study tested if these autoantibodies are also present in children with pediatric SLE (pSLE) and if the p40 protein itself could be detected in immune cells. METHODS Autoantibodies in the plasma of pSLE patients (n = 30), healthy children (n = 37), and disease controls juvenile idiopathic arthritis (JIA) (n = 32) and juvenile dermatomyositis (JDM) (n = 60), were measured by ELISA. Expression of p40 in immune cells was assessed by flow cytometry. Markers of neutrophil activation and death were quantitated by ELISA. RESULTS IgG and IgA autoantibodies reactive with p40 were detected in the pSLE patients, but were low in healthy controls and in JIA or JDM. pSLE patients with active disease (13 of them newly diagnosed) had higher titers than the same patients after effective therapy (p = 0.0003). IgG titers correlated with SLEDAI (r = 0.65, p = 0.0001), ESR (r = 0.43, p = 0.02), and anti-dsDNA antibodies (r = 0.49, p < 0.03), and inversely with complement C3 (r = -0.55, p = 0.002) and C4 (r = -0.51, p = 0.006). p40 protein was detected in a subpopulation of CD66b+ granulocytes in pSLE, as well as in adult SLE patients. Myeloperoxidase and neutrophil elastase complexed with DNA and the neutrophil-derived S100A8/A9 were elevated in plasma from pSLE patients with active disease and correlated with anti-p40 autoantibodies and disease activity. CONCLUSIONS Children with active SLE have elevated IgG and IgA autoantibodies against L1 p40, and this protein can be detected in circulating granulocytes in both pediatric and adult SLE patients. P40 expression and autoantibody levels correlate with disease activity. Markers of neutrophil activation and death also correlate with these autoantibodies and with disease activity, suggesting that neutrophils express L1 and are a source of p40.
Collapse
|
24
|
Gazquez-Gutierrez A, Witteveldt J, R Heras S, Macias S. Sensing of transposable elements by the antiviral innate immune system. RNA (NEW YORK, N.Y.) 2021; 27:rna.078721.121. [PMID: 33888553 PMCID: PMC8208052 DOI: 10.1261/rna.078721.121] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/17/2021] [Indexed: 05/15/2023]
Abstract
Around half of the genome in mammals is composed of transposable elements (TEs) such as DNA transposons and retrotransposons. Several mechanisms have evolved to prevent their activity and the detrimental impact of their insertional mutagenesis. Despite these potentially negative effects, TEs are essential drivers of evolution, and in certain settings, beneficial to their hosts. For instance, TEs have rewired the antiviral gene regulatory network and are required for early embryonic development. However, due to structural similarities between TE-derived and viral nucleic acids, cells can misidentify TEs as invading viruses and trigger the major antiviral innate immune pathway, the type I interferon (IFN) response. This review will focus on the different settings in which the role of TE-mediated IFN activation has been documented, including cancer and senescence. Importantly, TEs may also play a causative role in the development of complex autoimmune diseases characterised by constitutive type I IFN activation. All these observations suggest the presence of strong but opposing forces driving the coevolution of TEs and antiviral defence. A better biological understanding of the TE replicative cycle as well as of the antiviral nucleic acid sensing mechanisms will provide insights into how these two biological processes interact and will help to design better strategies to treat human diseases characterised by aberrant TE expression and/or type I IFN activation.
Collapse
Affiliation(s)
| | - Jeroen Witteveldt
- University of Edinburgh - Institute of Immunology and Infection Research
| | - Sara R Heras
- GENYO. Centre for Genomics and Oncological Research, Pfizer University of Granada
| | - Sara Macias
- Institute of Immunology and Infection Research
| |
Collapse
|
25
|
Epigenomic and transcriptomic analysis of chronic inflammatory diseases. Genes Genomics 2021; 43:227-236. [PMID: 33638813 DOI: 10.1007/s13258-021-01045-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Chronic inflammatory diseases (CIDs) have complex pathologies that result from aberrant and persistent immune responses. However, the precise triggers and mechanisms remain elusive. An important aspect of CID research focuses on epigenetics modifications, which regulate gene expression and provide a dynamic transcriptional response to inflammation. In recent years, mounting evidence has demonstrated an association between epigenomic and transcriptomic dysregulation and the phenotypes of CIDs. In particular, epigenetic changes at cis-regulatory elements have provided new insights for immune cell-specific alterations that contribute to disease etiology. Furthermore, the advancements in single-cell genomics provide novel solutions to cell type heterogeneity, which has long posed challenges for CID diagnosis and treatment. In this review, we discuss the current state of epigenomics research of CID and the insights derived from single-cell transcriptomic and epigenomic studies.
Collapse
|
26
|
Ukadike KC, Mustelin T. Implications of Endogenous Retroelements in the Etiopathogenesis of Systemic Lupus Erythematosus. J Clin Med 2021; 10:856. [PMID: 33669709 PMCID: PMC7922054 DOI: 10.3390/jcm10040856] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease. While its etiology remains elusive, current understanding suggests a multifactorial process with contributions by genetic, immunologic, hormonal, and environmental factors. A hypothesis that combines several of these factors proposes that genomic elements, the L1 retrotransposons, are instrumental in SLE pathogenesis. L1 retroelements are transcriptionally activated in SLE and produce two proteins, ORF1p and ORF2p, which are immunogenic and can drive type I interferon (IFN) production by producing DNA species that activate cytosolic DNA sensors. In addition, these two proteins reside in RNA-rich macromolecular assemblies that also contain well-known SLE autoantigens like Ro60. We surmise that cells expressing L1 will exhibit all the hallmarks of cells infected by a virus, resulting in a cellular and humoral immune response similar to those in chronic viral infections. However, unlike exogenous viruses, L1 retroelements cannot be eliminated from the host genome. Hence, dysregulated L1 will cause a chronic, but perhaps episodic, challenge for the immune system. The clinical and immunological features of SLE can be at least partly explained by this model. Here we review the support for, and the gaps in, this hypothesis of SLE and its potential for new diagnostic, prognostic, and therapeutic options in SLE.
Collapse
Affiliation(s)
| | - Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington School of Medicine, 750 Republican Street, Seattle, WA 98109, USA;
| |
Collapse
|
27
|
Mustelin T, Ukadike KC. How Retroviruses and Retrotransposons in Our Genome May Contribute to Autoimmunity in Rheumatological Conditions. Front Immunol 2020; 11:593891. [PMID: 33281822 PMCID: PMC7691656 DOI: 10.3389/fimmu.2020.593891] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
More than 200 human disorders include various manifestations of autoimmunity. The molecular events that lead to these diseases are still incompletely understood and their causes remain largely unknown. Numerous potential triggers of autoimmunity have been proposed over the years, but very few of them have been conclusively confirmed or firmly refuted. Viruses have topped the lists of suspects for decades, and it seems that many viruses, including those of the Herpesviridae family, indeed can influence disease initiation and/or promote exacerbations by a number of mechanisms that include prolonged anti-viral immunity, immune subverting factors, and mechanisms, and perhaps “molecular mimicry”. However, no specific virus has yet been established as being truly causative. Here, we discuss a different, but perhaps mechanistically related possibility, namely that retrotransposons or retroviruses that infected us in the past and left a lasting copy of themselves in our genome still can provoke an escalating immune response that leads to autoimmune disease. Many of these loci still encode for retroviral proteins that have retained some, or all, of their original functions. Importantly, these endogenous proviruses cannot be eliminated by the immune system the way it can eliminate exogenous viruses. Hence, if not properly controlled, they may drive a frustrated and escalating chronic, or episodic, immune response to the point of a frank autoimmune disorder. Here, we discuss the evidence and the proposed mechanisms, and assess the therapeutic options that emerge from the current understanding of this field.
Collapse
Affiliation(s)
- Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Kennedy C Ukadike
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
28
|
Lou C, Goodier JL, Qiang R. A potential new mechanism for pregnancy loss: considering the role of LINE-1 retrotransposons in early spontaneous miscarriage. Reprod Biol Endocrinol 2020; 18:6. [PMID: 31964400 PMCID: PMC6971995 DOI: 10.1186/s12958-020-0564-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 01/07/2020] [Indexed: 12/14/2022] Open
Abstract
LINE1 retrotransposons are mobile DNA elements that copy and paste themselves into new sites in the genome. To ensure their evolutionary success, heritable new LINE-1 insertions accumulate in cells that can transmit genetic information to the next generation (i.e., germ cells and embryonic stem cells). It is our hypothesis that LINE1 retrotransposons, insertional mutagens that affect expression of genes, may be causal agents of early miscarriage in humans. The cell has evolved various defenses restricting retrotransposition-caused mutation, but these are occasionally relaxed in certain somatic cell types, including those of the early embryo. We predict that reduced suppression of L1s in germ cells or early-stage embryos may lead to excessive genome mutation by retrotransposon insertion, or to the induction of an inflammatory response or apoptosis due to increased expression of L1-derived nucleic acids and proteins, and so disrupt gene function important for embryogenesis. If correct, a novel threat to normal human development is revealed, and reverse transcriptase therapy could be one future strategy for controlling this cause of embryonic damage in patients with recurrent miscarriages.
Collapse
Affiliation(s)
- Chao Lou
- Department of Genetics, Northwest Women’s and Children’s Hospital, 1616 Yanxiang Road, Xi’an, Shaanxi Province People’s Republic of China
| | - John L. Goodier
- 0000 0001 2171 9311grid.21107.35McKusick-Nathans Deartment of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Rong Qiang
- Department of Genetics, Northwest Women’s and Children’s Hospital, 1616 Yanxiang Road, Xi’an, Shaanxi Province People’s Republic of China
| |
Collapse
|
29
|
Crow MK. Reactivity of IgG With the p40 Protein Encoded by the Long Interspersed Nuclear Element 1 Retroelement: Comment on the Article by Carter et al. Arthritis Rheumatol 2019; 72:374-376. [PMID: 31513361 DOI: 10.1002/art.41102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|