1
|
Mastrolia MV, Abu-Rumeileh S, Maccora I, Maniscalco V, Marrani E, Pagnini I, Taddio A, Simonini G. Anakinra as first-line monotherapy for new-onset steroid-naïve sJIA patients. Expert Rev Clin Immunol 2024; 20:1293-1295. [PMID: 39041826 DOI: 10.1080/1744666x.2024.2384703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Affiliation(s)
- Maria Vincenza Mastrolia
- Rheumatology Unit, ERN ReCONNET center, Meyer Children's Hospital IRCCS, Firenze, Italy
- NEUROFARBA Department, University of Florence, Firenze, Italy
| | - Sarah Abu-Rumeileh
- Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ilaria Maccora
- Rheumatology Unit, ERN ReCONNET center, Meyer Children's Hospital IRCCS, Firenze, Italy
- NEUROFARBA Department, University of Florence, Firenze, Italy
| | - Valerio Maniscalco
- Rheumatology Unit, ERN ReCONNET center, Meyer Children's Hospital IRCCS, Firenze, Italy
| | - Edoardo Marrani
- Rheumatology Unit, ERN ReCONNET center, Meyer Children's Hospital IRCCS, Firenze, Italy
| | - Ilaria Pagnini
- Rheumatology Unit, ERN ReCONNET center, Meyer Children's Hospital IRCCS, Firenze, Italy
| | - Andrea Taddio
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, and University of Trieste, Italy
| | - Gabriele Simonini
- Rheumatology Unit, ERN ReCONNET center, Meyer Children's Hospital IRCCS, Firenze, Italy
- NEUROFARBA Department, University of Florence, Firenze, Italy
| |
Collapse
|
2
|
Correia Marques M, Ombrello MJ, Schulert GS. New discoveries in the genetics and genomics of systemic juvenile idiopathic arthritis. Expert Rev Clin Immunol 2024; 20:1053-1064. [PMID: 38641907 PMCID: PMC11303111 DOI: 10.1080/1744666x.2024.2345868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024]
Abstract
INTRODUCTION Systemic juvenile idiopathic arthritis (sJIA) is a severe inflammatory condition with onset in childhood. It is sporadic, but elements of its stereotypical innate immune responses are likely genetically encoded by both common variants with small effect sizes and rare variants with larger effects. AREAS COVERED Genomic investigations have defined the unique genetic architecture of sJIA. Identification of the class II HLA locus as the strongest sJIA risk factor for the first time brought attention to T lymphocytes and adaptive immune mechanisms in sJIA. The importance of the human leukocyte antigen (HLA) locus was reinforced by recognition that HLA-DRB1*15 alleles are strongly associated with development of drug reactions and sJIA-associated lung disease (sJIA-LD). At the IL1RN locus, genetic variation relates to both risk of sJIA and may also predict non-response to anakinra. Finally, rare genetic variants may have critical roles in disease complications, such as homozygous LACC1 mutations in families with an sJIA-like illness, and hemophagocytic lymphohistiocytosis (HLH) gene variants in some children with macrophage activation syndrome (MAS). EXPERT OPINION Genetic and genomic analysis of sJIA holds great promise for both basic discovery of the course and complications of sJIA, and may help guide personalized medicine and therapeutic decision-making.
Collapse
Affiliation(s)
- Mariana Correia Marques
- Translational Genetics and Genomics Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, USA
| | - Michael J Ombrello
- Translational Genetics and Genomics Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, USA
| | - Grant S Schulert
- Division of Rheumatology, Cincinnati Children's Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
3
|
Rowczenio D, Aksentijevich I. Genetic Approaches to Study Rheumatic Diseases and Its Implications in Clinical Practice. Arthritis Rheumatol 2024; 76:1169-1181. [PMID: 38433603 DOI: 10.1002/art.42841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/17/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Patients with rare and complex rheumatic diseases (RDs) present with immense clinical variability inherent to all immunologic diseases. In addition to systemic and organ-specific inflammation, patients may display features of immunodeficiency or allergy, which may represent major diagnostic and therapeutic challenges. The person's genetic architecture has been a well-established risk factor for patients with RDs, albeit to variable degrees. Patients with early-onset diseases and/or positive family history (FH) have a strong genetic component, whereas patients with late-onset RDs demonstrate a more complex interplay of genetic and environmental risk factors. Overall, the genetic studies in patients with RDs have been instrumental to our understanding of innate and adaptive immunity in human health and disease. The elucidation of the molecular causes underlying rare diseases has played a major role in the identification of genes that are critical in the regulation of inflammatory responses. In addition, studies of patients with rare disorders may help determine the mechanisms of more complex autoimmune diseases by identifying variants with small effect sizes in the same genes. In contrast, studies of patients with common RDs are conducted in cohorts of patients with well-established phenotypes and ancestry-matched controls, and they aim to discover disease-related pathways that can inform the development of novel targeted therapies. Knowing the genetic cause of a disease has helped patients and families understand the disease progression and outcome. Here, we discuss the current understanding of genetic heritability and challenges in the diagnosis of RDs in patients and how this field may develop in the future.
Collapse
|
4
|
Hoffmann MC, Cavalli G, Fadle N, Cantoni E, Regitz E, Fleser O, Klemm P, Zaks M, Stöger E, Campochiaro C, Tomelleri A, Baldissera E, Bittenbring JT, Zimmer V, Pfeifer J, Fischer Y, Preuss KD, Bewarder M, Thurner B, Fuehner S, Foell D, Dagna L, Kessel C, Thurner L. Autoantibody-Mediated Depletion of IL-1RA in Still's Disease and Potential Impact of IL-1 Targeting Therapies. J Clin Immunol 2024; 44:45. [PMID: 38231276 PMCID: PMC10794369 DOI: 10.1007/s10875-023-01642-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/17/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND Adult-onset Still's disease (AOSD) and systemic juvenile idiopathic arthritis (sJIA) resemble a continuum of a rare, polygenic IL-1β-driven disease of unknown etiology. OBJECTIVE In the present study we sought to investigate a potential role of recently described autoantibodies neutralizing the interleukin-1(IL-1)-receptor antagonist (IL-1-Ra) in the pathogenesis of Still's disease. METHODS Serum or plasma samples from Still's disease patients (AOSD, n = 23; sJIA, n = 40) and autoimmune and/or inflammatory disease controls (n = 478) were analyzed for autoantibodies against progranulin (PGRN), IL-1Ra, IL-18 binding protein (IL-18BP), and IL-36Ra, as well as circulating IL-1Ra and IL-36Ra levels by ELISA. Biochemical analyses of plasma IL-1Ra were performed by native Western blots and isoelectric focusing. Functional activity of the autoantibodies was examined by an in vitro IL-1β-signaling reporter assay. RESULTS Anti-IL-1-Ra IgG were identified in 7 (27%) out of 29 Still's disease patients, including 4/23 with AOSD and 3/6 with sJIA and coincided with a hyperphosphorylated isoform of endogenous IL-1Ra. Anti-IL-36Ra antibodies were found in 2 AOSD patients. No anti-PGRN or anti-IL-18BP antibodies were detected. Selective testing for anti-IL-1Ra antibodies in an independent cohort (sJIA, n = 34) identified 5 of 34 (14.7%) as seropositive. Collectively, 8/12 antibody-positive Still's disease patients were either new-onset active disease or unresponsive to IL-1 blocking drugs. Autoantibody-seropositivity associated with decreased IL-1Ra plasma/serum levels. Seropositive plasma impaired in vitro IL-1Ra bioactivity, which could be reversed by anakinra or canakinumab treatment. CONCLUSION Autoantibodies neutralizing IL-1Ra may represent a novel patho-mechanism in a subgroup of Still's disease patients, which is sensitive to high-dose IL-1 blocking therapy.
Collapse
Affiliation(s)
- Marie-Christin Hoffmann
- José Carreras Center for Immuno- and Gene Therapy and Internal Medicine I, Saarland University Medical School, 66421, Homburg, Saarland, Germany
| | - Giulio Cavalli
- Vita-Salute San Raffaele University, Milan, Italy
- Unit of Immunology, Rheumatology, Allergy, and Rare Diseases, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, 20132, Milan, Italy
| | - Natalie Fadle
- José Carreras Center for Immuno- and Gene Therapy and Internal Medicine I, Saarland University Medical School, 66421, Homburg, Saarland, Germany
| | | | - Evi Regitz
- José Carreras Center for Immuno- and Gene Therapy and Internal Medicine I, Saarland University Medical School, 66421, Homburg, Saarland, Germany
| | - Octavian Fleser
- José Carreras Center for Immuno- and Gene Therapy and Internal Medicine I, Saarland University Medical School, 66421, Homburg, Saarland, Germany
| | - Philipp Klemm
- Department of Rheumatology, Immunology, Osteology and Physical Medicine, Justus-Liebig-University Gießen, Campus Kerckhoff, Bad Nauheim, Germany
| | - Marina Zaks
- Department of Nephrology and Internal Intensive Care, Charité University Medicine Berlin, Campus Virchow Clinic, Berlin, Germany
| | - Elisabeth Stöger
- Evangelische Kliniken Essen-Mitte, Evangelische Huyssens-Stiftung Essen-Huttrop, Essen, Germany
| | | | | | | | - Jörg Thomas Bittenbring
- José Carreras Center for Immuno- and Gene Therapy and Internal Medicine I, Saarland University Medical School, 66421, Homburg, Saarland, Germany
| | - Vincent Zimmer
- Department of Internal Medicine, Knappschaftsklinikum Saar, Püttlingen, Germany
| | - Jochen Pfeifer
- Department of Pediatric Cardiology, Saarland University, Homburg, Germany
| | - Yvan Fischer
- Institute of Physiology, Medical Faculty, RWTH Aachen, 52057, Aachen, Germany
| | - Klaus-Dieter Preuss
- José Carreras Center for Immuno- and Gene Therapy and Internal Medicine I, Saarland University Medical School, 66421, Homburg, Saarland, Germany
| | - Moritz Bewarder
- José Carreras Center for Immuno- and Gene Therapy and Internal Medicine I, Saarland University Medical School, 66421, Homburg, Saarland, Germany
| | | | - Sabrina Fuehner
- Department of Pediatric Rheumatology and Immunology, University Children's Hospital Muenster, Münster, Germany
| | - Dirk Foell
- Department of Pediatric Rheumatology and Immunology, University Children's Hospital Muenster, Münster, Germany
| | - Lorenzo Dagna
- Vita-Salute San Raffaele University, Milan, Italy
- Unit of Immunology, Rheumatology, Allergy, and Rare Diseases, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, 20132, Milan, Italy
| | - Christoph Kessel
- Department of Pediatric Rheumatology and Immunology, University Children's Hospital Muenster, Münster, Germany
| | - Lorenz Thurner
- José Carreras Center for Immuno- and Gene Therapy and Internal Medicine I, Saarland University Medical School, 66421, Homburg, Saarland, Germany.
| |
Collapse
|
5
|
Erkens RGA, Calis JJA, Verwoerd A, De Roock S, Ter Haar NM, Den Engelsman G, Van der Veken LT, Ernst RF, Van Deutekom HWM, Pickering A, Scholman RC, Jansen MHA, Swart JF, Sinha R, Roth J, Schulert GS, Grom AA, Van Loosdregt J, Vastert SJ. Recombinant Interleukin-1 Receptor Antagonist Is an Effective First-Line Treatment Strategy in New-Onset Systemic Juvenile Idiopathic Arthritis, Irrespective of HLA-DRB1 Background and IL1RN Variants. Arthritis Rheumatol 2024; 76:119-129. [PMID: 37471469 DOI: 10.1002/art.42656] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/07/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
OBJECTIVE Human leukocyte antigen (HLA)-DRB1*15:01 has been recently associated with interstitial lung disease (LD), eosinophilia, and drug reactions in systemic juvenile idiopathic arthritis (sJIA). Additionally, genetic variants in IL1RN have been linked to poor response to anakinra. We sought to reproduce these findings in a prospective cohort study of patients with new-onset sJIA treated with anakinra as first-line therapy. METHODS HLA and IL1RN risk alleles were identified via whole-genome sequencing. Treatment responses and complications were compared between carriers versus noncarriers. RESULTS Seventeen of 65 patients (26%) carried HLA-DRB1*15:01, comparable with the general population, and there was enrichment for HLA-DRB1*11:01, a known risk locus for sJIA. The rates of clinical inactive disease (CID) at 6 months, 1 year, and 2 years were generally high, irrespective of HLA-DRB1 or IL1RN variants, but significantly lower in carriers of an HLA-DRB1*11:01 allele. One patient, an HLA-DRB1*15:01 carrier, developed sJIA-LD. Of the three patients with severe drug reactions to biologics, one carried HLA-DRB1*15:01. The prevalence of eosinophilia did not significantly differ between HLA-DRB1*15:01 carriers and noncarriers at disease onset (6.2% vs 14.9%, P = 0.67) nor after the start of anakinra (35.3% vs 37.5% in the first 2 years of disease). CONCLUSION We observed high rates of CID using anakinra as first-line treatment irrespective of HLA-DRB1 or IL1RN variants. Only one of the 17 HLA-DRB1*15:01 carriers developed sJIA-LD, and of the three patients with drug reactions to biologics, only one carried HLA-DRB1*15:01. Although thorough monitoring for the development of drug hypersensitivity and refractory disease courses in sJIA, including sJIA-LD, remains important, our data support the early start of biologic therapy in patients with new-onset sJIA irrespective of HLA-DRB1 background or IL1RN variants.
Collapse
Affiliation(s)
- Remco G A Erkens
- University Medical Center Utrecht and University of Utrecht, Utrecht, The Netherlands
| | - Jorg J A Calis
- University Medical Center Utrecht and University of Utrecht, Utrecht, The Netherlands
| | - Anouk Verwoerd
- University Medical Center Utrecht and University of Utrecht, Utrecht, The Netherlands
| | - Sytze De Roock
- University Medical Center Utrecht and University of Utrecht, Utrecht, The Netherlands
| | - Nienke M Ter Haar
- University Medical Center Utrecht and University of Utrecht, Utrecht, The Netherlands
| | - Gerda Den Engelsman
- University Medical Center Utrecht and University of Utrecht, Utrecht, The Netherlands
| | - Lars T Van der Veken
- University Medical Center Utrecht and University of Utrecht, Utrecht, The Netherlands
| | - Robert F Ernst
- University Medical Center Utrecht and University of Utrecht, Utrecht, The Netherlands
| | | | | | - Rianne C Scholman
- University Medical Center Utrecht and University of Utrecht, Utrecht, The Netherlands
| | - Marc H A Jansen
- University Medical Center Utrecht and University of Utrecht, Utrecht, The Netherlands
| | - Joost F Swart
- University Medical Center Utrecht and University of Utrecht, Utrecht, The Netherlands
| | - Rashmi Sinha
- Systemic Juvenile Idiopathic Arthritis Foundation, Cincinnati, Ohio
| | | | - Grant S Schulert
- Cincinnati Children's Hospital and University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Alexei A Grom
- Cincinnati Children's Hospital and University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jorg Van Loosdregt
- University Medical Center Utrecht and University of Utrecht, Utrecht, The Netherlands
| | - Sebastiaan J Vastert
- University Medical Center Utrecht and University of Utrecht, Utrecht, The Netherlands
| |
Collapse
|
6
|
Hinze CH, Foell D, Kessel C. Treatment of systemic juvenile idiopathic arthritis. Nat Rev Rheumatol 2023; 19:778-789. [PMID: 37923864 DOI: 10.1038/s41584-023-01042-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2023] [Indexed: 11/06/2023]
Abstract
Systemic juvenile idiopathic arthritis (sJIA) is an inflammatory disease with hallmarks of severe systemic inflammation, which can be accompanied by arthritis. Contemporary scientific insights set this paediatric disorder on a continuum with its counterpart, adult-onset Still disease (AOSD). Patients with sJIA are prone to complications, including life-threatening hyperinflammation (macrophage activation syndrome (sJIA-MAS)) and sJIA-associated lung disease (sJIA-LD). Meanwhile, the treatment arsenal in sJIA has expanded markedly. State-of-the-art therapeutic approaches include biologic agents that target the IL-1 and IL-6 pathways. Beyond these, a range of novel agents are on the horizon, some of them already being used on a compassionate use basis, including JAK inhibitors and biologic agents that target IL-18, IFNγ, or IL-1β and IL-18 simultaneously. However, sJIA, sJIA-MAS and sJIA-LD still pose challenging conundrums to rheumatologists treating paediatric and adult patients worldwide. Although national and international consensus treatment plans exist for the treatment of 'classic' sJIA, the treatment approaches for early sJIA without arthritis, and for refractory or complicated sJIA, are not well defined. Therefore, in this Review we outline current approaches for the treatment of sJIA and provide an outlook on knowledge gaps.
Collapse
Affiliation(s)
- Claas H Hinze
- Department of Paediatric Rheumatology and Immunology, Münster University Hospital, Münster, Germany
| | - Dirk Foell
- Department of Paediatric Rheumatology and Immunology, Münster University Hospital, Münster, Germany.
| | - Christoph Kessel
- Department of Paediatric Rheumatology and Immunology, Münster University Hospital, Münster, Germany
| |
Collapse
|
7
|
Schulert GS, Kessel C. Molecular Pathways in the Pathogenesis of Systemic Juvenile Idiopathic Arthritis. Rheum Dis Clin North Am 2023; 49:895-911. [PMID: 37821202 DOI: 10.1016/j.rdc.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Systemic juvenile idiopathic arthritis (sJIA) is a rare childhood chronic inflammatory disorder with risk for life-threatening complications including macrophage activation syndrome and lung disease. At onset, sJIA pathogenesis resembles that of the autoinflammatory periodic fever syndromes with marked innate immune activation, expansion of neutrophils and monocytes, and high levels of interleukin-18. Here, we review the current conceptual understanding of sJIA pathogenesis with a focus on both innate and adaptive immune pathways. Finally, we consider how recent progress toward understanding the immunologic basis of sJIA may support new therapies for refractory disease courses.
Collapse
Affiliation(s)
- Grant S Schulert
- Division of Rheumatology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC 4010, Cincinnati, OH 45229, USA.
| | - Christoph Kessel
- Department of Pediatric Rheumatology and Immunology, Translational Inflammation Research, University Children's Hospital, Muenster, Germany
| |
Collapse
|
8
|
Quartier P. Systemic Juvenile Idiopathic Arthritis/Pediatric Still's Disease, a Syndrome but Several Clinical Forms: Recent Therapeutic Approaches. J Clin Med 2022; 11:jcm11051357. [PMID: 35268449 PMCID: PMC8911482 DOI: 10.3390/jcm11051357] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/18/2022] [Accepted: 02/26/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Systemic Juvenile Idiopathic Arthritis (SJIA)/Pediatric Still's disease is associated with different phenotypes and outcomes from currently available treatments. METHODS A review of opinion, based on personal experience in a reference pediatric rheumatology center and key publications, to explore the most important questions regarding disease heterogeneity and treatment approaches. RESULTS A few situations deserve particular attention: 1/patients with recent-onset SJIA who may benefit from a treat-to-target approach with a key place for interleukin (IL)-1 inhibition; 2/SJIA patients refractory to Il-1 and IL-6 antagonists in whom several options may be discussed, including thalidomide or allogeneic hematopoietic stem cell transplantation; 3/SJIA patients with macrophage activation syndrome who may benefit from both well-used classical treatment and innovative approaches, such as anti-interferon gamma therapy or Janus Kinase (JAK) inhibitors; 4/SJIA with severe lung involvement, 5/SJIA patients who achieve complete remission on treatment, with some recent evidence that treatment may be reduced in intensity but not so easily withdrawn. CONCLUSIONS a case-by-case discussion with expert teams is recommended in this heterogeneous, often difficult-to-treat population of patients.
Collapse
Affiliation(s)
- Pierre Quartier
- Unité d’Immunologie-Hématologie et Rhumatologie Pédiatrique, RAISE Reference Centre, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, 149 Rue de Sèvres, 75015 Paris, France;
- INSERM 1231, Université de Paris, 45 Rue des Saints-Pères, 75006 Paris, France
| |
Collapse
|
9
|
Rosina S, Natoli V, Santaniello S, Trincianti C, Consolaro A, Ravelli A. Novel biomarkers for prediction of outcome and therapeutic response in juvenile idiopathic arthritis. Expert Rev Clin Immunol 2021; 17:853-870. [PMID: 34139935 DOI: 10.1080/1744666x.2021.1945441] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The search for biomarkers in juvenile idiopathic arthritis (JIA) is a promising and rapidly expanding field of investigation. The biomarkers identified so far may help to dissect the clinical heterogeneity of the illness, measure the level of disease activity, predict clinical remission, relapse, response to medications, course over time, complications, and forestall disease flares. AREAS COVERED We provide a summary of the most recent advances in the development and application of biomarkers in JIA. We performed a PubMed search for significant articles combining predetermined keywords related to biomarkers in non-systemic and systemic JIA, chronic uveitis, and macrophage activation syndrome (MAS). The biomarkers available or under study are presented and discussed separately for non-systemic and systemic subtypes and for the two main disease complications, uveitis and MAS. EXPERT OPINION The incorporation of valid and reliable biomarkers in standard clinical care may help to design better patient-tailored treatment regimens and to improve the therapeutic strategies based on the treat-to-target approach. The establishment of biomarkers that predict the risk of disease flare may lead to define the optimal modalities for treatment discontinuation after the achievement of clinical remission.
Collapse
Affiliation(s)
- Silvia Rosina
- UOC Clinica Pediatrica E Reumatologia, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Valentina Natoli
- Dipartimento Di Neuroscienze, Riabilitazione, Oftalmologia, Genetica E Scienze Materno-Infantili (Dinogmi), Università Degli Studi Di Genova, Genoa, Italy
| | - Stefania Santaniello
- Dipartimento Di Neuroscienze, Riabilitazione, Oftalmologia, Genetica E Scienze Materno-Infantili (Dinogmi), Università Degli Studi Di Genova, Genoa, Italy
| | - Chiara Trincianti
- Dipartimento Di Neuroscienze, Riabilitazione, Oftalmologia, Genetica E Scienze Materno-Infantili (Dinogmi), Università Degli Studi Di Genova, Genoa, Italy
| | - Alessandro Consolaro
- UOC Clinica Pediatrica E Reumatologia, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Dipartimento Di Neuroscienze, Riabilitazione, Oftalmologia, Genetica E Scienze Materno-Infantili (Dinogmi), Università Degli Studi Di Genova, Genoa, Italy
| | - Angelo Ravelli
- UOC Clinica Pediatrica E Reumatologia, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Dipartimento Di Neuroscienze, Riabilitazione, Oftalmologia, Genetica E Scienze Materno-Infantili (Dinogmi), Università Degli Studi Di Genova, Genoa, Italy.,Sechenov First Moscow State Medical University, Moscow, Russian Federation
| |
Collapse
|
10
|
Pardeo M, Rossi MN, Pires Marafon D, Sacco E, Bracaglia C, Passarelli C, Caiello I, Marucci G, Insalaco A, Perrone C, Tulone A, Prencipe G, De Benedetti F. Early Treatment and IL1RN Single-Nucleotide Polymorphisms Affect Response to Anakinra in Systemic Juvenile Idiopathic Arthritis. Arthritis Rheumatol 2021; 73:1053-1061. [PMID: 33615724 DOI: 10.1002/art.41612] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To evaluate the impact of early treatment and IL1RN genetic variants on the response to anakinra in systemic juvenile idiopathic arthritis (JIA). METHODS Response to anakinra was defined as achievement of clinically inactive disease (CID) at 6 months without glucocorticoid treatment. Demographic, clinical, and laboratory characteristics of 56 patients were evaluated in univariate and multivariate analyses as predictors of response to treatment. Six single-nucleotide polymorphisms (SNPs) in the IL1RN gene, previously demonstrated to be associated with a poor response to anakinra, were genotyped by quantitative polymerase chain reaction (qPCR) or Sanger sequencing. Haplotype mapping was performed with Haploview software. IL1RN messenger RNA (mRNA) expression in whole blood from patients, prior to anakinra treatment initiation, was assessed by qPCR. RESULTS After 6 months of anakinra treatment, 73.2% of patients met the criteria for CID without receiving glucocorticoids. In the univariate analysis, the variable most strongly related to the response was disease duration from onset to initiation of anakinra treatment, with an optimal cutoff at 3 months (area under the curve 84.1%). Patients who started anakinra treatment ≥3 months after disease onset had an 8-fold higher risk of nonresponse at 6 months of treatment. We confirmed that the 6 IL1RN SNPs were inherited as a common haplotype. We found that homozygosity for ≥1 high-expression SNP correlated with higher IL1RN mRNA levels and was associated with a 6-fold higher risk of nonresponse, independent of disease duration. CONCLUSION Our findings on patients with systemic JIA confirm the important role of early interleukin-1 inhibition and suggest that genetic IL1RN variants predict nonresponse to therapy with anakinra.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ivan Caiello
- Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | | | | | - Anna Tulone
- Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | | |
Collapse
|