1
|
DU N, Wan H, Guo H, Zhang X, Wu X. [Myeloid-derived suppressor cells as important factors and potential targets for breast cancer progression]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:785-795. [PMID: 39686697 PMCID: PMC11736353 DOI: 10.3724/zdxbyxb-2024-0353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/28/2024] [Indexed: 12/18/2024]
Abstract
Recurrence and metastasis remain the leading cause of death in breast cancer patients due to the lack of effective treatment. A microenvironment suitable for cancer cell growth, referred to as pre-metastatic niche (PMN), is formed in distant organs before metastasis occurs. Myeloid-derived suppressor cells (MDSCs) are a heterogenous population of immature myeloid cells with immunosuppressive effects. They can expand in large numbers in breast cancer patients and participate in the formation of PMN. MDSCs can remodel the extracellular matrix of pulmonary vascular endothelial cells and recruit cancer stem cells to promote the lung metastasis of breast cancer. Furthermore, MDSCs facilitate immune evasion of breast cancer cells to impact the efficacy of immunotherapy. It is proposed that MDSCs represent a potential therapeutic target for the inhibition of recurrence and metastasis in breast cancer. Therapeutic strategies targeting MDSCs have shown promising efficacy in preclinical studies and clinical trials. This review presents a summary of the principal factors involved in the recruitment and activation of MDSCs during the formation of PMN, and outlines MDSCs functions such as immunosuppression and the current targeted therapies against MDSCs, aiming to provide new ideas for the treatment of distant metastases in breast cancer.
Collapse
Affiliation(s)
- Nannan DU
- Breast Department, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China.
| | - Hua Wan
- Breast Department, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Hailing Guo
- Department of Orthopaedics and Traumatology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Xukuan Zhang
- Breast Department, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Xueqing Wu
- Breast Department, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China.
| |
Collapse
|
2
|
Li J, Leng L, Pantouris G, Manjula R, Piecychna M, Abriola L, Hu B, Lolis E, Armstrong ME, Donnelly SC, Bucala R. A small-molecule allele-selective transcriptional inhibitor of the MIF immune susceptibility locus. J Biol Chem 2024; 300:107443. [PMID: 38838773 PMCID: PMC11259703 DOI: 10.1016/j.jbc.2024.107443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/14/2024] [Accepted: 05/26/2024] [Indexed: 06/07/2024] Open
Abstract
Functional variants of the gene for the cytokine macrophage migration inhibitory factor (MIF) are defined by a 4-nucleotide promoter microsatellite (-794 CATT5-8, rs5844572) and confer risk for autoimmune, infectious, and oncologic diseases. We describe herein the discovery of a prototypic, small molecule inhibitor of MIF transcription with selectivity for high microsatellite repeat number and correspondingly high gene expression. Utilizing a high-throughput luminescent proximity screen, we identify 1-carbomethoxy-5-formyl-4,6,8-trihydroxyphenazine (CMFT) to inhibit the functional interaction between the transcription factor ICBP90 (namely, UHRF1) and the MIF -794 CATT5-8 promoter microsatellite. CMFT inhibits MIF mRNA expression in a -794 CATT5-8 length-dependent manner with an IC50 of 470 nM, and preferentially reduces ICBP90-dependent MIF mRNA and protein expression in high-genotypic versus low-genotypic MIF-expressing macrophages. RNA expression analysis also showed CMFT to downregulate MIF-dependent, inflammatory gene expression with little evidence of off-target metabolic toxicity. These findings provide proof-of-concept for advancing the pharmacogenomic development of precision-based MIF inhibitors for diverse autoimmune and inflammatory conditions.
Collapse
Affiliation(s)
- Jia Li
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Lin Leng
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Georgios Pantouris
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ramu Manjula
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Marta Piecychna
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Laura Abriola
- Yale Center for Molecular Discovery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Buqu Hu
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Elias Lolis
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut, USA
| | | | | | - Richard Bucala
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
3
|
Almalki NAR, Sabir JSM, Ibrahim A, Alhosin M, Asseri AH, Albiheyri RS, Zari AT, Bahieldin A, Javed A, Mély Y, Hamiche A, Mousli M, Bronner C. UHRF1 poly-auto-ubiquitination induced by the anti-cancer drug, thymoquinone, is involved in the DNA repair machinery recruitment. Int J Biochem Cell Biol 2024; 171:106582. [PMID: 38649007 DOI: 10.1016/j.biocel.2024.106582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
DNA methylation is one of the most important epigenetic mark involved in many physiologic cellular processes and pathologies. During mitosis, the transmission of DNA methylation patterns from a mother to the daughter cells is ensured through the action of the Ubiquitin-like, containing PHD and RING domains, 1/DNA methyltransferase 1 (UHRF1/DNMT1) tandem. UHRF1 is involved in the silencing of many tumor suppressor genes (TSGs) via mechanisms that remain largely to be deciphered. The present study investigated the role and the regulation of UHRF1 poly-ubiquitination induced by thymoquinone, a natural anti-cancer drug, known to enhance or re-activate the expression of TSGs. We found that the auto-ubiquitination of UHRF1, induced by TQ, is mediated by reactive oxygen species, and occurs following DNA damage. We demonstrated that the poly-ubiquitinated form of UHRF1 is K63-linked and can still silence the tumor suppressor gene p16INK4A/CDKN2A. We further showed that TQ-induced auto-ubiquitination is mediated via the activity of Tip60. Since this latter is known as a nuclear receptor co-factor, we investigated if the glucocorticoid receptor (GR) might be involved in the regulation of UHRF1 ubiquitination. Activation of the GR, with dexamethasone, did not influence auto-ubiquitination of UHRF1. However, we could observe that TQ induced a K48-linked poly-ubiquitination of GR, probably involved in the proteosomal degradation pathway. Mass-spectrometry analysis of FLAG-HA-tagged UHRF1 identified UHRF1 partners involved in DNA repair and showed that TQ increased their association with UHRF1, suggesting that poly-ubiquitination of UHRF1 is involved in the DNA repair process. We propose that poly-ubiquitination of UHRF1 serves as a scaffold to recruit the DNA repair machinery at DNA damage sites.
Collapse
Affiliation(s)
- Naif A R Almalki
- Department of Functional Genomics, Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR 7104, University of Strasbourg, "équipe labellisée" Ligue contre le Cancer, Illkirch-Graffenstaden 67404, France; Experimental Biochemistry unit, King Fahad medical research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jamal S M Sabir
- Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Centre of Excellence in Bionanoscience, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulkhaleg Ibrahim
- Department of Functional Genomics, Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR 7104, University of Strasbourg, "équipe labellisée" Ligue contre le Cancer, Illkirch-Graffenstaden 67404, France; National Research Centre for Tropical and Transboundary Diseases (NRCTTD), Alzentan 99316, Libya
| | - Mahmoud Alhosin
- Department of Biochemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amer H Asseri
- Department of Biochemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Centre for Artificial Intelligence in Precision Medicines, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia
| | - Raed S Albiheyri
- Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Centre of Excellence in Bionanoscience, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ali T Zari
- Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Centre of Excellence in Bionanoscience, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Bahieldin
- Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Centre of Excellence in Bionanoscience, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aqib Javed
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS, University of Strasbourg, Faculty of Pharmacy, Illkirch-Graffenstaden 67401, France
| | - Yves Mély
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS, University of Strasbourg, Faculty of Pharmacy, Illkirch-Graffenstaden 67401, France
| | - Ali Hamiche
- Department of Functional Genomics, Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR 7104, University of Strasbourg, "équipe labellisée" Ligue contre le Cancer, Illkirch-Graffenstaden 67404, France; Centre of Excellence in Bionanoscience, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marc Mousli
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS, University of Strasbourg, Faculty of Pharmacy, Illkirch-Graffenstaden 67401, France
| | - Christian Bronner
- Department of Functional Genomics, Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR 7104, University of Strasbourg, "équipe labellisée" Ligue contre le Cancer, Illkirch-Graffenstaden 67404, France.
| |
Collapse
|
4
|
Zhou L, Roth M, Papakonstantinou E, Tamm M, Stolz D. Expression of glucocorticoid receptor and HDACs in airway smooth muscle cells is associated with response to steroids in COPD. Respir Res 2024; 25:227. [PMID: 38812021 PMCID: PMC11137987 DOI: 10.1186/s12931-024-02769-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/12/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Steroid insensitivity in Chronic Obstructive Pulmonary Disease (COPD) presents a problem for controlling the chronic inflammation of the airways. The glucocorticoid receptor (GR) mediates the intracellular signaling of inhaled corticosteroids (ICS) by interacting with transcription factors and histone deacetylases (HDACs). The aim of this study was to assess if COPD patients' response to ICS in vivo, may be associated with the expression of GR, the complex of GR with transcription factors, and the expression of various HDACs in vitro. METHODS Primary airway smooth muscle cells (ASMC) were established from endobronchial biopsies obtained from patients with asthma (n = 10), patients with COPD (n = 10) and subjects that underwent diagnostic bronchoscopy without pathological findings and served as controls (n = 6). ASMC were also established from 18 COPD patients, 10 responders and 8 non-responders to ICS, who participated in the HISTORIC study, an investigator-initiated and driven clinical trial that proved the hypothesis that COPD patients with high ASMC in their endobronchial biopsies respond better to ICS than patients with low ASMC. Expression of GR and its isoforms GRα and GRβ and HDACs was investigated in primary ASMC in the absence or in the presence of dexamethasone (10- 8M) by western blotting. The complex formation of GR with transcription factors was assessed by co-immunoprecipitation. RESULTS Expression of GR and its isoform GRα but not GRβ was significantly reduced in ASMC from COPD patients as compared to controls. There were no significant differences in the expression of GR, GRα and GRβ between responders and non-responders to ICS. However, treatment with dexamethasone upregulated the expression of total GR (p = 0.004) and GRα (p = 0.005) after 30 min in responders but not in non-responders. Τhe formation of the complex GR-c-Jun was increased 60 min after treatment with dexamethasone only in responders who exhibited significantly lower expression of HDAC3 (p = 0.005) and HDAC5 (p < 0.0001) as compared to non-responders. CONCLUSIONS These data suggest that ASMC from COPD patients who do not respond to treatment with ICS, are characterized by reduced GR-c-Jun complex formation and increased expression of HDAC3 and HDAC5. TRIAL REGISTRATION ISRCTN11017699 (Registration date: 15/11/2016).
Collapse
MESH Headings
- Humans
- Pulmonary Disease, Chronic Obstructive/metabolism
- Pulmonary Disease, Chronic Obstructive/drug therapy
- Pulmonary Disease, Chronic Obstructive/pathology
- Receptors, Glucocorticoid/metabolism
- Receptors, Glucocorticoid/biosynthesis
- Histone Deacetylases/metabolism
- Histone Deacetylases/biosynthesis
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Male
- Middle Aged
- Female
- Aged
- Cells, Cultured
- Adrenal Cortex Hormones/therapeutic use
- Glucocorticoids/pharmacology
- Dexamethasone/pharmacology
- Treatment Outcome
- Administration, Inhalation
- Bronchi/drug effects
- Bronchi/metabolism
- Bronchi/pathology
- Bronchi/enzymology
Collapse
Affiliation(s)
- Liang Zhou
- Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Michael Roth
- Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Eleni Papakonstantinou
- Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital Basel, Basel, Switzerland
- Clinic of Respiratory Medicine, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Tamm
- Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital Basel, Basel, Switzerland
| | - Daiana Stolz
- Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland.
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital Basel, Basel, Switzerland.
- Clinic of Respiratory Medicine, Medical Center-University of Freiburg, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
5
|
Matejuk A, Benedek G, Bucala R, Matejuk S, Offner H, Vandenbark AA. MIF contribution to progressive brain diseases. J Neuroinflammation 2024; 21:8. [PMID: 38178143 PMCID: PMC10765708 DOI: 10.1186/s12974-023-02993-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024] Open
Abstract
Progressive brain diseases create a huge social and economic burden on modern societies as a major cause of disability and death. Incidence of brain diseases has a significantly increasing trend and merits new therapeutic strategies. At the base of many progressive brain malfunctions is a process of unresolved, chronic inflammation. Macrophage migration inhibitory factor, MIF, is an inflammatory mediator that recently gained interest of neuro-researchers due to its varied effects on the CNS such as participation of nervous system development, neuroendocrine functions, and modulation of neuroinflammation. MIF appears to be a candidate as a new biomarker and target of novel therapeutics against numerous neurologic diseases ranging from cancer, autoimmune diseases, vascular diseases, neurodegenerative pathology to psychiatric disorders. In this review, we will focus on MIF's crucial role in neurological diseases such as multiple sclerosis (MS), Alzheimer's disease (AD) and glioblastoma (GBM).
Collapse
Affiliation(s)
- Agata Matejuk
- Department of Immunology, Collegium Medicum, University of Zielona Góra, Zielona Góra, Poland.
| | - Gil Benedek
- Tissue Typing and Immunogenetics Unit, Department of Genetics, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Richard Bucala
- Department of Internal Medicine, Section of Rheumatology, Allergy and Immunology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | | | - Halina Offner
- Neuroimmunology Research, R&D-31, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd., Portland, OR, 97239, USA
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Arthur A Vandenbark
- Neuroimmunology Research, R&D-31, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd., Portland, OR, 97239, USA.
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| |
Collapse
|
6
|
Tang N, Liu XT, Wen WL, Liang TS, Lv XT, Li QL, Wang GE, Wu YH. Restraint stress promotes monobenzone-induced depigmentation in mice via the activation of glucocorticoid receptor/macrophage migration inhibitory factor signaling pathway. Mol Immunol 2023; 161:33-43. [PMID: 37481827 DOI: 10.1016/j.molimm.2023.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Psychological stress triggers onset and development of vitiligo in humans. However, the mechanism of psychological stress on vitiligo remains unclear. The study aims to investigate whether psychological stress promotes vitiligo and explore the underlying mechanism. A depigmentation mouse model induced by applying a skin-bleaching reagent monobenzone to dorsal skin and an in vitro HaCaT keratinocyte death model induced by monobenzone were employed to explore the effect of restraint stress, which mimics psychological stress, on depigmentation. The results indicated that restraint stress promoted vitiligo-related depigmentation, vacuolisation, spongiosis, CD8+ T lymphocyte infiltration, and loss of melanocytes in the skin. Restraint stress activated cutaneous NLR family containing pyrin domain protein 3 (NLRP3) inflammasome. In addition, restraint stress aggravated anxiety-like behaviors and increased levels of macrophage migration inhibitory factor (MIF) and corticosterone in the circulation, accompanied with decreasing the expression of cutaneous 8-oxoguanine DNA glycosylase (OGG1) in depigmentation mice. In vitro experiments demonstrated that activation of glucocorticoid receptor (GR) by cortisol upregulated NLRP3 expression dependent on MIF, and directly decreased the transcription of OGG1. Blockade of MIF reversed the NLRP3 signal in restraint stress-induced depigmentation mice. In conclusion, restraint stress promotes vitiligo-related depigmentation in mice via the activation of GR/MIF signaling pathway. The findings provide a theoretical basis for prevention and treatments of vitiligo with therapies of targeting GR, MIF, and OGG1.
Collapse
Affiliation(s)
- Nan Tang
- Departments of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Xiao-Ting Liu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wei-Lun Wen
- Departments of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Tian-Shan Liang
- Departments of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Xi-Ting Lv
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qi-Lin Li
- Departments of Dermatology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China.
| | - Guo-En Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Yan-Hua Wu
- Departments of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China.
| |
Collapse
|
7
|
Zan C, Yang B, Brandhofer M, El Bounkari O, Bernhagen J. D-dopachrome tautomerase in cardiovascular and inflammatory diseases-A new kid on the block or just another MIF? FASEB J 2022; 36:e22601. [PMID: 36269019 DOI: 10.1096/fj.202201213r] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/11/2022]
Abstract
Macrophage migration inhibitory factor (MIF) as well as its more recently described structural homolog D-dopachrome tautomerase (D-DT), now also termed MIF-2, are atypical cytokines and chemokines with key roles in host immunity. They also have an important pathogenic role in acute and chronic inflammatory conditions, cardiovascular diseases, lung diseases, adipose tissue inflammation, and cancer. Although our mechanistic understanding of MIF-2 is relatively limited compared to the extensive body of evidence available for MIF, emerging data suggests that MIF-2 is not only a functional phenocopy of MIF, but may have differential or even oppositional activities, depending on the disease and context. In this review, we summarize and discuss the similarities and differences between MIF and MIF-2, with a focus on their structures, receptors, signaling pathways, and their roles in diseases. While mainly covering the roles of the MIF homologs in cardiovascular, inflammatory, autoimmune, and metabolic diseases, we also discuss their involvement in cancer, sepsis, and chronic obstructive lung disease (COPD). A particular emphasis is laid upon potential mechanistic explanations for synergistic or cooperative activities of the MIF homologs in cancer, myocardial diseases, and COPD as opposed to emerging disparate or antagonistic activities in adipose tissue inflammation, metabolic diseases, and atherosclerosis. Lastly, we discuss potential future opportunities of jointly targeting MIF and MIF-2 in certain diseases, whereas precision targeting of only one homolog might be preferable in other conditions. Together, this article provides an update of the mechanisms and future therapeutic avenues of human MIF proteins with a focus on their emerging, surprisingly disparate activities, suggesting that MIF-2 displays a variety of activities that are distinct from those of MIF.
Collapse
Affiliation(s)
- Chunfang Zan
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Bishan Yang
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Markus Brandhofer
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Omar El Bounkari
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Jürgen Bernhagen
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany.,Deutsches Zentrum für Herz-Kreislauferkrankungen (DZHK), Munich Heart Alliance, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
8
|
Du Y, Hao H, Ma H, Liu H. Macrophage migration inhibitory factor in acute kidneyinjury. Front Physiol 2022; 13:945827. [PMID: 36117692 PMCID: PMC9478040 DOI: 10.3389/fphys.2022.945827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Acute kidney injury (AKI) is a complex clinical syndrome with multiple etiologies and pathogenesis, which lacks early biomarkers and targeted therapy. Recently, macrophage migration inhibitory factor (MIF) family protein have received increasing attention owing to its pleiotropic protein molecule character in acute kidney injury, where it performed a dual role in the pathological process. macrophage migration inhibitory factor and macrophage migration inhibitory factor-2 are released into the peripheral circulation when Acute kidney injury occurs and interact with various cellular pathways. On the one hand, macrophage migration inhibitory factor exerts a protective effect in anti-oxidation and macrophage migration inhibitory factor-2 promotes cell proliferation and ameliorates renal fibrosis. On the other hand, macrophage migration inhibitory factor aggravates renal injury as an upstream inflammation factor. Herein, we provide an overview on the biological role and possible mechanisms of macrophage migration inhibitory factor and macrophage migration inhibitory factor-2 in the process of Acute kidney injury and the clinical application prospects of macrophage migration inhibitory factor family proteins as a potential therapeutic target.
Collapse
Affiliation(s)
- Yiwei Du
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
| | - Hao Hao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
| | - Heng Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
- *Correspondence: Hongbao Liu, ; Heng Ma,
| | - Hongbao Liu
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
- *Correspondence: Hongbao Liu, ; Heng Ma,
| |
Collapse
|