1
|
Song C, Li Q, Zhang J, Hu W. Uridine Phosphorylase 1 as a Biomarker Associated with Glycolysis in Acute Lung Injury. Inflammation 2025:10.1007/s10753-025-02270-z. [PMID: 39969741 DOI: 10.1007/s10753-025-02270-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/20/2025]
Abstract
The specific pathogenesis of acute lung injury (ALI) is complex and not yet clear, and the clinical treatment methods are relatively limited. It is of great clinical significance to explore its pathogenesis and effective molecular targets. Here, we identified an ALI biomarker (UPP1) associated with uridine metabolism by a systematic bioinformatics approach. It was also confirmed to be associated with the glycolytic pathway in the mouse ALI model. In addition, drug sensitivity analysis based on the CMAP database identified three UPP1-associated drugs (CAY10585, XL147 and IOX2) that may be useful in the treatment of ALI. Molecular docking and molecular dynamics simulations further confirmed the stability of the binding between UPP1 and the three drugs. In conclusion, this study confirms that the uridine metabolism gene UPP1 associated with glycolysis is a key biomarker of ALI and provides valuable insights into the potential application of CAY10585, XL147 and IOX2 in ALI.
Collapse
Affiliation(s)
- Congkuan Song
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
- Hubei Provincial Clinical Research Center for Cancer, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Qingqing Li
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jinjin Zhang
- Department of Critical Care Medicine, Wuhan Fourth Hospital, Wusheng Road, Wuhan, China
| | - Weidong Hu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.
- Hubei Provincial Clinical Research Center for Cancer, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.
| |
Collapse
|
2
|
Wang L, Yang H, Wang C, Wang M, Huang J, Nyunt T, Osorio C, Sun SY, Pacifici M, Lefebvre V, Moore DC, Wang S, Yang W. SHP2 ablation mitigates osteoarthritic cartilage degeneration by promoting chondrocyte anabolism through SOX9. FASEB J 2024; 38:e70013. [PMID: 39225365 PMCID: PMC11404350 DOI: 10.1096/fj.202400642r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/21/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Articular cartilage phenotypic homeostasis is crucial for life-long joint function, but the underlying cellular and molecular mechanisms governing chondrocyte stability remain poorly understood. Here, we show that the protein tyrosine phosphatase SHP2 is differentially expressed in articular cartilage (AC) and growth plate cartilage (GPC) and that it negatively regulates cell proliferation and cartilage phenotypic program. Postnatal SHP2 deletion in Prg4+ AC chondrocytes increased articular cellularity and thickness, whereas SHP2 deletion in Acan+ pan-chondrocytes caused excessive GPC chondrocyte proliferation and led to joint malformation post-puberty. These observations were verified in mice and in cultured chondrocytes following treatment with the SHP2 PROTAC inhibitor SHP2D26. Further mechanistic studies indicated that SHP2 negatively regulates SOX9 stability and transcriptional activity by influencing SOX9 phosphorylation and promoting its proteasome degradation. In contrast to published work, SHP2 ablation in chondrocytes did not impact IL-1-evoked inflammation responses, and SHP2's negative regulation of SOX9 could be curtailed by genetic or chemical SHP2 inhibition, suggesting that manipulating SHP2 signaling has translational potential for diseases of cartilage dyshomeostasis.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Orthopaedic Surgery, Brown University Alpert Medical School, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Huiliang Yang
- Department of Orthopaedic Surgery, Brown University Alpert Medical School, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Changwei Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Mingliang Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Jiahui Huang
- Department of Orthopaedic Surgery, Brown University Alpert Medical School, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Thedoe Nyunt
- Department of Orthopaedic Surgery, Brown University Alpert Medical School, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Camilo Osorio
- Department of Orthopaedic Surgery, Brown University Alpert Medical School, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Véronique Lefebvre
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Douglas C Moore
- Department of Orthopaedic Surgery, Brown University Alpert Medical School, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Shaomeng Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Wentian Yang
- Department of Orthopaedic Surgery, Brown University Alpert Medical School, Rhode Island Hospital, Providence, Rhode Island, USA
| |
Collapse
|
3
|
Pandey G, Mazzacurati L, Rowsell TM, Horvat NP, Amin NE, Zhang G, Akuffo AA, Colin-Leitzinger CM, Haura EB, Kuykendall AT, Zhang L, Epling-Burnette PK, Reuther GW. SHP2 inhibition displays efficacy as a monotherapy and in combination with JAK2 inhibition in preclinical models of myeloproliferative neoplasms. Am J Hematol 2024; 99:1040-1055. [PMID: 38440831 PMCID: PMC11096011 DOI: 10.1002/ajh.27282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/30/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024]
Abstract
Myeloproliferative neoplasms (MPNs), including polycythemia vera, essential thrombocytosis, and primary myelofibrosis, are clonal hematopoietic neoplasms driven by mutationally activated signaling by the JAK2 tyrosine kinase. Although JAK2 inhibitors can improve MPN patients' quality of life, they do not induce complete remission as disease-driving cells persistently survive therapy. ERK activation has been highlighted as contributing to JAK2 inhibitor persistent cell survival. As ERK is a component of signaling by activated RAS proteins and by JAK2 activation, we sought to inhibit RAS activation to enhance responses to JAK2 inhibition in preclinical MPN models. We found the SHP2 inhibitor RMC-4550 significantly enhanced growth inhibition of MPN cell lines in combination with the JAK2 inhibitor ruxolitinib, effectively preventing ruxolitinib persistent growth, and the growth and viability of established ruxolitinib persistent cells remained sensitive to SHP2 inhibition. Both SHP2 and JAK2 inhibition diminished cellular RAS-GTP levels, and their concomitant inhibition enhanced ERK inactivation and increased apoptosis. Inhibition of SHP2 inhibited the neoplastic growth of MPN patient hematopoietic progenitor cells and exhibited synergy with ruxolitinib. RMC-4550 antagonized MPN phenotypes and increased survival of an MPN mouse model driven by MPL-W515L. The combination of RMC-4550 and ruxolitinib, which was safe and tolerated in healthy mice, further inhibited disease compared to ruxolitinib monotherapy, including extending survival. Given SHP2 inhibitors are undergoing clinical evaluation in patients with solid tumors, our preclinical findings suggest that SHP2 is a candidate therapeutic target with potential for rapid translation to clinical assessment to improve current targeted therapies for MPN patients.
Collapse
Affiliation(s)
- Garima Pandey
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL USA
| | - Lucia Mazzacurati
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL USA
| | - Tegan M. Rowsell
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL USA
| | | | - Narmin E. Amin
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL USA
| | - Guolin Zhang
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, FL USA
| | - Afua A. Akuffo
- Department of Immunology, Moffitt Cancer Center, Tampa, FL USA
| | | | - Eric B. Haura
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, FL USA
| | | | - Ling Zhang
- Department of Pathology, Moffitt Cancer Center, Tampa, FL USA
| | | | - Gary W. Reuther
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL USA
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL USA
| |
Collapse
|
4
|
Hu J, Liu W, Zou Y, Jiao C, Zhu J, Xu Q, Zou J, Sun Y, Guo W. Allosterically activating SHP2 by oleanolic acid inhibits STAT3-Th17 axis for ameliorating colitis. Acta Pharm Sin B 2024; 14:2598-2612. [PMID: 38828149 PMCID: PMC11143531 DOI: 10.1016/j.apsb.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/21/2023] [Accepted: 02/28/2024] [Indexed: 06/05/2024] Open
Abstract
Src homology 2 domain-containing tyrosine phosphatase 2 (SHP2) is an essential tyrosine phosphatase that is pivotal in regulating various cellular signaling pathways such as cell growth, differentiation, and survival. The activation of SHP2 has been shown to have a therapeutic effect in colitis and Parkinson's disease. Thus, the identification of SHP2 activators and a complete understanding of their mechanism is required. We used a two-step screening assay to determine a novel allosteric activator of SHP2 that stabilizes it in an open conformation. Oleanolic acid was identified as a suitable candidate. By binding to R362, K364, and K366 in the active center of the PTP domain, oleanolic acid maintained the active open state of SHP2, which facilitated the binding between SHP2 and its substrate. This oleanolic acid-activated SHP2 hindered Th17 differentiation by disturbing the interaction between STAT3 and IL-6Rα and inhibiting the activation of STAT3. Furthermore, via the activation of SHP2 and subsequent attenuation of the STAT3-Th17 axis, oleanolic acid effectively mitigated colitis in mice. This protective effect was abrogated by SHP2 knockout or administration of the SHP2 inhibitor SHP099. These findings underscore the potential of oleanolic acid as a promising therapeutic agent for treating inflammatory bowel diseases.
Collapse
Affiliation(s)
- Jinbo Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Wen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yi Zou
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Chenyang Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Jiazhen Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Jianjun Zou
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing 210093, China
| |
Collapse
|
5
|
Hsieh SL, Yang SY, Lin CY, He XY, Tsai CH, Fong YC, Lo YS, Tang CH. MCP-1 controls IL-17-promoted monocyte migration and M1 polarization in osteoarthritis. Int Immunopharmacol 2024; 132:112016. [PMID: 38593506 DOI: 10.1016/j.intimp.2024.112016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Osteoarthritis (OA) is a low-grade inflammatory joint illness in which monocytes migrate and infiltrate synovial tissue, differentiating into the pro-inflammatory M1 macrophage phenotype. IL-17 is a proinflammatory mediator principally generated by Th17 cells, which is elevated in OA patients; nevertheless, investigators have yet to elucidate the function of IL-17 in M1 polarization during OA development. Our analysis of clinical tissues and results from the open online dataset discovered that the level of M1 macrophage markers is elevated in human OA tissue samples than in normal tissue. High-throughput screening demonstrated that MCP-1 is a potential candidate factor after IL-17 treatment in OA synovial fibroblasts (OASFs). Immunohistochemistry data revealed that the level of MCP-1 is higher in humans and mice with OA than in normal tissues. IL-17 stimulation facilitates MCP-1-dependent macrophage polarization to the M1 phenotype. It also appears that IL-17 enhances MCP-1 synthesis in human OASFs, enhancing monocyte migration via the JAK and STAT3 signaling cascades. Our findings indicate the IL-17/MCP-1 axis as a novel strategy for the remedy of OA.
Collapse
Affiliation(s)
- Shang-Lin Hsieh
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan; Minimally Invasive Spine and Joint Center, Buddhist Tzu Chi General Hospital Taichung Branch, Taichung, Taiwan
| | - Shang-Yu Yang
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Chih-Yang Lin
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Xiu-Yuan He
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chun-Hao Tsai
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan; Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Chin Fong
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan; Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan; Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Yuan-Shun Lo
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan; Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan; Graduate Institute of Precision Engineering, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan; Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan; Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, Taiwan.
| |
Collapse
|
6
|
Liu Q, Han M, Wu Z, Fu W, Ji J, Liang Q, Tan M, Zhai L, Gao J, Shi D, Jiang Q, Sun Z, Lai Y, Xu Q, Sun Y. DDX5 inhibits hyaline cartilage fibrosis and degradation in osteoarthritis via alternative splicing and G-quadruplex unwinding. NATURE AGING 2024; 4:664-680. [PMID: 38760576 PMCID: PMC11108786 DOI: 10.1038/s43587-024-00624-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 04/04/2024] [Indexed: 05/19/2024]
Abstract
Hyaline cartilage fibrosis is typically considered an end-stage pathology of osteoarthritis (OA), which results in changes to the extracellular matrix. However, the mechanism behind this is largely unclear. Here, we found that the RNA helicase DDX5 was dramatically downregulated during the progression of OA. DDX5 deficiency increased fibrosis phenotype by upregulating COL1 expression and downregulating COL2 expression. In addition, loss of DDX5 aggravated cartilage degradation by inducing the production of cartilage-degrading enzymes. Chondrocyte-specific deletion of Ddx5 led to more severe cartilage lesions in the mouse OA model. Mechanistically, weakened DDX5 resulted in abundance of the Fn1-AS-WT and Plod2-AS-WT transcripts, which promoted expression of fibrosis-related genes (Col1, Acta2) and extracellular matrix degradation genes (Mmp13, Nos2 and so on), respectively. Additionally, loss of DDX5 prevented the unfolding Col2 promoter G-quadruplex, thereby reducing COL2 production. Together, our data suggest that strategies aimed at the upregulation of DDX5 hold significant potential for the treatment of cartilage fibrosis and degradation in OA.
Collapse
Affiliation(s)
- Qianqian Liu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, China
| | - Mingrui Han
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zhigui Wu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Wenqiang Fu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, China
| | - Jun Ji
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qingqing Liang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Linhui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jian Gao
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, China
| | - Dongquan Shi
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ziying Sun
- Department of Orthopaedics, Jinling Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yuping Lai
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
7
|
Feng D, Li H, Ma X, Liu W, Zhu Y, Kang X. Downregulation of extracellular matrix protein 1 effectively ameliorates osteoarthritis progression in vivo. Int Immunopharmacol 2024; 126:111291. [PMID: 38039715 DOI: 10.1016/j.intimp.2023.111291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Osteoarthritis (OA) is the most common joint disease whose important pathological feature is degeneration of articular cartilage. Although extracellular matrix protein 1 (ECM1) serves as a central regulator of chondrocyte proliferation and hypertrophy, its role in OA remains largely unknown. This study aims to decipher the roles of ECM1 in OA development and therapy in animal models. In the present study, ECM1 expression was examined in clinical OA samples, experimental OA mice and OA cell models. Mice subjected to destabilised medial meniscus (DMM) surgery were intra-articularly injected with adeno-associated virus (AAV) expressing ECM1 (AAV-ECM1) or AAV containing shECM1 (AAV-shECM1). Histological analysis was performed to determine cartilage damage. mRNA sequencing was performed to explore the molecular mechanism. In addition, the downstream signaling was further confirmed by using specific inhibitors. Our data showed that ECM1 was upregulated in the cartilage of patients with OA, OA mice as well as OA cell models. Moreover, ECM1 over-expressing in knee joints by AAV-ECM1 accelerated OA progression, while knockdown of ECM1 by AAV-shECM1 alleviated OA development. Mechanistically, cartilage destruction increased ECM1 expression, which consequently exacerbated OA progression partly by decreasing PRG4 expression in the TGF-β/PKA/CREB-dependent manner. In conclusion, our study revealed the important role of ECM1 in OA progression. Targeted ECM1 inhibition is a potential strategy for OA therapy.
Collapse
Affiliation(s)
- Dongxu Feng
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China; Hong Hui Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710054, PR China
| | - Huixia Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Xiao Ma
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Wenjuan Liu
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Yangjun Zhu
- Hong Hui Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710054, PR China.
| | - Xiaomin Kang
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
8
|
Lai B, Jiang H, Liao T, Gao Y, Zhou X. Bioinformatics and system biology analysis revealed the crosstalk between COVID-19 and osteoarthritis. Immun Inflamm Dis 2023; 11:e1123. [PMID: 38156385 PMCID: PMC10739374 DOI: 10.1002/iid3.1123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/12/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023] Open
Abstract
BACKGROUND The global coronavirus disease 2019 (COVID-19) outbreak has significantly impacted public health. Moreover, there has been an association between the incidence and severity of osteoarthritis (OA) and the onset of COVID-19. However, the optimal diagnosis and treatment strategies for patients with both diseases remain uncertain. Bioinformatics is a novel approach that may help find the common pathology between COVID-19 and OA. METHODS Differentially expressed genes (DEGs) were screened by R package "limma." Functional enrichment analyses were performed to find key biological functions. Protein-protein interaction (PPI) network was constructed by STRING database and then Cytoscape was used to select hub genes. External data sets and OA mouse model validated and identified the hub genes in both mRNA and protein levels. Related transcriptional factors (TF) and microRNAs (miRNAs) were predicted with miRTarBase and JASPR database. Candidate drugs were obtained from Drug Signatures database. The immune infiltration levels of COVID-19 and OA were evaluated by CIBERSORT and scRNA-seq. RESULTS A total of 74 common DEGs were identified between COVID-19 and OA. Receiver operating characteristic curves validated the effective diagnostic values (area under curve > 0.7) of four hub genes (matrix metalloproteinases 9, ATF3, CCL4, and RELA) in both the training and validation data sets of COVID-19 and OA. Quantitative polymerase chain reaction and Western Blot showed significantly higher hub gene expression in OA mice than in healthy controls. A total of 84 miRNAs and 28 TFs were identified to regulate the process of hub gene expression. The top 10 potential drugs were screened including "Simvastatin," "Hydrocortisone," and "Troglitazone" which have been proven by Food and Drug Administration. Correlated with hub gene expression, Macrophage M0 was highly expressed while Natural killer cells and Mast cells were low in both COVID-19 and OA. CONCLUSION Four hub genes, disease-related miRNAs, TFs, drugs, and immune infiltration help to understand the pathogenesis and perform further studies, providing a potential therapy target for COVID-19 and OA.
Collapse
Affiliation(s)
- Bowen Lai
- Department of OrthopedicsChangzheng Hospital, Second Military Medical UniversityShanghaiChina
| | - Heng Jiang
- Department of OrthopedicsChangzheng Hospital, Second Military Medical UniversityShanghaiChina
| | - Taotao Liao
- Department of OrthopedicsChangzheng Hospital, Second Military Medical UniversityShanghaiChina
| | - Yuan Gao
- Department of OrthopedicsChangzheng Hospital, Second Military Medical UniversityShanghaiChina
| | - Xuhui Zhou
- Department of OrthopedicsChangzheng Hospital, Second Military Medical UniversityShanghaiChina
| |
Collapse
|
9
|
Xu Y, Hu X, Cai J, Li Y, Zou Y, Wang Y, Xie C, Xu S, Wang Y, Zheng Y, Mahamat DA, Xu Y, Wang X, Li X, Liu A, Chen D, Zhu L, Guo J. Atractylenolide-III alleviates osteoarthritis and chondrocyte senescence by targeting NF-κB signaling. Phytother Res 2023; 37:4607-4620. [PMID: 37380363 DOI: 10.1002/ptr.7929] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/01/2023] [Accepted: 06/10/2023] [Indexed: 06/30/2023]
Abstract
Atractylenolide-III (AT-III) is well known as its role in antioxidant and anti-inflammatory. Present study was aimed to figure out its effects on osteoarthritis and potential mechanisms. Rat model, human osteoarthritis cartilage explants as well as rat/human chondrocyte cultures were prepared to test AT-III's effects on osteoarthritis progression and chondrocyte senescence. Potential targeted molecules of AT-III were predicted using network pharmacology and molecular docking, assessed by Western blotting and then verified with rescue experiments. AT-III treatment alleviated osteoarthritis severity (shown by OARSI grading score and micro-CT) and chondrocyte senescence (indexed by levels of SA-β-gal, P16, P53, MMP13, ROS and ratio of healthy/collapsed mitochondrial membrane potentials). Network pharmacology and molecular docking suggested that AT-III might play role through NF-κB pathway. Further experiments revealed that AT-III reduced phosphorylation of IKKα/β, IκBα and P65 in NF-κB pathway. As well as nuclear translocation of p65. Both in vivo and in vitro experiments indicated that AT-III's effects on osteoarthritis and anti-senescence were reversed by an NF-κB agonist. AT-III could alleviate osteoarthritis by inhibiting chondrocyte senescence through NF-κB pathway, which indicated that AT-III is a prospective drug for osteoarthritis treatment.
Collapse
Affiliation(s)
- Yizhou Xu
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaofang Hu
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jiale Cai
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yunlun Li
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ying Zou
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yihan Wang
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Changnan Xie
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shuyi Xu
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yanqing Wang
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuli Zheng
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Djibril Adam Mahamat
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yuantao Xu
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xianghai Wang
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xican Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Aijun Liu
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dongfeng Chen
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lixin Zhu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiasong Guo
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
10
|
Li R, Zhou L, Yang C, Xu WD, Huang AF. Relationship between SHP2 gene polymorphisms and systemic lupus erythematosus risk. Int J Rheum Dis 2023; 26:1485-1494. [PMID: 37270672 DOI: 10.1111/1756-185x.14761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 06/05/2023]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is a complex autoimmune disorder. SHP2, a non-transmembrane member of the protein tyrosine phosphatase (PTP) family, can be involved in multiple signaling pathways in inflammatory response. To date, it remains to be investigated whether polymorphisms in the SHP2 gene are correlated with SLE in the Chinese Han population. METHOD A study comprising 320 SLE patients and 400 healthy individuals was performed. Three single nucleotide polymorphisms (rs4767860, rs7132778, rs7953150) of the SHP2 gene were genotyped using the Kompetitive Allele-Specific Polymerase Chain Reaction method. RESULTS Genotypes of rs4767860 (AA, AG + AA) and rs7132778 (AA, AC + AA), and alleles of rs4767860 (A) and rs7132778 (A) were associated with SLE risk. Genotype AA of rs7132778 and allele A of rs7132778 and rs7953150 were associated with oral ulcers in SLE patients. Allele C of rs7132778 and genotype AA and allele A of rs7953150 were associated with pyuria. Patients who carried AA genotype and allele A of rs7953150 are more likely to develop hypocomplementemia. AA and AG genotype frequencies are more raised in patients with SLE with alopecia than in those without alopecia. Patients who carried AA and AG genotypes of rs4767860 had elevated C-reactive protein levels. CONCLUSION Gene polymorphisms of SHP2 (rs4767860, rs7132778) are relevant to SLE susceptibility.
Collapse
Affiliation(s)
- Rong Li
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Ling Zhou
- Department of Preventive Medicine, School of Public Health, Southwest Medical University, Luzhou, Sichuan, China
| | - Chan Yang
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
11
|
Yang C, Li R, Su LC, Lan YY, Wang YQ, Xu WD, Huang AF. SHP2: its association and roles in systemic lupus erythematosus. Inflamm Res 2023:10.1007/s00011-023-01760-w. [PMID: 37351631 DOI: 10.1007/s00011-023-01760-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/04/2023] [Accepted: 06/17/2023] [Indexed: 06/24/2023] Open
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is an autoimmune inflammatory disease. Src homology 2 domain containing protein tyrosine phosphatase (SHP2) is a member of the protein tyrosine phosphatases (PTPs) family. To date, relationship between SHP2 and SLE pathogenesis is not elucidated. METHOD We measured plasma levels of SHP2 in 328 SLE patients, 78 RA patients, 80 SS patients and 79 healthy controls by ELISA, and discussed association of SHP2 in SLE patients, potential of plasma SHP2 as a SLE biomarker. Moreover, histological and serological changes were evaluated by flow cytometry, HE/Masson examination, immunofluorescence test in pristane-induced lupus mice after SHP2 inhibitor injection to reveal role of SHP2 in lupus development. RESULTS Results indicated that SHP2 plasma levels were upregulated in SLE patients and correlated with some clinical, laboratory characteristics such as proteinuria, pyuria, and may be a potential biomarker for SLE. After SHP2 inhibitor treatment, hepatosplenomegaly and histological severity of the kidney in lupus mice were improved. SHP2 inhibitor reversed DCs, Th1, and Th17 cells differentiation and downregulated inflammatory cytokines (IL-4, IL-6, IL-10, IL-17A, IFN-γ and TNF-α) and autoantibodies (ANA, anti-dsDNA) production in pristane-lupus mice. CONCLUSION In summary, SHP2 correlated with SLE pathogenesis and promoted the development of lupus.
Collapse
Affiliation(s)
- Chan Yang
- Department of Evidence-Based Medicine, Southwest Medical University, 1 Xianglin Road, Luzhou, 646000, Sichuan, China
| | - Rong Li
- Department of Evidence-Based Medicine, Southwest Medical University, 1 Xianglin Road, Luzhou, 646000, Sichuan, China
| | - Lin-Chong Su
- Department of Rheumatology and Immunology, Minda Hospital of Hubei Minzu University, 2 Wufengshan Road, Enshi, 445000, Hubei, China
| | - You-Yu Lan
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, 25 Taiping Road, Luzhou, 646000, Sichuan, China
| | - You-Qiang Wang
- Department of Laboratory Medicine, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, 1 Xianglin Road, Luzhou, 646000, Sichuan, China.
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, 25 Taiping Road, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
12
|
Lai K, Song C, Gao M, Deng Y, Lu Z, Li N, Geng Q. Uridine Alleviates Sepsis-Induced Acute Lung Injury by Inhibiting Ferroptosis of Macrophage. Int J Mol Sci 2023; 24:ijms24065093. [PMID: 36982166 PMCID: PMC10049139 DOI: 10.3390/ijms24065093] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/30/2023] Open
Abstract
Uridine metabolism is extensively reported to be involved in combating oxidative stress. Redox-imbalance-mediated ferroptosis plays a pivotal role in sepsis-induced acute lung injury (ALI). This study aims to explore the role of uridine metabolism in sepsis-induced ALI and the regulatory mechanism of uridine in ferroptosis. The Gene Expression Omnibus (GEO) datasets including lung tissues in lipopolysaccharides (LPS) -induced ALI model or human blood sample of sepsis were collected. In vivo and vitro, LPS was injected into mice or administered to THP-1 cells to generate sepsis or inflammatory models. We identified that uridine phosphorylase 1 (UPP1) was upregulated in lung tissues and septic blood samples and uridine significantly alleviated lung injury, inflammation, tissue iron level and lipid peroxidation. Nonetheless, the expression of ferroptosis biomarkers, including SLC7A11, GPX4 and HO-1, were upregulated, while lipid synthesis gene (ACSL4) expression was greatly restricted by uridine supplementation. Moreover, pretreatment of ferroptosis inducer (Erastin or Era) weakened while inhibitor (Ferrostatin-1 or Fer-1) strengthened the protective effects of uridine. Mechanistically, uridine inhibited macrophage ferroptosis by activating Nrf2 signaling pathway. In conclusion, uridine metabolism dysregulation is a novel accelerator for sepsis-induced ALI and uridine supplementation may offer a potential avenue for ameliorating sepsis-induced ALI by suppressing ferroptosis.
Collapse
Affiliation(s)
- Kai Lai
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Congkuan Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Minglang Gao
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yu Deng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zilong Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
13
|
Purine metabolites promote ectopic new bone formation in ankylosing spondylitis. Int Immunopharmacol 2023; 116:109810. [PMID: 36774858 DOI: 10.1016/j.intimp.2023.109810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/12/2023]
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory rheumatic disease that mainly affects the axial skeleton, whose typical features are inflammatory back pain, bone structural damage and pathological new bone formation. The pathology of ectopic new bone formation is still little known. In this study, we found increased purine metabolites in plasma of patients with AS. Similarly, metabolome analysis indicated increased purine metabolites in both serum of CD4-Cre; Ptpn11fl/fl and SHP2-deficient chondrocytes. SHP2-deficient chondrocytes promoted the growth of wild type chondrocytes and differentiation of osteoblasts in CD4-Cre; Ptpn11fl/fl mice, which spontaneously developed AS-like bone disease. Purine metabolites, along with PTHrP derived from SHP2-deficient chondrocytes, accelerated the growth of chondrocytes and ectopic new bone formation through PKA/CREB signaling. Moreover, Suramin, a purinergic receptor antagonist, suppressed pathological new bone formation in AS-like bone disease. Overall, these results highlight the potential role of targeting purinergic signaling in retarding ectopic new bone formation in AS.
Collapse
|
14
|
Zhang J, Ye C, Zhu Y, Wang J, Liu J. The Cell-Specific Role of SHP2 in Regulating Bone Homeostasis and Regeneration Niches. Int J Mol Sci 2023; 24:ijms24032202. [PMID: 36768520 PMCID: PMC9917188 DOI: 10.3390/ijms24032202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
Src homology-2 containing protein tyrosine phosphatase (SHP2), encoded by PTPN11, has been proven to participate in bone-related diseases, such as Noonan syndrome (NS), metachondromatosis and osteoarthritis. However, the mechanisms of SHP2 in bone remodeling and homeostasis maintenance are complex and undemonstrated. The abnormal expression of SHP2 can influence the differentiation and maturation of osteoblasts, osteoclasts and chondrocytes. Meanwhile, SHP2 mutations can act on the immune system, vasculature and nervous system, which in turn affect bone development and remodeling. Signaling pathways regulated by SHP2, such as mitogen-activated protein kinase (MAPK), Indian hedgehog (IHH) and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT), are also involved in the proliferation, differentiation and migration of bone functioning cells. This review summarizes the recent advances of SHP2 on osteogenesis-related cells and niche cells in the bone marrow microenvironment. The phenotypic features of SHP2 conditional knockout mice and underlying mechanisms are discussed. The prospective applications of the current agonists or inhibitors that target SHP2 in bone-related diseases are also described. Full clarification of the role of SHP2 in bone remodeling will shed new light on potential treatment for bone related diseases.
Collapse
Affiliation(s)
- Jie Zhang
- Laboratory for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chengxinyue Ye
- Laboratory for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yufan Zhu
- Laboratory for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (J.W.); (J.L.)
| | - Jin Liu
- Laboratory for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (J.W.); (J.L.)
| |
Collapse
|
15
|
Zhai LH, Chen KF, Hao BB, Tan MJ. Proteomic characterization of post-translational modifications in drug discovery. Acta Pharmacol Sin 2022; 43:3112-3129. [PMID: 36372853 PMCID: PMC9712763 DOI: 10.1038/s41401-022-01017-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/07/2022] [Indexed: 11/15/2022] Open
Abstract
Protein post-translational modifications (PTMs), which are usually enzymatically catalyzed, are major regulators of protein activity and involved in almost all celluar processes. Dysregulation of PTMs is associated with various types of diseases. Therefore, PTM regulatory enzymes represent as an attractive and important class of targets in drug research and development. Inhibitors against kinases, methyltransferases, deacetyltransferases, ubiquitin ligases have achieved remarkable success in clinical application. Mass spectrometry-based proteomics technologies serve as a powerful approach for system-wide characterization of PTMs, which facilitates the identification of drug targets, elucidation of the mechanisms of action of drugs, and discovery of biomakers in personalized therapy. In this review, we summarize recent advances of proteomics-based studies on PTM targeting drugs and discuss how proteomics strategies facilicate drug target identification, mechanism elucidation, and new therapy development in precision medicine.
Collapse
Affiliation(s)
- Lin-Hui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Zhongshan Institute of Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Zhongshan, 528400, China
| | - Kai-Feng Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing-Bing Hao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Min-Jia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Zhongshan Institute of Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Zhongshan, 528400, China.
| |
Collapse
|
16
|
Zhu P, Wu X, Zhang RY, Hsu CC, Zhang ZY, Tao WA. An Integrated Proteomic Strategy to Identify SHP2 Substrates. J Proteome Res 2022; 21:2515-2525. [PMID: 36103635 PMCID: PMC9597472 DOI: 10.1021/acs.jproteome.2c00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein phosphatases play an essential role in normal cell physiology and the development of diseases such as cancer. The innate challenges associated with studying protein phosphatases have limited our understanding of their substrates, molecular mechanisms, and unique functions within highly coordinated networks. Here, we introduce a novel strategy using substrate-trapping mutants coupled with quantitative proteomics methods to identify physiological substrates of Src homology 2 containing protein tyrosine phosphatase 2 (SHP2) in a high-throughput manner. The technique integrates three parallel mass spectrometry-based proteomics experiments, including affinity isolation of substrate-trapping mutant complex using wild-type and SHP2 KO cells, in vivo global quantitative phosphoproteomics, and in vitro phosphatase reaction. We confidently identified 18 direct substrates of SHP2 in the epidermal growth factor receptor signaling pathways, including both known and novel SHP2 substrates. Docking protein 1 was further validated using biochemical assays as a novel SHP2 substrate, providing a mechanism for SHP2-mediated Ras activation. This advanced workflow improves the systemic identification of direct substrates of protein phosphatases, facilitating our understanding of the equally important roles of protein phosphatases in cellular signaling.
Collapse
Affiliation(s)
- Peipei Zhu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xiaofeng Wu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ruo-Yu Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Chuan-Chih Hsu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zhong-Yin Zhang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - W Andy Tao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
17
|
Single cell RNA-seq analysis identifies ferroptotic chondrocyte cluster and reveals TRPV1 as an anti-ferroptotic target in osteoarthritis. EBioMedicine 2022; 84:104258. [PMID: 36137413 PMCID: PMC9494174 DOI: 10.1016/j.ebiom.2022.104258] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 12/29/2022] Open
|
18
|
Pan J, Zhou L, Zhang C, Xu Q, Sun Y. Targeting protein phosphatases for the treatment of inflammation-related diseases: From signaling to therapy. Signal Transduct Target Ther 2022; 7:177. [PMID: 35665742 PMCID: PMC9166240 DOI: 10.1038/s41392-022-01038-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Inflammation is the common pathological basis of autoimmune diseases, metabolic diseases, malignant tumors, and other major chronic diseases. Inflammation plays an important role in tissue homeostasis. On one hand, inflammation can sense changes in the tissue environment, induce imbalance of tissue homeostasis, and cause tissue damage. On the other hand, inflammation can also initiate tissue damage repair and maintain normal tissue function by resolving injury and restoring homeostasis. These opposing functions emphasize the significance of accurate regulation of inflammatory homeostasis to ameliorate inflammation-related diseases. Potential mechanisms involve protein phosphorylation modifications by kinases and phosphatases, which have a crucial role in inflammatory homeostasis. The mechanisms by which many kinases resolve inflammation have been well reviewed, whereas a systematic summary of the functions of protein phosphatases in regulating inflammatory homeostasis is lacking. The molecular knowledge of protein phosphatases, and especially the unique biochemical traits of each family member, will be of critical importance for developing drugs that target phosphatases. Here, we provide a comprehensive summary of the structure, the "double-edged sword" function, and the extensive signaling pathways of all protein phosphatases in inflammation-related diseases, as well as their potential inhibitors or activators that can be used in therapeutic interventions in preclinical or clinical trials. We provide an integrated perspective on the current understanding of all the protein phosphatases associated with inflammation-related diseases, with the aim of facilitating the development of drugs that target protein phosphatases for the treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- Jie Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Lisha Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Chenyang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
19
|
Wang M, Li T, Ouyang Z, Tang K, Zhu Y, Song C, Sun H, Yu B, Ji X, Sun Y. SHP2 allosteric inhibitor TK-453 alleviates psoriasis-like skin inflammation in mice via inhibition of IL-23/Th17 axis. iScience 2022; 25:104009. [PMID: 35310939 PMCID: PMC8927994 DOI: 10.1016/j.isci.2022.104009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/21/2022] [Accepted: 02/25/2022] [Indexed: 12/16/2022] Open
Abstract
SHP2 is the first oncogenic tyrosine phosphatase encoded by PTPN11, which plays a significant regulatory role in cancer and inflammation-related diseases. Although SHP2 allosteric inhibitors have been used in phase I/II clinical trials for solid tumors, whether SHP2 inhibition alleviates psoriasis remains unclear. Here we expressed and purified SHP2 related proteins, and established an enzyme activity screening system for different conformations of SHP2. We launched an iterative medicinal chemistry program and identified the lead compound, TK-453. Importantly, TK-453 possessed stronger affinity with SHP2 than SHP099, evidenced by the cocrystal structure of SHP2/TK-453, revealing that the additional aryl-S-aryl bridge in TK-453 induces a 1.8 Å shift of the dichlorophenyl ring and an approximate 20° deviation of the pyrazine ring plane relative to SHP099. Furthermore, TK-453 significantly ameliorated imiquimod-triggered skin inflammation in mice via inhibition of the IL-23/Th17 axis, proving that SHP2 is a potential therapeutic target for psoriasis. We identify a SHP2 allosteric inhibitor TK-453, which has a stronger affinity with SHP2 Cocrystal structure shows that TK-453 occupies the allosteric pocket of SHP2 TK-453 alleviates psoriasis-like skin inflammation in mice SHP2 inhibitor provides a new strategy for the treatment of psoriasis
Collapse
|
20
|
Sun Z, Liu Q, Lv Z, Li J, Xu X, Sun H, Wang M, Sun K, Shi T, Liu Z, Tan G, Yan W, Wu R, Yang YX, Ikegawa S, Jiang Q, Sun Y, Shi D. Targeting macrophagic SHP2 for ameliorating osteoarthritis via TLR signaling. Acta Pharm Sin B 2022; 12:3073-3084. [PMID: 35865095 PMCID: PMC9293663 DOI: 10.1016/j.apsb.2022.02.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/15/2021] [Accepted: 01/20/2022] [Indexed: 01/31/2023] Open
Abstract
Osteoarthritis (OA), in which M1 macrophage polarization in the synovium exacerbates disease progression, is a major cause of cartilage degeneration and functional disabilities. Therapeutic strategies of OA designed to interfere with the polarization of macrophages have rarely been reported. Here, we report that SHP099, as an allosteric inhibitor of src-homology 2-containing protein tyrosine phosphatase 2 (SHP2), attenuated osteoarthritis progression by inhibiting M1 macrophage polarization. We demonstrated that M1 macrophage polarization was accompanied by the overexpression of SHP2 in the synovial tissues of OA patients and OA model mice. Compared to wild-type (WT) mice, myeloid lineage conditional Shp2 knockout (cKO) mice showed decreased M1 macrophage polarization and attenuated severity of synovitis, an elevated expression of cartilage phenotype protein collagen II (COL2), and a decreased expression of cartilage degradation markers collagen X (COL10) and matrix metalloproteinase 3 (MMP3) in OA cartilage. Further mechanistic analysis showed thatSHP099 inhibited lipopolysaccharide (LPS)-induced Toll-like receptor (TLR) signaling mediated by nuclear factor kappa B (NF-κB) and PI3K–AKT signaling. Moreover, intra-articular injection of SHP099 also significantly attenuated OA progression, including joint synovitis and cartilage damage. These results indicated that allosteric inhibition of SHP2 might be a promising therapeutic strategy for the treatment of OA.
Collapse
Affiliation(s)
- Ziying Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Qianqian Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Zhongyang Lv
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Jiawei Li
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Xingquan Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Heng Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Maochun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Kuoyang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Tianshu Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Zizheng Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Guihua Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Wenqiang Yan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Rui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Yannick Xiaofan Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Drum Tower of Clinical Medicine, Nanjing Medical University, Nanjing 210008, China
| | - Shiro Ikegawa
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Science (IMS, RIKEN), Tokyo 108-8639, Japan
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing 210023, China
- Corresponding authors.
| | - Dongquan Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
- Corresponding authors.
| |
Collapse
|
21
|
Liu Z, Liu R, Wang R, Dai J, Chen H, Wang J, Li X. Sinensetin attenuates IL-1β -induced cartilage damage and ameliorates osteoarthritis by regulating SERPINA3. Food Funct 2022; 13:9973-9987. [DOI: 10.1039/d2fo01304e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by articular cartilage degeneration, subchondral bone sclerosis, synovial hyperplasia and osteophyte formation as the main pathological manifestations. Age, mechanical stress and inflammation...
Collapse
|