1
|
Tesoriero MA, Wheate NJ. What happened to BBR3464 and where to from here for multinuclear platinum-based anticancer drugs? Dalton Trans 2024. [PMID: 39692098 DOI: 10.1039/d4dt02868f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The development of the trinuclear platinum(II) complex BBR3464 (also known as triplatin) in the late 1990s was meant to be a revolution in the field of platinum chemotherapy. What made it remarkable was that it defied many of the known structure-activity rules for platinums; it is cationic, has a single labile trans leaving group on each terminal platinum, and it binds DNA in ways different to mononuclear platinum drugs, like cisplatin and oxaliplatin. The flexible, long-range adducts the drug forms with DNA means that it showed activity in cancers not typically sensitive to platinums, and more importantly, BBR3464 demonstrated an ability to overcome acquired resistance to platinum drugs. But while preclinical and phase I testing showed promise, its more severe side effects which greatly limited the deliverable dose when compared with standard platinums, combined with its lack of biostability, led to a lack of activity in phase II trials and its development was halted. But, from its ashes have risen 4th generation complexes which target the phosphate backbone of DNA. These, and the original BBR3464 drug, could potentially be further developed and gain regulatory approval through formulation with macrocycle-based drug delivery vehicles.
Collapse
Affiliation(s)
- Mia A Tesoriero
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia
| | - Nial J Wheate
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW, 2109, Australia.
| |
Collapse
|
2
|
Shi H, Romero-Canelón I, Hreusova M, Novakova O, Venkatesh V, Habtemariam A, Clarkson GJ, Song JI, Brabec V, Sadler PJ. Photoactivatable Cell-Selective Dinuclear trans-Diazidoplatinum(IV) Anticancer Prodrugs. Inorg Chem 2018; 57:14409-14420. [PMID: 30365308 PMCID: PMC6257630 DOI: 10.1021/acs.inorgchem.8b02599] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
A series of dinuclear
octahedral PtIV complexes trans,trans,trans-[{Pt(N3)2(py)2(OH)(OC(O)CH2CH2C(O)NH)}2R] containing pyridine (py) and bridging
dicarboxylate [R = −CH2CH2– (1), trans-1,2-C6H10– (2), p-C6H4– (3), −CH2CH2CH2CH2– (4)] ligands have
been synthesized and characterized, including the X-ray crystal structures
of complexes 1·2MeOH and 4, the first
photoactivatable dinuclear PtIV complexes with azido ligands.
The complexes are highly stable in the dark, but upon photoactivation
with blue light (420 nm), they release the bridging ligand and mononuclear
photoproducts. Upon irradiation with blue light (465 nm), they generate
azidyl and hydroxyl radicals, detected using a 5,5-dimethyl-1-pyrroline N-oxide electron paramagnetic resonance spin trap, accompanied
by the disappearance of the ligand-to-metal charge-transfer (N3 → Pt) band at ca. 300 nm. The dinuclear complexes
are photocytotoxic to human cancer cells (465 nm, 4.8 mW/cm2, 1 h), including A2780 human ovarian and esophageal OE19 cells with
IC50 values of 8.8–78.3 μM, whereas cisplatin
is inactive under these conditions. Complexes 1, 3, and 4 are notably more photoactive toward
cisplatin-resistant ovarian A2780cis compared to A2780 cells. Remarkably,
all of the complexes were relatively nontoxic toward normal cells
(MRC5 lung fibroblasts), with IC50 values >100 μM,
even after irradiation. The introduction of an aromatic bridging ligand
(3) significantly enhanced cellular uptake. The populations
in the stages of the cell cycle remained unchanged upon treatment
with complexes in the dark, while the population of the G2/M phase
increased upon irradiation, suggesting that DNA is a target for these
photoactivated dinuclear PtIV complexes. Liquid chromatography–mass
spectrometry data show that the photodecomposition pathway of the
dinuclear complexes results in the release of two molecules of mononuclear
platinum(II) species. As a consequence, DNA binding of the dinuclear
complexes after photoactivation in cell-free media is, in several
respects, qualitatively similar to that of the photoactivated mononuclear
complex FM-190. After photoactivation, they were 2-fold
more effective in quenching the fluorescence of EtBr bound to DNA,
forming DNA interstrand cross-links and unwinding DNA compared to
the photoactivated FM-190. Novel all-trans dinuclear
PtIV complexes bridged
by a dicarboxylate linker, highly stable in the dark, generate azidyl
and hydroxyl radicals upon irradiation with blue light. They are photocytotoxic
to human cancer cells, whereas cisplatin was inactive under these
conditions and more photoactive toward cisplatin-resistant ovarian
cancer cells compared to wild-type cells. Remarkably, the dinuclear
complexes were relatively nontoxic toward normal human cells. Cell
cycle and DNA binding experiments suggested that DNA is a target.
Collapse
Affiliation(s)
- Huayun Shi
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| | - Isolda Romero-Canelón
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K.,School of Pharmacy, Institute of Clinical Sciences , University of Birmingham , Birmingham B15 2TT , U.K
| | - Monika Hreusova
- Department of Biophysics, Faculty of Science , Palacky University , 17 listopadu 12 , Olomouc CZ-77146 , Czech Republic.,Institute of Biophysics , Czech Academy of Sciences , Kralovopolska 135 , Brno CZ-61265 , Czech Republic
| | - Olga Novakova
- Institute of Biophysics , Czech Academy of Sciences , Kralovopolska 135 , Brno CZ-61265 , Czech Republic
| | - V Venkatesh
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| | - Abraha Habtemariam
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| | - Guy J Clarkson
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| | - Ji-Inn Song
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| | - Viktor Brabec
- Institute of Biophysics , Czech Academy of Sciences , Kralovopolska 135 , Brno CZ-61265 , Czech Republic
| | - Peter J Sadler
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| |
Collapse
|
3
|
Hu J, Chen S, Mao R, Liao C, Yang H, Zhao J. Cytotoxicity, dual-targeting apoptosis induction evaluation of multinuclear cu complexes based on pyrazine-benzimidazole derivative. J Inorg Biochem 2018; 186:246-256. [DOI: 10.1016/j.jinorgbio.2018.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 06/21/2018] [Accepted: 06/24/2018] [Indexed: 11/16/2022]
|
4
|
Brabec V, Hrabina O, Kasparkova J. Cytotoxic platinum coordination compounds. DNA binding agents. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.04.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
5
|
|
6
|
Sun T, Li Z, Xie Z, Jing X. Amphiphilic Cyanine-Platinum Conjugates as Fluorescent Nanodrugs. Chem Asian J 2015; 11:221-5. [DOI: 10.1002/asia.201501163] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/08/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Tingting Sun
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Zhensheng Li
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 China
| |
Collapse
|
7
|
Moniodis JJ, Thomas DS, Davies MS, Berners-Price SJ, Farrell NP. Competitive formation of DNA linkage isomers by a trinuclear platinum complex and the influence of pre-association. Dalton Trans 2015; 44:3583-3593. [PMID: 25407024 PMCID: PMC4324329 DOI: 10.1039/c4dt02942a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
2D [(1)H, (15)N] HSQC NMR spectroscopy has been used to monitor the reaction of fully (15)N-labelled [{trans-PtCl(NH3)2}2(μ-trans-Pt(NH3)2{NH2(CH2)6NH2}2)](4+) (BBR3464 ((15)N-1)) with the 14-mer duplex (5'-{d(ATACATG(7)G(8)TACATA)}-3'·5'-{d(TATG(18)TACCATG(25)TAT)}-3' or I) at pH 5.4 and 298 K, to examine the possible formation of 1,4 and 1,5-GG adducts in both 5'-5' and 3'-3' directions. In a previous study, the binding of the dinuclear 1,1/t,t to I showed specific formation of the 5'-5' 1,4 G(8)G(18) cross-link, whereas in this case a mixture of adducts were formed. Initial (1)H NMR spectra suggested the presence of two pre-associated states aligned in both directions along the DNA. The pre-association was studied in the absence of covalent binding, by use of the "non-covalent" analog [{trans-Pt(NH3)3}2(μ-trans-Pt(NH3)2{NH2(CH2)6NH2}2)](6+) (AH44, 0). Chemical shift changes of DNA protons combined with NOE connectivities between CH2 and NH3 protons of 0 and the adenine H2 protons on I show that two different molecules of 0 are bound in the minor groove. Molecular dynamic simulations were performed to study the interaction of 0 at the two pre-association sites using charges derived from density functional theory (DFT) calculations. Structures where the central platinum is located in the minor groove and the aliphatic linkers extend into the major groove, in opposite directions, often represent the lowest energy structures of the snapshots selected. In the reaction of (15)N-1 and I, following the pre-association step, aquation occurs to give the mono aqua monochloro species 2, with a rate constant of 3.43 ± 0.03 × 10(-5) s(-1). There was evidence for two monofunctional adducts (3, 4) bound to the 3' (G8) and 5' (G7) residues and the asymmetry of the (1)H,(15)N peak for 3 suggested two conformers of the 3' adduct, aligned in different directions along the DNA. The rate constant for combined monofunctional adduct formation (0.6 ± 0.1 M(-1)) is ca. 2-fold lower for 1 compared to 1,1/t,t, whereas the rate constant for conversion of the combined monofunctional species to combined bifunctional adducts (5) (8.0 ± 0.2 × 10(-5) s(-1)) is two-fold higher.
Collapse
Affiliation(s)
- Joseph J. Moniodis
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, WA 6009, Australia
| | - Donald S. Thomas
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, WA 6009, Australia
| | - Murray S. Davies
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, WA 6009, Australia
| | - Susan J. Berners-Price
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, WA 6009, Australia
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Nicholas P. Farrell
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
- Department of Chemistry, Virginia Commonwealth University, 1001 W. Main St., Richmond, Virginia, 23284-2006, USA
| |
Collapse
|
8
|
Qu Y, Kipping RG, Farrell NP. Solution studies on DNA interactions of substitution-inert platinum complexes mediated via the phosphate clamp. Dalton Trans 2015; 44:3563-72. [PMID: 25524170 PMCID: PMC4323935 DOI: 10.1039/c4dt03237c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The phosphate clamp is a distinct mode of ligand-DNA binding where the molecular recognition is manifested through ("non-covalent") hydrogen-bonding from am(m)ines of polynuclear platinum complexes to the phosphate oxygens on the oligonucleotide backbone. This third mode of DNA binding is unique to the "classical" DNA intercalators and minor groove binding agents and even the closely related covalently binding mononuclear and polynuclear drugs. 2D (1)H NMR studies on the Dickerson-Drew dodecamer (DDD, d(CGCGAATTCGCG)2) showed significant A-T contacts mainly on nucleotides A6, T7 and T8 implying a selective bridging from C9G10 in the 3' direction to C9G10 of the opposite strand. {(1)H, (15)N} HSQC NMR spectroscopy using the fully (15)N-labelled compound [{trans-Pt(NH2)3(H2N(CH2)6NH3}2μ-(H2N(CH2)6NH2)2(Pt(NH3)2](8+) (TriplatinNC) showed at pH 6 significant chemical shifts and (1)J((195)Pt-(15)N) coupling constants for the free drug and DDD-TriplatinNC at pH 7 indicative of formation of the phosphate clamp. (31)P NMR results are also reported for the hexamer d(CGTACG)2 showing changes in (31)P NMR chemical shifts indicative of changes around the phosphorus center. The studies confirm the DNA binding modes by substitution-inert (non-covalent) polynuclear platinum complexes and help in further establishing the chemotype as a new class of potential anti-tumour agents in their own right with a distinct profile of biological activity.
Collapse
Affiliation(s)
- Y Qu
- Department of Chemistry, Virginia Commonwealth University, 1001 W. Main St., Richmond, VA 23284-2006, USA.
| | | | | |
Collapse
|
9
|
Malina J, Farrell NP, Brabec V. DNA Condensing Effects and Sequence Selectivity of DNA Binding of Antitumor Noncovalent Polynuclear Platinum Complexes. Inorg Chem 2014; 53:1662-71. [DOI: 10.1021/ic402796k] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jaroslav Malina
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, v.v.i.,
Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Nicholas P. Farrell
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| | - Viktor Brabec
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, v.v.i.,
Kralovopolska 135, CZ-61265 Brno, Czech Republic
| |
Collapse
|
10
|
Ruhayel RA, Berners-Price SJ, Farrell NP. Competitive formation of both long-range 5'-5' and short-range antiparallel 3'-3' DNA interstrand cross-links by a trinuclear platinum complex on binding to a 10-mer duplex. Dalton Trans 2013; 42:3181-7. [PMID: 23165925 PMCID: PMC4004642 DOI: 10.1039/c2dt32079g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
2D [(1)H, (15)N] HSQC NMR spectroscopy has been used to monitor the reaction of fully (15)N-labelled [{trans-PtCl(NH(3))(2)}(2)(μ-trans-Pt(NH(3))(2){NH(2)(CH(2))(6)NH(2)}(2))](4+) (Triplatin, BBR3464 or 1,0,1/t,t,t ((15)N-1)) with the self-complementary 10-mer DNA duplex 5'-{d(ACGTATACGT)(2)} (duplex I) at pH 5.4 and 298 K. Initial electrostatic interactions were observed in the minor groove of the duplex, followed directly by aquation to form the monoaqua monochloro species. There was evidence for two discrete monofunctional adducts, through covalent binding at the guanine N7 sites, and one had distinctly different (1)H/(15)N chemical shifts to those observed previously in analogous reactions. Bifunctional adduct formation followed by binding at a second guanine N7 site with evidence for both the 3'-3' 1,2-GG and 5'-5' 1,6-GG interstrand cross-links in a ratio of 2 : 1. The results show that cross-link preference is kinetically controlled and will depend critically on the reaction conditions, explaining why in a previous reaction of 1 with duplex I the major adduct isolated by HPLC had two simultaneous 3'-3' 1,2-interstrand cross-links.
Collapse
Affiliation(s)
- Rasha A. Ruhayel
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD 4222, Australia
- School of Chemistry and Biochemistry, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Susan J. Berners-Price
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD 4222, Australia
- School of Chemistry and Biochemistry, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Nicholas P. Farrell
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD 4222, Australia
- Department of Chemistry, Virginia Commonwealth University Richmond, Virginia, 23284-2006 USA
| |
Collapse
|
11
|
Platinum and Palladium Polyamine Complexes as Anticancer Agents: The Structural Factor. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/287353] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Since the introduction of cisplatin to oncology in 1978, Pt(II) and Pd(II) compounds have been intensively studied with a view to develop the improved anticancer agents. Polynuclear polyamine complexes, in particular, have attracted special attention, since they were found to yield DNA adducts not available to conventional drugs (through long-distance intra- and interstrand cross-links) and to often circumvent acquired cisplatin resistance. Moreover, the cytotoxic potency of these polyamine-bridged chelates is strictly regulated by their structural characteristics, which renders this series of compounds worth investigating and their synthesis being carefully tailored in order to develop third-generation drugs coupling an increased spectrum of activity to a lower toxicity. The present paper addresses the latest developments in the design of novel antitumor agents based on platinum and palladium, particularly polynuclear chelates with variable length aliphatic polyamines as bridging ligands, highlighting the close relationship between their structural preferences and cytotoxic ability. In particular, studies by vibrational spectroscopy techniques are emphasised, allowing to elucidate the structure-activity relationships (SARs) ruling anticancer activity.
Collapse
|
12
|
Scaffidi-Domianello YY, Legin AA, Jakupec MA, Roller A, Kukushkin VY, Galanski M, Keppler BK. Novel oximato-bridged platinum(II) di- and trimer(s): synthetic, structural, and in vitro anticancer activity studies. Inorg Chem 2012; 51:7153-63. [PMID: 22691006 DOI: 10.1021/ic300148e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Novel platinum complexes of trans geometry [PtCl(2){(Z)-R(H)C═NOH}(2)] [R = Me (1), Et (3)] and [PtCl(2){(E)-R(H)C═NOH}{(Z)-R(H)C═NOH}] [R = Me (2), Et (4)] as well as the classic trans-[PtCl(2)(R(2)C═NOH)(2)] [R = Me, Et] were reacted with an equivalent amount of silver acetate in acetone solution at ambient temperature, resulting in formation of unprecedented head-to-tail-oriented oximato-bridged dimers [PtCl{μ-(Z)-R(H)C═NO}{(Z)-R(H)C═NOH}](2) [R = Me (5), Et (7)], [PtCl{μ-(Z)-R(H)C═NO}{(E)-R(H)C═NOH}](2) [R = Me (6), Et (8)], and [PtCl(μ-R(2)C═NO)(R(2)C═NOH)](2) [R = Me (9), Et (10)], correspondingly. The dimeric species feature a unique six-membered diplatinacycle and represent the first example of oxime ligands coordinated to platinum via the oxygen atom. All complexes were characterized by elemental analyses, electrospray ionization mass spectrometry, IR and multinuclear ((1)H, (13)C, and (195)Pt) NMR spectroscopy, as well as X-ray diffraction in the cases of dimers 6 and 9. Furthermore, the crystal and molecular structures of a trimeric oximato-bridged complex 11 comprising three platinum units connected in a chain way were established. The cytotoxicity of both dimers and the respective monomers was comparatively evaluated in three human cancer cell lines: cisplatin-sensitive CH1 cells as well as cisplatin-resistant SW480 and A549 cells, whereupon structure-activity relationships were drawn. Thus, it was found that dimerization results in a substantial (up to 7-fold) improvement of IC(50) values of (aldoxime)Pt(II) compounds, whereas for the analogous complexes featuring ketoxime ligands the reverse trend was observed. Remarkably, the novel dimers yielded no cross-resistance with cisplatin in SW480 cells, exhibiting up to 2-fold enhanced cytotoxicity in comparison with the CH1 cell line and thereby possessing a promising potential to overcome resistance toward platinum anticancer drugs. The latter point was also confirmed by investigating the potency of apoptosis induction in the case of one monomer as well as one dimer; the investigated complexes proved to be strong apoptotic agents which could induce cell death even in the cisplatin-resistant SW480 cell line.
Collapse
|
13
|
|