1
|
Alshehri S, Abboud M. Synthesis and characterization of mesoporous silica supported metallosalphen-azobenzene complexes: efficient photochromic heterogeneous catalysts for the oxidation of cyclohexane to produce KA oil. RSC Adv 2024; 14:26971-26994. [PMID: 39193295 PMCID: PMC11348846 DOI: 10.1039/d4ra04698f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
The oxidation of cyclohexane to produce KA oil (cyclohexanone and cyclohexanol) is important industrially but faces challenges such as low cyclohexane conversion at high KA oil selectivity, and difficult catalyst recyclability. This work reports the synthesis and evaluation of new heterogeneous catalysts consisting of Co(ii), Mn(ii), Ni(ii) and Cu(ii) salphen-azobenzene complexes [ML1] immobilized on amino-functionalized mesoporous silica (SBA-15, MCM-41, MCM-48) through coordination bonding. In the first step, the salphen-azobenzene ligand was synthesized and complexed with Co, Mn, Ni and Cu metal ions. In the second step, aminopropyltriethoxysilane (APTES) was grafted onto the surface of different types of commercial mesoporous silica. The immobilization of [ML1] onto the mesoporous silica surface and the thermal stability of the obtained materials were confirmed using different characterization techniques such as FT-IR, powder XRD, SEM, TEM, BET, and TGA. The obtained results revealed high dispersion of [ML1] through the silica surface. The catalytic activity of the prepared materials Silica-N-ML1 was evaluated on the cyclohexane oxidation to produce KA oil using various oxidants. The cis-trans isomerization of the azobenzene upon UV irradiation was found to affect the catalytic performance of Silica-N-ML1. The cis isomer of SBA-15-N-CoL1 exhibited the highest cyclohexane conversion (93%) and KA selectivity (92%) under mild conditions (60 °C, 6 h) using m-CPBA as oxidant. Moreover, The SBA-15-N-CoL1 showed high stability during four successive cycles.
Collapse
Affiliation(s)
- Salimah Alshehri
- Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University Abha 61413 Saudi Arabia +966 53 48 46 782
| | - Mohamed Abboud
- Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University Abha 61413 Saudi Arabia +966 53 48 46 782
| |
Collapse
|
2
|
Wen X, Ma Y, Chen J, Wang B. A synthetically useful catalytic system for aliphatic C-H oxidation with a nonheme cobalt complex and m-CPBA. Org Biomol Chem 2024; 22:5729-5733. [PMID: 38932595 DOI: 10.1039/d4ob00807c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
We report herein a synthetically useful catalytic system for aliphatic C-H oxidation with a mononuclear nonheme cobalt(II) complex and m-chloroperbenzoic acid (m-CPBA). Preliminary mechanistic studies suggest that a high-valent cobalt-oxygen species (e.g., cobalt(IV)-oxo or cobalt(III)-oxyl) is the oxidant that effects C-H oxidation via a rate-determining hydrogen atom abstraction (HAA) step.
Collapse
Affiliation(s)
- Xiang Wen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Yidong Ma
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Jie Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Bin Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| |
Collapse
|
3
|
Heim P, Gericke R, Spedalotto G, Lovisari M, Farquhar ER, McDonald AR. Aromatic and aliphatic hydrocarbon hydroxylation via a formally Ni IVO oxidant. Dalton Trans 2023; 52:2663-2671. [PMID: 36745393 PMCID: PMC9972353 DOI: 10.1039/d2dt03949d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
The reaction of (NMe4)2[NiII(LPh)(OAc)] (1[OAc], LPh = 2,2',2''-nitrilo-tris-(N-phenylacetamide); OAc = acetate) with 3-chloroperoxybenzoic acid (m-CPBA) resulted in the formation of a self-hydroxylated NiIII-phenolate complex, 2, where one of the phenyl groups of LPh underwent hydroxylation. 2 was characterised by UV-Vis, EPR, and XAS spectroscopies and ESI-MS. 2 decayed to yield a previously characterised NiII-phenolate complex, 3. We postulate that self-hydroxylation was mediated by a formally NiIVO oxidant, formed from the reaction of 1[OAc] with m-CPBA, which undergoes electrophilic aromatic substitution to yield 2. This is supported by an analysis of the kinetic and thermodynamic properties of the reaction of 1[OAc] with m-CPBA. Addition of exogenous hydrocarbon substrates intercepted the self-hydroxylation process, producing hydroxylated products, providing further support for the formally NiIVO entity. This study demonstrates that the reaction between NiII salts and m-CPBA can lead to potent metal-based oxidants, in contrast to recent studies demonstrating carboxyl radical is a radical free-chain reaction initiator in NiII/m-CPBA hydrocarbon oxidation catalysis.
Collapse
Affiliation(s)
- Philipp Heim
- School of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland.
| | - Robert Gericke
- School of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland.
| | - Giuseppe Spedalotto
- School of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland.
| | - Marta Lovisari
- School of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland.
| | - Erik R Farquhar
- Center for Synchrotron Biosciences, National Synchrotron Light Source II, Brookhaven, National Laboratory Case Western Reserve University, Upton, NY 11973, USA
| | - Aidan R McDonald
- School of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland.
| |
Collapse
|
4
|
Alkane hydroxylation by m-chloroperbenzoic acid catalyzed by nickel(II) complexes of linear N4-tetradentate ligands. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Zaera F. Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts? Chem Rev 2022; 122:8594-8757. [PMID: 35240777 DOI: 10.1021/acs.chemrev.1c00905] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A critical review of different prominent nanotechnologies adapted to catalysis is provided, with focus on how they contribute to the improvement of selectivity in heterogeneous catalysis. Ways to modify catalytic sites range from the use of the reversible or irreversible adsorption of molecular modifiers to the immobilization or tethering of homogeneous catalysts and the development of well-defined catalytic sites on solid surfaces. The latter covers methods for the dispersion of single-atom sites within solid supports as well as the use of complex nanostructures, and it includes the post-modification of materials via processes such as silylation and atomic layer deposition. All these methodologies exhibit both advantages and limitations, but all offer new avenues for the design of catalysts for specific applications. Because of the high cost of most nanotechnologies and the fact that the resulting materials may exhibit limited thermal or chemical stability, they may be best aimed at improving the selective synthesis of high value-added chemicals, to be incorporated in organic synthesis schemes, but other applications are being explored as well to address problems in energy production, for instance, and to design greener chemical processes. The details of each of these approaches are discussed, and representative examples are provided. We conclude with some general remarks on the future of this field.
Collapse
Affiliation(s)
- Francisco Zaera
- Department of Chemistry and UCR Center for Catalysis, University of California, Riverside, California 92521, United States
| |
Collapse
|
6
|
Motokura K, Ding S, Usui K, Kong Y. Enhanced Catalysis Based on the Surface Environment of the Silica-Supported Metal Complex. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03426] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ken Motokura
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Siming Ding
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Kei Usui
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Yuanyuan Kong
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| |
Collapse
|
7
|
Aliphatic C–H hydroxylation activity and durability of a nickel complex catalyst according to the molecular structure of the bis(oxazoline) ligands. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
8
|
Kerbib W, Singh S, Nautiyal D, Kumar A, Kumar S. Ni(II) complexes of tripodal N4 ligands as catalysts for alkane hydroxylation and O-arylation of phenol: Structural and reactivity effects induced by fluoro substitution. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Terao I, Horii S, Nakazawa J, Okamura M, Hikichi S. Efficient alkane hydroxylation catalysis of nickel(ii) complexes with oxazoline donor containing tripodal tetradentate ligands. Dalton Trans 2020; 49:6108-6118. [PMID: 32323686 DOI: 10.1039/d0dt00733a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tris(oxazolynylmethyl)amine TOAR (where R denotes the substituent groups on the fourth position of the oxazoline rings) complexes of nickel(ii) have been synthesized as catalyst precursors for alkane oxidation with meta-chloroperoxybenzoic acid (m-CPBA). The molecular structures of acetato, nitrato, meta-chlorobenzoato and chlorido complexes with TOAMe2 have been determined using X-ray crystallography. The bulkiness of the substituent groups R affects the coordination environment of the nickel(ii) centers, as has been demonstrated by comparison of the molecular structures of chlorido complexes with TOAMe2 and TOAtBu. The nickel(ii)-acetato complex with TOAMe2 is an efficient catalyst precursor compared with the tris(pyridylmethyl)amine (TPA) analogue. Oxazolynyl donors' strong σ-electron donating ability will enhance the catalytic activity. Catalytic reaction rates and substrate oxidizing position selectivity are controlled by the structural properties of the R of TOAR. Reaction of the acetato complex with TOAMe2 and m-CPBA yields the corresponding acylperoxido species, which can be detected using spectroscopy. Kinetic studies of the decay process of the acylperoxido species suggest that the acylperoxido species is a precursor of an active species for alkane oxidation.
Collapse
Affiliation(s)
- Ikumi Terao
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan.
| | | | | | | | | |
Collapse
|
10
|
Dobrov A, Darvasiová D, Zalibera M, Bučinský L, Puškárová I, Rapta P, Shova S, Dumitrescu D, Martins LMDRS, Pombeiro AJL, Arion VB. Nickel(II) Complexes with Redox Noninnocent Octaazamacrocycles as Catalysts in Oxidation Reactions. Inorg Chem 2019; 58:11133-11145. [PMID: 31373487 DOI: 10.1021/acs.inorgchem.9b01700] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nickel(II) complexes with 15-membered (1-5) and 14-membered (6) octaazamacrocyclic ligands derived from 1,2- and 1,3-diketones and S-methylisothiocarbohydrazide were prepared by template synthesis. The compounds were characterized by elemental analysis, electrospray ionization mass spectrometry, IR, UV-vis, 1H NMR spectroscopies, and X-ray diffraction. The complexes contain a low-spin nickel(II) ion in a square-planar coordination environment. The electrochemical behavior of 1-6 was investigated in detail, and the electronic structure of 1e-oxidized and 1e-reduced species was studied by electron paramagnetic resonance, UV-vis-near-IR spectroelectrochemistry, and density functional theory calculations indicating redox noninnocent behavior of the ligands. Compounds 1-6 were tested in the microwave-assisted solvent-free oxidation of cyclohexane by tert-butyl hydroperoxide to produce the industrially significant mixture of cyclohexanol and cyclohexanone (i.e., A/K oil). The results showed that the catalytic activity was affected by several factors, namely, reaction time and temperature or amount and type of catalyst. The best values for A/K oil yield (23%, turnover number of 1.1 × 102) were obtained with compound 6 after 2 h of microwave irradiation at 100 °C.
Collapse
Affiliation(s)
- Anatolie Dobrov
- Institute of Inorganic Chemistry , University of Vienna , Währinger Strasse 42 , A-1090 Vienna , Austria
| | - Denisa Darvasiová
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology , Slovak University of Technology in Bratislava , Radlinského 9 , SK-81237 Bratislava , Slovak Republic
| | - Michal Zalibera
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology , Slovak University of Technology in Bratislava , Radlinského 9 , SK-81237 Bratislava , Slovak Republic
| | - Lukáš Bučinský
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology , Slovak University of Technology in Bratislava , Radlinského 9 , SK-81237 Bratislava , Slovak Republic
| | - Ingrid Puškárová
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology , Slovak University of Technology in Bratislava , Radlinského 9 , SK-81237 Bratislava , Slovak Republic
| | - Peter Rapta
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology , Slovak University of Technology in Bratislava , Radlinského 9 , SK-81237 Bratislava , Slovak Republic
| | - Sergiu Shova
- Inorganic Polymers Department , "Petru Poni" Institute of Macromolecular Chemistry , Aleea Gr. Ghica Voda 41 A , 700487 Iasi , Romania
| | - Dan Dumitrescu
- Elettra-Sincrotrone Trieste S.C.p.A. , Strada Statale 14-km 163,5 in AREA Science Park , 34149 Basovizza, Trieste , Italy
| | - Luísa M D R S Martins
- Centro de Química Estrutural, Instituto Superior Técnico , Universidade de Lisboa , Av. Rovisco Pais , 1049-001 Lisboa , Portugal
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Instituto Superior Técnico , Universidade de Lisboa , Av. Rovisco Pais , 1049-001 Lisboa , Portugal
| | - Vladimir B Arion
- Institute of Inorganic Chemistry , University of Vienna , Währinger Strasse 42 , A-1090 Vienna , Austria
| |
Collapse
|
11
|
Chandra P, Jonas AM, Fernandes AE. Spatial Coordination of Cooperativity in Silica-Supported Cu/TEMPO/Imidazole Catalytic Triad. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01399] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Prakash Chandra
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Alain M. Jonas
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Antony E. Fernandes
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
12
|
Catalyst-free and solvent-free oxidation of cycloalkanes (C5-C8) with molecular oxygen: Determination of autoxidation temperature and product distribution. Chin J Chem Eng 2018. [DOI: 10.1016/j.cjche.2018.02.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Alkane oxidation reactivity of homogeneous and heterogeneous metal complex catalysts with mesoporous silica-immobilized (2-pyridylmethyl)amine type ligands. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.09.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Ying J, Janiak C, Xiao YX, Wei H, Yang XY, Su BL. Shape-Controlled Surface-Coating to Pd@Mesoporous Silica Core-Shell Nanocatalysts with High Catalytic Activity and Stability. Chem Asian J 2017; 13:31-34. [DOI: 10.1002/asia.201701452] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/05/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Jie Ying
- State Key Laboratory Advanced Technology for Materials Synthesis and Processing; Wuhan University of Technology; 122, Luoshi Road Wuhan 430070 China
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie; Heinrich-Heine-Universität Düsseldorf; 40204 Düsseldorf Germany
| | - Yu-Xuan Xiao
- State Key Laboratory Advanced Technology for Materials Synthesis and Processing; Wuhan University of Technology; 122, Luoshi Road Wuhan 430070 China
| | - Hao Wei
- State Key Laboratory Advanced Technology for Materials Synthesis and Processing; Wuhan University of Technology; 122, Luoshi Road Wuhan 430070 China
| | - Xiao-Yu Yang
- State Key Laboratory Advanced Technology for Materials Synthesis and Processing; Wuhan University of Technology; 122, Luoshi Road Wuhan 430070 China
| | - Bao-Lian Su
- State Key Laboratory Advanced Technology for Materials Synthesis and Processing; Wuhan University of Technology; 122, Luoshi Road Wuhan 430070 China
- Laboratory of Inorganic Materials Chemistry (CMI); University of Namur; 61, rue de Bruxelles 5000 Namur Belgium
| |
Collapse
|
15
|
Bunescu A, Lee S, Li Q, Hartwig JF. Catalytic Hydroxylation of Polyethylenes. ACS CENTRAL SCIENCE 2017; 3:895-903. [PMID: 28852704 PMCID: PMC5571459 DOI: 10.1021/acscentsci.7b00255] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Indexed: 06/07/2023]
Abstract
Polyolefins account for 60% of global plastic consumption, but many potential applications of polyolefins require that their properties, such as compatibility with polar polymers, adhesion, gas permeability, and surface wetting, be improved. A strategy to overcome these deficiencies would involve the introduction of polar functionalities onto the polymer chain. Here, we describe the Ni-catalyzed hydroxylation of polyethylenes (LDPE, HDPE, and LLDPE) in the presence of m CPBA as an oxidant. Studies with cycloalkanes and pure, long-chain alkanes were conducted to assess precisely the selectivity of the reaction and the degree to which potential C-C bond cleavage of a radical intermediate occurs. Among the nickel catalysts we tested, [Ni(Me4Phen)3](BPh4)2 (Me4Phen = 3,4,7,8,-tetramethyl-1,10-phenanthroline) reacted with the highest turnover number (TON) for hydroxylation of cyclohexane and the highest selectivity for the formation of cyclohexanol over cyclohexanone (TON, 5560; cyclohexanol/(cyclohexanone + ε-caprolactone) ratio, 10.5). The oxidation of n-octadecane occurred at the secondary C-H bonds with 15.5:1 selectivity for formation of an alcohol over a ketone and 660 TON. Consistent with these data, the hydroxylation of various polyethylene materials by the combination of [Ni(Me4Phen)3](BPh4)2 and m CPBA led to the introduction of 2.0 to 5.5 functional groups (alcohol, ketone, alkyl chloride) per 100 monomer units with up to 88% selectivity for formation of alcohols over ketones or chloride. In contrast to more classical radical functionalizations of polyethylene, this catalytic process occurred without significant modification of the molecular weight of the polymer that would result from chain cleavage or cross-linking. Thus, the resulting materials are new compositions in which hydroxyl groups are located along the main chain of commercial, high molecular weight LDPE, HDPE, and LLDPE materials. These hydroxylated polyethylenes have improved wetting properties and serve as macroinitiators to synthesize graft polycaprolactones that compatibilize polyethylene-polycaprolactone blends.
Collapse
Affiliation(s)
- Ala Bunescu
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Sunwoo Lee
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Qian Li
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - John F. Hartwig
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
16
|
Nakamizu A, Kasai T, Nakazawa J, Hikichi S. Immobilization of a Boron Center-Functionalized Scorpionate Ligand on Mesoporous Silica Supports for Heterogeneous Tp-Based Catalysts. ACS OMEGA 2017; 2:1025-1030. [PMID: 31457483 PMCID: PMC6641073 DOI: 10.1021/acsomega.7b00022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/06/2017] [Indexed: 06/10/2023]
Abstract
To develop novel immobilized metallocomplex catalysts, allyltris(3-trifluoromethylpyrazol-1-yl)borate (allyl-TpCF3) was synthesized. A boron-attached allyl group reacts with thiol to afford the desired mesoporous silica-immobilized TpCF3. Cobalt(II) is an efficient probe for estimating the structures of the immobilized metallocomplexes. The structures of the formed cobalt(II) complexes and their catalytic activity depended on the density of the organic thiol groups and on the state of the remaining sulfur donors on the supports.
Collapse
|
17
|
Stereoselective Alkane Oxidation with meta-Chloroperoxybenzoic Acid (MCPBA) Catalyzed by Organometallic Cobalt Complexes. Molecules 2016; 21:molecules21111593. [PMID: 27879680 PMCID: PMC6273550 DOI: 10.3390/molecules21111593] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 01/21/2023] Open
Abstract
Cobalt pi-complexes, previously described in the literature and specially synthesized and characterized in this work, were used as catalysts in homogeneous oxidation of organic compounds with peroxides. These complexes contain pi-butadienyl and pi-cyclopentadienyl ligands: [(tetramethylcyclobutadiene)(benzene)cobalt] hexafluorophosphate, [(C4Me4)Co(C6H6)]PF6 (1); diiodo(carbonyl)(pentamethylcyclopentadienyl)cobalt, Cp*Co(CO)I2 (2); diiodo(carbonyl)(cyclopentadienyl)cobalt, CpCo(CO)I2 (3); (tetramethylcyclobutadiene)(dicarbonyl)(iodo)cobalt, (C4Me4)Co(CO)2I (4); [(tetramethylcyclobutadiene)(acetonitrile)(2,2′-bipyridyl)cobalt] hexafluorophosphate, [(C4Me4)Co(bipy)(MeCN)]PF6 (5); bis[dicarbonyl(B-cyclohexylborole)]cobalt, [(C4H4BCy)Co(CO)2]2 (6); [(pentamethylcyclopentadienyl)(iodo)(1,10-phenanthroline)cobalt] hexafluorophosphate, [Cp*Co(phen)I]PF6 (7); diiodo(cyclopentadienyl)cobalt, [CpCoI2]2 (8); [(cyclopentadienyl)(iodo)(2,2′-bipyridyl)cobalt] hexafluorophosphate, [CpCo(bipy)I]PF6 (9); and [(pentamethylcyclopentadienyl)(iodo)(2,2′-bipyridyl)cobalt] hexafluorophosphate, [Cp*Co(bipy)I]PF6 (10). Complexes 1 and 2 catalyze very efficient and stereoselective oxygenation of tertiary C–H bonds in isomeric dimethylcyclohexanes with MCBA: cyclohexanols are produced in 39 and 53% yields and with the trans/cis ratio (of isomers with mutual trans- or cis-configuration of two methyl groups) 0.05 and 0.06, respectively. Addition of nitric acid as co-catalyst dramatically enhances both the yield of oxygenates and stereoselectivity parameter. In contrast to compounds 1 and 2, complexes 9 and 10 turned out to be very poor catalysts (the yields of oxygenates in the reaction with cis-1,2-dimethylcyclohexane were only 5%–7% and trans/cis ratio 0.8 indicated that the oxidation is not stereoselective). The chromatograms of the reaction mixture obtained before and after reduction with PPh3 are very similar, which testifies that alkyl hydroperoxides are not formed in this oxidation. It can be thus concluded that the interaction of the alkanes with MCPBA occurs without the formation of free radicals. The complexes catalyze oxidation of alcohols with tert-butylhydroperoxide (TBHP). For example, tert-BuOOH efficiently oxidizes 1-phenylethanol to acetophenone in 98% yield if compound 1 is used as a catalyst.
Collapse
|
18
|
Fernandes AE, Riant O, Jonas AM, Jensen KF. One “Click” to controlled bifunctional supported catalysts for the Cu/TEMPO-catalyzed aerobic oxidation of alcohols. RSC Adv 2016. [DOI: 10.1039/c6ra05026c] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A modular strategy is described for the preparation and molecular engineering of multifunctional surfaces using CuAAC chemistry and is applied to the model Cu/TEMPO-catalyzed aerobic oxidation of benzyl alcohol.
Collapse
Affiliation(s)
- Antony E. Fernandes
- Institute of Condensed Matter and Nanosciences
- Université catholique de Louvain
- Louvain-la-Neuve
- Belgium
- Department of Chemical Engineering
| | - Olivier Riant
- Institute of Condensed Matter and Nanosciences
- Université catholique de Louvain
- Louvain-la-Neuve
- Belgium
| | - Alain M. Jonas
- Institute of Condensed Matter and Nanosciences
- Université catholique de Louvain
- Louvain-la-Neuve
- Belgium
| | - Klavs F. Jensen
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| |
Collapse
|
19
|
Fernandes AE, Jonas AM, Riant O. Application of CuAAC for the covalent immobilization of homogeneous catalysts. Tetrahedron 2014. [DOI: 10.1016/j.tet.2013.12.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|