1
|
Brotsman VA, Troyanov SI. Non-classical (NC), heptagon-containing fullerenes obtained via chlorination-promoted cage transformations: C 76(NC2a)Cl 24 and C 76(NC2b)Cl 28. Chem Commun (Camb) 2024; 60:893-896. [PMID: 38165663 DOI: 10.1039/d3cc05336a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
High-temperature chlorination of C76 fullerene with SbCl5 proceeds via five Stone-Wales rearrangements, resulting in non-classical (NC) C76(NC1a)Cl24 with two heptagons and 14 pentagons partically fused in pairs and triples. C76(NC2b)Cl28 with isomeric carbon cage was obtained by chlorination-promoted cage shrinkage of C80via two C2 losses. The pathways of skeletal cage trasformations, the chlorination patterns, and formation energies are discussed in detail.
Collapse
Affiliation(s)
- Victor A Brotsman
- Chemistry Department, Moscow State University, Leninskie gory, 119991 Moscow, Russia.
| | - Sergey I Troyanov
- Chemistry Department, Moscow State University, Leninskie gory, 119991 Moscow, Russia.
| |
Collapse
|
2
|
Gu YX, Zheng H, Li DH, Zhao X. M@C 78 (M = U, Th): Inherent Topological Connectivity Existed in Thermodynamically Stable Isomers and the Possibility of an Endohedral Fullerene Containing One Heptagon Ring. J Phys Chem A 2023. [PMID: 37463332 DOI: 10.1021/acs.jpca.3c02266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The density functional theory combined with statistical thermodynamic analyses of M@C78 (M = U and Th) demonstrated that four isomers, M@D3h(24109)-C78, M@C2v(24107)-C78, M@C1(22595)-C78, and M@C1(23349)-C78, and a nonclassical isomer, M@C1(id7)-C78, containing one heptagon ring possess outstanding thermodynamic stabilities in the two M@C78 series. Especially, the M@C1(id7)-C78 isomer is the first nonclassical C78 fullerene that can exist stably. Importantly, these five fullerene cages are found to be related in the form of Stone-Wales (SW) transformations. Geometric analyses disclosed that, unlike lanthanide metals, actinide metals are more likely to bond with sumanene-type hexagonal rings when they are encapsulated in IPR C78 cages. Frontier molecular orbital analysis showed that both U and Th atoms donate four electrons to the C78 carbon cages.
Collapse
Affiliation(s)
- Yong-Xin Gu
- School of Chemistry and Chemical Engineering, Datong University, Datong 037009, Shanxi, China
- Institute of Molecular Science & Applied Chemistry, School of Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hong Zheng
- State key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - De-Huai Li
- School of Chemistry and Chemical Engineering, Datong University, Datong 037009, Shanxi, China
| | - Xiang Zhao
- Institute of Molecular Science & Applied Chemistry, School of Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
3
|
Xie FF, Chen ZC, Zhang M, Xie XM, Chen LF, Tian HR, Deng SL, Xie SY, Zheng LS. Capturing nonclassical C 70 with double heptagons in low-pressure combustion. Chem Commun (Camb) 2022; 58:9814-9817. [PMID: 35975480 DOI: 10.1039/d2cc03707f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A double-heptagon-containing C70H6 (dihept-C70H6) was isolated and unambiguously characterized in the soot of low-pressure combustion, which shares the identical heptagonal cage as dihept-C70Cl6 previously identified in the products of carbon arc, and thus represents the first nonclassical fullerene isolable in both carbon arc and combustion.
Collapse
Affiliation(s)
- Fang-Fang Xie
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Zuo-Chang Chen
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Min Zhang
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xiao-Ming Xie
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Ling-Fang Chen
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Han-Rui Tian
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Shun-Liu Deng
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Su-Yuan Xie
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Lan-Sun Zheng
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
4
|
Zhang K, Zheng H, Li M, Li QZ, Zhao Y, Zhao X. Significant Roles of a Particularly Stable Two-Center Two-Electron Lu-Lu σ Bond in Lu 2@C 86: Electronic Structure of Lu and Radius of Lu 2. Inorg Chem 2021; 60:2425-2436. [PMID: 33497217 DOI: 10.1021/acs.inorgchem.0c03336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is still dispute over the stability of endohedral metallofullerenes (EMFs) M2C2n, and recently, multiform lutetium-based dimetallofullerenes have been dropped in experiments. The thermodynamic stabilities of Lu2C86 EMFs are revealed by density functional theory (DFT) in conjunction with statistical thermodynamic analyses. Inevitably, besides the experimentally reported Lu2@C2v(63751)-C86, Lu2@Cs(63750)-C86, and Lu2@Cs(63757)-C86, other three metal carbide clusterfullerenes, Lu2C2@D2d(51591)-C84, Lu2C2@C1(51383)-C84, and Lu2C2@Cs(id207430)-C84, rather than Lu2@C86 are first characterized as thermodynamically stable isomers of Lu2C86. Specially, the Cs(id207430)-C84 is a newly non-classical fullerene containing one heptagon, which is stabilized via encaging Lu2C2. Another interesting phenomenon is that the outer fullerene cages of thermodynamically stable Lu2C82-88 molecules are geometrically connected through C2 addition/loss and Stone-Wales (SW) transformation, suggesting a special relationship between thermodynamic stabilities and geometries of Lu2C82-88 EMFs. Furthermore, the electronic configurations of (Lu2)4+@C864- and (Lu2C2)4+@C844- were confirmed. A significantly stable two-center two-electron (2c-2e) Lu-Lu σ single bond is formed in Lu2@C86. By comparing M-M bonds in M2@C2v(63751)-C86 (M = Sc, Y, La, and Lu), two significant factors, the valence atomic orbital (ns) of metal atoms and radius of M2+, are found to determine the stability of the M-M bond in the C2v(63751)-C86. Additionally, the simulated UV-vis-NIR spectra of thermodynamically stable Lu2C86 isomers were simulated, which further disclose their electronic features.
Collapse
Affiliation(s)
- KaiNi Zhang
- Institute of Molecular Science & Applied Chemistry, School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hong Zheng
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mengyang Li
- Institute of Molecular Science & Applied Chemistry, School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qiao-Zhi Li
- Institute of Molecular Science & Applied Chemistry, School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yaoxiao Zhao
- Institute of Molecular Science & Applied Chemistry, School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiang Zhao
- Institute of Molecular Science & Applied Chemistry, School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
5
|
Theoretical Investigation of Seven Membered Ring C120X6 (X = H2, F2, Cl2, Br2, O, O2, and CH2) Fullerene Derivatives. J CLUST SCI 2021. [DOI: 10.1007/s10876-020-01767-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Freisetzung der Spannung kondensierter Fünfringe des Fullerenkäfigs durch chemische Funktionalisierung. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Guan R, Chen M, Jin F, Yang S. Strain Release of Fused Pentagons in Fullerene Cages by Chemical Functionalization. Angew Chem Int Ed Engl 2019; 59:1048-1073. [PMID: 30884036 DOI: 10.1002/anie.201901678] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Indexed: 11/07/2022]
Abstract
According to the isolated pentagon rule (IPR), for stable fullerenes, the 12 pentagons should be isolated from one another by hexagons, otherwise the fused pentagons will result in an increase in the local steric strain of the fullerene cage. However, the successful isolation of more than 100 endohedral and exohedral fullerenes containing fused pentagons over the past 20 years has shown that strain release of fused pentagons in fullerene cages is feasible. Herein, we present a general overview on fused-pentagon-containing (i.e. non-IPR) fullerenes through an exhaustive review of all the types of fused-pentagon-containing fullerenes reported to date. We clarify how the strain of fused pentagons can be released in different manners, and provide an in-depth understanding of the role of fused pentagons in the stability, electronic properties, and chemical reactivity of fullerene cages.
Collapse
Affiliation(s)
- Runnan Guan
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC), Hefei, 230026, China
| | - Muqing Chen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC), Hefei, 230026, China
| | - Fei Jin
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC), Hefei, 230026, China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC), Hefei, 230026, China
| |
Collapse
|
8
|
Zhong Y, Chen Z, Du P, Cui C, Tian H, Shi X, Deng S, Gao F, Zhang Q, Gao C, Zhang X, Xie S, Huang R, Zheng L. Double Negatively Curved C
70
Growth through a Heptagon‐Involving Pathway. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuan‐Yuan Zhong
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Zuo‐Chang Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Peng Du
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
- College of Chemistry, Chemical Engineering, and Environment Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology Minnan Normal University Zhangzhou 363000 China
| | - Cun‐Hao Cui
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Han‐Rui Tian
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xiang‐Mei Shi
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Shun‐Liu Deng
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Fei Gao
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
- College of Chemistry, Chemical Engineering, and Environment Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology Minnan Normal University Zhangzhou 363000 China
| | - Qianyan Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Cong‐Li Gao
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xin Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Su‐Yuan Xie
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Rong‐Bin Huang
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Lan‐Sun Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
9
|
Zhong YY, Chen ZC, Du P, Cui CH, Tian HR, Shi XM, Deng SL, Gao F, Zhang Q, Gao CL, Zhang X, Xie SY, Huang RB, Zheng LS. Double Negatively Curved C 70 Growth through a Heptagon-Involving Pathway. Angew Chem Int Ed Engl 2019; 58:14095-14099. [PMID: 31237012 DOI: 10.1002/anie.201902154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Indexed: 11/11/2022]
Abstract
All previously reported C70 isomers have positive curvature and contain 12 pentagons in addition to hexagons. Herein, we report a new C70 species with two negatively curved heptagon moieties and 14 pentagons. This unconventional heptafullerene[70] containing two symmetric heptagons, referred to as dihept-C70 , grows in the carbon arc by a theoretically supported pathway in which the carbon cluster of a previously reported C66 species undergoes successive C2 insertion via a known heptafullerene[68] intermediate with low energy barriers. As identified by X-ray crystallography, the occurrence of heptagons facilitates a reduction in the angle of the π-orbital axis vector in the fused pentagons to stabilize dihept-C70 . Chlorination at the intersection of a heptagon and two adjacent pentagons can greatly enlarge the HOMO-LUMO gap, which makes dihept-C70 Cl6 isolable by chromatography. The synthesis of dihept-C70 Cl6 offers precious clues with respect to the fullerene formation mechanism in the carbon-clustering process.
Collapse
Affiliation(s)
- Yuan-Yuan Zhong
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zuo-Chang Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Peng Du
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.,College of Chemistry, Chemical Engineering, and Environment, Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, China
| | - Cun-Hao Cui
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Han-Rui Tian
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiang-Mei Shi
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shun-Liu Deng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Fei Gao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.,College of Chemistry, Chemical Engineering, and Environment, Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, China
| | - Qianyan Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Cong-Li Gao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Su-Yuan Xie
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Rong-Bin Huang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lan-Sun Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
10
|
Yang S, Ioffe IN, Troyanov SI. Chlorination-Promoted Skeletal Transformations of Fullerenes. Acc Chem Res 2019; 52:1783-1792. [PMID: 31180640 DOI: 10.1021/acs.accounts.9b00175] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Classical fullerenes are built of pentagonal and hexagonal rings, and the conventional syntheses produce only those isomers that obey the isolated-pentagon rule (IPR), where all pentagonal rings are separated from each other by hexagonal rings. Upon exohedral derivatization, the IPR fullerene cages normally retain their connectivity pattern. However, it has been discovered that high-temperature chlorination of fullerenes with SbCl5 or VCl4 can induce skeletal transformations that alter the carbon cage topology, as directly evidenced by single crystal X-ray diffraction studies of the chlorinated products of a series of fullerenes in the broad range of C60 to C102. Two general types of transformations have been identified: (i) the Stone-Wales rearrangement (SWR) that consists of a rotation of a C-C bond by 90°, and (ii) the removal of a C-C bond, i.e., C2 loss (C2L). Single- or multistep SWR and/or C2L transformations afford either classical non-IPR fullerenes bearing fused pentagons (highlighted in red in the TOC picture) or nonclassical (NCx) fullerenes with x = 1-3 heptagonal rings (highlighted in blue in the TOC picture) often flanked by fused pentagons. Several subtypes of the SWR and C2L processes can be further discerned depending on the local topology of the transformed region of the cage. Under the chlorination conditions, the non-IPR and NC carbon cages that would be energetically unfavorable and mostly labile in their pristine state are instantaneously stabilized by chlorination of the pentagon-pentagon junctions and by delimitation of the original spherical π-system into smaller favorable aromatic fragments. The significance of the chlorination-promoted skeletal transformations within the realm of fullerene chemistry is demonstrated by the growing body of examples. To date, these include single- and multistep SWRs in the buckminsterfullerene C60 and in the higher fullerenes C76(1), C78(2), C82(3), and C102(19), single and multistep C2Ls (i.e., cage shrinkage) in C86(16), C88(33), C90(28), C92(50), C96(80), C96(114), and C102(19), and multistep combinations of SWRs and C2Ls in C88(3), C88(33), and C100(18), (IPR isomer numbering in parentheses is according to the spiral algorithm). Remarkably, an IPR precursor can give rise to versatile transformed chlorinated fullerene cages formed via branched pathways. The products can be recovered either in their initial chlorinated form or as more soluble CF3/F derivatives obtained by an additional trifluoromethylation workup. Reconstruction of the skeletal transformation pathways is often complicated due to the lack of the isolable intermediate products in the multistep cases. Therefore, it is usually based on the principle of selecting the shortest pathways between the starting and the final cage. The quantum-chemical calculations illustrate the detailed mechanisms of the SWR and C2L transformations and the thermodynamic driving forces behind them. A particularly important aspect is the interplay between the chlorination patterns and the regiochemistry of the skeletal transformations.
Collapse
Affiliation(s)
- Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ilya N. Ioffe
- Department of Chemistry, Moscow State University, 119991 Moscow, Russia
| | | |
Collapse
|
11
|
Tian HR, Chen MM, Wang K, Chen ZC, Fu CY, Zhang Q, Li SH, Deng SL, Yao YR, Xie SY, Huang RB, Zheng LS. An Unconventional Hydrofullerene C66H4 with Symmetric Heptagons Retrieved in Low-Pressure Combustion. J Am Chem Soc 2019; 141:6651-6657. [DOI: 10.1021/jacs.9b01638] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Han-Rui Tian
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Miao-Miao Chen
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Kai Wang
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zuo-Chang Chen
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chao-Yong Fu
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qianyan Zhang
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shu-Hui Li
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shun-Liu Deng
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yang-Rong Yao
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Su-Yuan Xie
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Rong-Bin Huang
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lan-Sun Zheng
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
12
|
Yamada M, Akasaka T, Nagase S. Gewinnung reaktiver Fullerene aus Ruß durch exohedrale Derivatisierung. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201713145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Michio Yamada
- Department of Chemistry; Tokyo Gakugei University, Koganei; Tokyo 184-8501 Japan
| | - Takeshi Akasaka
- Department of Chemistry; Tokyo Gakugei University, Koganei; Tokyo 184-8501 Japan
- Life Science Center of Tsukuba Advanced Research Alliance; University of Tsukuba, Tsukuba; Ibaraki 305-8577 Japan
- Foundation for Advancement of International Science, Tsukuba; Ibaraki 305-0821 Japan
- State Key Laboratory of Materials Processing and Dye and Mold Technology School of Materials Science and Engineering; Huazhong University of Science and Technology; Wuhan 430074 China
| | - Shigeru Nagase
- Fukui Institute for Fundamental Chemistry; Kyoto University, Sakyo-ku; Kyoto 606-8103 Japan
| |
Collapse
|
13
|
Yamada M, Akasaka T, Nagase S. Salvaging Reactive Fullerenes from Soot by Exohedral Derivatization. Angew Chem Int Ed Engl 2018; 57:13394-13405. [PMID: 29665229 DOI: 10.1002/anie.201713145] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Indexed: 11/09/2022]
Abstract
The awesome allotropy of carbon yields innumerable topologically possible cage structures of molecular carbon. This field is also related to endohedral metallofullerenes constructed by metal-atom encapsulation. Stable and soluble empty fullerenes and endohedral metallofullerenes are available in pure form in macroscopic amounts from carbon arc production or other physical processes followed by extraction and subsequent chromatographic separation. However, many other unidentified fullerene species, which must be reactive and insoluble in their pristine forms, remain in soot. These "missing" species must have extremely small HOMO-LUMO gaps and may have unconventional cage structures. Recent progress in this field has demonstrated that reactive fullerenes can be salvaged by exohedral derivatization, which can stabilize the reactive carbon cages. This concept provides a means of preparing macroscopic amounts of unconventional fullerenes as their derivatives.
Collapse
Affiliation(s)
- Michio Yamada
- Department of Chemistry, Tokyo Gakugei University, Koganei, Tokyo, 184-8501, Japan
| | - Takeshi Akasaka
- Department of Chemistry, Tokyo Gakugei University, Koganei, Tokyo, 184-8501, Japan.,Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.,Foundation for Advancement of International Science, Tsukuba, Ibaraki, 305-0821, Japan.,State Key Laboratory of Materials Processing and Dye and Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Shigeru Nagase
- Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyo-ku, Kyoto, 606-8103, Japan
| |
Collapse
|
14
|
Mazaleva ON, Ioffe IN, Jin F, Yang S, Kemnitz E, Troyanov SI. Experimental and Theoretical Approach to Variable Chlorination-Promoted Skeletal Transformations in Fullerenes: The Case of C 102. Inorg Chem 2017; 57:4222-4225. [PMID: 29140687 DOI: 10.1021/acs.inorgchem.7b02554] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first example of three alternative chlorination-promoted skeletal transformation pathways in the same fullerene cage is presented. Isolated-pentagon-rule (IPR) C102(19) undergoes both Stone-Wales rotations to give non-IPR #283794C102Cl20 and C2 losses to form nonclassical C98 and non-IPR C96. X-ray structural characterization of the transformation products and a theoretical study of their formation pathways are reported.
Collapse
Affiliation(s)
- Olga N Mazaleva
- Chemistry Department , Moscow State University , Leninskie Gory , 119991 Moscow , Russia
| | - Ilya N Ioffe
- Chemistry Department , Moscow State University , Leninskie Gory , 119991 Moscow , Russia
| | - Fei Jin
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion & Department of Materials Science and Engineering , University of Science and Technology of China , Hefei 230026 , China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion & Department of Materials Science and Engineering , University of Science and Technology of China , Hefei 230026 , China
| | - Erhard Kemnitz
- Institute of Chemistry , Humboldt University of Berlin , Brook-Taylor-Strasse 2 , 12489 Berlin , Germany
| | - Sergey I Troyanov
- Chemistry Department , Moscow State University , Leninskie Gory , 119991 Moscow , Russia
| |
Collapse
|
15
|
Brotsman VA, Ignat'eva DV, Troyanov SI. Chlorination-promoted Transformation of Isolated Pentagon Rule C78
into Fused-pentagons- and Heptagons-containing Fullerenes. Chem Asian J 2017; 12:2379-2382. [DOI: 10.1002/asia.201701011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/04/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Victor A. Brotsman
- Department of Chemistry; Moscow State University; 119991 Moscow Leninskie gory Russia
| | - Daria V. Ignat'eva
- Department of Chemistry; Moscow State University; 119991 Moscow Leninskie gory Russia
| | - Sergey I. Troyanov
- Department of Chemistry; Moscow State University; 119991 Moscow Leninskie gory Russia
| |
Collapse
|
16
|
Jin F, Yang S, Kemnitz E, Troyanov SI. Skeletal Transformation of a Classical Fullerene C 88 into a Nonclassical Fullerene Chloride C 84Cl 30 Bearing Quaternary Sequentially Fused Pentagons. J Am Chem Soc 2017; 139:4651-4654. [PMID: 28335594 DOI: 10.1021/jacs.7b01490] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A classical fullerene is composed of hexagons and pentagons only, and its stability is generally determined by the Isolated-Pentagon-Rule (IPR). Herein, high-temperature chlorination of a mixture containing a classical IPR-obeying fullerene C88 resulted in isolation and X-ray crystallographic characterization of non-IPR, nonclassical (NC) fullerene chloride C84(NC2)Cl30 (1) containing two heptagons. The carbon cage in C84(NC2)Cl30 contains 14 pentagons, 12 of which form two pairs of fused pentagons and two groups of quaternary sequentially fused pentagons, which have never been observed in reported carbon cages. All 30 Cl atoms form an unprecedented single chain of ortho attachments on the C84 cage. A reconstruction of the pathway of the chlorination-promoted skeletal transformation revealed that the previously unknown IPR isomer C88(3) is converted into 1 by two losses of C2 fragments followed by two Stone-Wales rearrangements, resulting in the formation of very stable chloride with rather short C-Cl bonds.
Collapse
Affiliation(s)
- Fei Jin
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC) , Hefei 230026, China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC) , Hefei 230026, China
| | - Erhard Kemnitz
- Institute of Chemistry, Humboldt University Berlin Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Sergey I Troyanov
- Department of Chemistry, Moscow State University , 119991 Moscow, Leninskie gory, Russia
| |
Collapse
|
17
|
Gan LH, Lei D, Fowler PW. Structural interconnections and the role of heptagonal rings in endohedral trimetallic nitride template fullerenes. J Comput Chem 2016; 37:1907-13. [PMID: 27282122 DOI: 10.1002/jcc.24407] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 04/14/2016] [Accepted: 04/15/2016] [Indexed: 01/28/2023]
Abstract
Recent experiments indicate that fullerene isomers outside the classical definition can also encapsulate metallic atoms or clusters to form endohedral metallofullerenes. Our systematic study using DFT calculations, suggests that many heptagon-including nonclassical trimetallic nitride template fullerenes are similar in stability to their classical counterparts, and that conversion between low-energy nonclassical and classical parent cages via Endo-Kroto insertion/extrusion of C2 units and Stone-Wales isomerization may facilitate the formation of endohedral trimetallic nitride fullerenes. Close structural connections are found between favored isomers of trimetallic nitride template fullerenes from C78 to C82 . It appears that the lower symmetry and local deformations associated with introduction of a heptagonal ring favor encapsulation of intrinsically less symmetrical mixed metal nitride clusters. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Li-Hua Gan
- School of Chemistry & Chemical Engineering, Southwest University, Chongqing, 400715, China.,Department of Chemistry, Sheffield University, Sheffield S3 7HF, United Kingdom
| | - Dan Lei
- School of Chemistry & Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Patrick W Fowler
- Department of Chemistry, Sheffield University, Sheffield S3 7HF, United Kingdom
| |
Collapse
|
18
|
Yang S, Wei T, Scheurell K, Kemnitz E, Troyanov SI. Chlorination-Promoted Skeletal-Cage Transformations of C88Fullerene by C2Losses and a CC Bond Rotation. Chemistry 2015; 21:15138-41. [DOI: 10.1002/chem.201501549] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Indexed: 11/10/2022]
|