1
|
Groaz E, Modranka J, Ploschik D, Jabgunde A, Froeyen M, Jang MY, Wagenknecht HA, Herdewijn P. Impact of sulfur substitution on biotin binding affinity to streptavidin. Bioorg Chem 2024; 150:107600. [PMID: 38945086 DOI: 10.1016/j.bioorg.2024.107600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
In this study, we investigated how the replacement of the tetrahydrothiophene ring of biotin with either an oxolane or (methyl)pyrrolidine moiety may affect its molecular interactions, in an effort to identify alternative affinity ligands suitable for in vitro and in vivo applications in synthetic biology. Initial molecular dynamics (MD) simulations suggested the potential formation of a hydrogen bond between either the oxygen or nitrogen atom of the envisaged tetrahydroheteryl analogues and the Thr90 residue of streptavidin, mirroring the sulfur-centered hydrogen bond detected by the crystallographic analysis of the biotin-streptavidin interaction. Therefore, oxy-, aza-, and N-methylazabiotin were readily synthesized starting from chiral five- or six-carbon sugar precursors. Based on fluorescence-based titration experiments using the corresponding fluorescein conjugates, oxybiotin showed a binding behavior similar to biotin with streptavidin, while both amino analogues displayed lower binding capacities. Notably, azabiotin exhibited a pH-dependent interaction profile, demonstrating enhanced binding under acidic conditions but weaker binding under basic pH, which could be exploited for various purposes.
Collapse
Affiliation(s)
- Elisabetta Groaz
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Jakub Modranka
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Damian Ploschik
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Amit Jabgunde
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Mathy Froeyen
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Mi-Yeon Jang
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Piet Herdewijn
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
2
|
Yin F, Qu L, Chen Y, Luo Z, Kong L, Wang X. Stereoselective Synthesis of β, γ-Fused Bicyclic γ-Ureasultams via an Intramolecular Mannich and aza-Michael Addition Cascade. Chemistry 2024; 30:e202400438. [PMID: 38470414 DOI: 10.1002/chem.202400438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 03/13/2024]
Abstract
A novel approach has been developed for the synthesis of bicyclic β, γ-fused bicyclic γ-ureasultams containing two consecutive chiral centers through an intramolecular Mannich and aza-Michael addition cascade of alkenyl sulfamides. The straightforward practical procedure and readily available starting materials enable the synthesis of variously substituted ureasultams. In addition, bicyclic γ-ureasultams is a class of potential biotin analogues.
Collapse
Affiliation(s)
- Fucheng Yin
- China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, People's Republic of China
| | - Lailiang Qu
- China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, People's Republic of China
- Xinyang Normal University, Xinyang, 464000, People's Republic of China
| | - Yifan Chen
- China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, People's Republic of China
| | - Zhongwen Luo
- China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, People's Republic of China
| | - Lingyi Kong
- China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, People's Republic of China
| | - Xiaobing Wang
- China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, People's Republic of China
| |
Collapse
|
3
|
Spinello A, Lapenta F, De March M. The avidin-theophylline complex: A structural and computational study. Proteins 2023; 91:1437-1443. [PMID: 37318226 DOI: 10.1002/prot.26538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/12/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
The interaction between avidin and its counterpart biotin is one of central importance in biology and has been reproposed and studied at length. However, the binding pocket of avidin is prone to promiscuous binding, able to accommodate even non-biotinylated ligands. Comprehending the factors that distinguish the extremely strong interaction with biotin to other ligands is an important step to fully picture the thermodynamics of these low-affinity complexes. Here, we present the complex between chicken white egg avidin and theophylline (TEP), the xanthine derivative used in the therapy of asthma. In the crystal structure, TEP lies in the biotin-binding pocket with the same orientation and planarity of the aromatic ring of 8-oxodeoxyguanosine. Indeed, its affinity for avidin measured by isothermal titration calorimetry is in the same μM range as those obtained for the previously characterized nucleoside derivatives. By the use of molecular dynamic simulations, we have investigated the most important intermolecular interactions occurring in the avidin-TEP binding pocket and compared them with those obtained for the avidin 8-oxodeoxyguanosine and avidin-biotin complexes. These results testify the capability of avidin to complex purely aromatic molecules.
Collapse
Affiliation(s)
- Angelo Spinello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Fabio Lapenta
- Department of Environmental and Biological Sciences, University of Nova Gorica, Nova Gorica, Slovenia
| | - Matteo De March
- Department of Environmental and Biological Sciences, University of Nova Gorica, Nova Gorica, Slovenia
- Department of Chemical and Pharmacological Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
4
|
Holz E, Darwish M, Tesar DB, Shatz-Binder W. A Review of Protein- and Peptide-Based Chemical Conjugates: Past, Present, and Future. Pharmaceutics 2023; 15:600. [PMID: 36839922 PMCID: PMC9959917 DOI: 10.3390/pharmaceutics15020600] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Over the past few decades, the complexity of molecular entities being advanced for therapeutic purposes has continued to evolve. A main propellent fueling innovation is the perpetual mandate within the pharmaceutical industry to meet the needs of novel disease areas and/or delivery challenges. As new mechanisms of action are uncovered, and as our understanding of existing mechanisms grows, the properties that are required and/or leveraged to enable therapeutic development continue to expand. One rapidly evolving area of interest is that of chemically enhanced peptide and protein therapeutics. While a variety of conjugate molecules such as antibody-drug conjugates, peptide/protein-PEG conjugates, and protein conjugate vaccines are already well established, others, such as antibody-oligonucleotide conjugates and peptide/protein conjugates using non-PEG polymers, are newer to clinical development. This review will evaluate the current development landscape of protein-based chemical conjugates with special attention to considerations such as modulation of pharmacokinetics, safety/tolerability, and entry into difficult to access targets, as well as bioavailability. Furthermore, for the purpose of this review, the types of molecules discussed are divided into two categories: (1) therapeutics that are enhanced by protein or peptide bioconjugation, and (2) protein and peptide therapeutics that require chemical modifications. Overall, the breadth of novel peptide- or protein-based therapeutics moving through the pipeline each year supports a path forward for the pursuit of even more complex therapeutic strategies.
Collapse
Affiliation(s)
- Emily Holz
- Department of Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Martine Darwish
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Devin B. Tesar
- Department of Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Whitney Shatz-Binder
- Department of Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
5
|
Construction of Orthogonal Modular Proteinaceous Nanovaccine Delivery Vectors Based on mSA-Biotin Binding. NANOMATERIALS 2022; 12:nano12050734. [PMID: 35269221 PMCID: PMC8911943 DOI: 10.3390/nano12050734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 12/16/2022]
Abstract
Proteinaceous nanovaccine delivery systems have significantly promoted the development of various high-efficiency vaccines. However, the widely used method of coupling the expression of scaffolds and antigens may result in their structural interference with each other. Monovalent streptavidin (mSA) is a short monomer sequence, which has a strong affinity for biotin. Here, we discuss an orthogonal, modular, and highly versatile self-assembled proteinaceous nanoparticle chassis that facilitates combinations with various antigen cargos by using mSA and biotin to produce nanovaccines. We first improved the yield of these nanoparticles by appending a short sugar chain on their surfaces in a constructed host strain. After confirming the strong ability to induce both Th1- and Th2-mediated immune responses based on the plasma cytokine spectrum from immunized mice, we further verified the binding ability of biotinylated nanoparticles to mSA-antigens. These results demonstrate that our biotinylated nanoparticle chassis could load both protein and polysaccharide antigens containing mSA at a high affinity. Our approach thus offers an attractive technology for combining nanoparticles and antigen cargos to generate various high-performance nanovaccines. In particular, the designed mSA connector (mSA containing glycosylation modification sequences) could couple with polysaccharide antigens, providing a new attractive strategy to prepare nanoscale conjugate vaccines.
Collapse
|
6
|
A novel pneumococcal protein-polysaccharide conjugate vaccine based on biotin-streptavidin. Infect Immun 2021; 90:e0035221. [PMID: 34694917 DOI: 10.1128/iai.00352-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pneumococcal disease is a serious public health problem worldwide and an important cause of morbidity and mortality among children and adults in developing countries. Although vaccination is among the most effective approaches to prevent and control pneumococcal diseases, approved vaccines have limited protective effects. We developed a pneumococcal protein-polysaccharide conjugate vaccine that is mediated by the non-covalent interaction between biotin and streptavidin. Biotinylated type IV capsular polysaccharide was incubated with a fusion protein containing core streptavidin and Streptococcus pneumoniae virulence protein and relying on the non-covalent interaction between biotin and streptavidin to prepare the protein-polysaccharide conjugate vaccine. Analysis of vaccine efficacy revealed that mice immunized with the protein-polysaccharide conjugate vaccine produced antibodies with high potency against virulence proteins and polysaccharide antigens and were able to induce Th1 and Th17 responses. The antibodies identified using an opsonophagocytic assay were capable of activating the complement system and promoting pathogen elimination by phagocytes. Additionally, mice immunized with the protein-polysaccharide conjugate vaccine and then infected with a lethal dose of Streptococcus pneumoniae demonstrated induced protective immunity. The data indicated that the pneumococcal protein-polysaccharide (biotin-streptavidin) conjugate vaccine demonstrated broad-spectrum activity applicable to a wide range of people and ease of direct coupling between protein and polysaccharide. These findings provide further evidence for the application of biotin-streptavidin in S. pneumoniae vaccines.
Collapse
|
7
|
SUGIYAMA A, KAWAMURA T, TANAKA T, DOI H, YAMASHITA T, SHINODA K, FUJITANI H, YAMATSUGU K, SHIMIZU Y, TATSUMI T, TAKAHASHI K, KANAI M, MIZOHATA E, KAWATO T, DOI T, INOUE T, KODAMA T. Cupid and Psyche system for the diagnosis and treatment of advanced cancer. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:602-611. [PMID: 31827018 PMCID: PMC6920082 DOI: 10.2183/pjab.95.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
In advanced cancer patients, malignant cells invade and disseminate within normal cells and develop resistance to therapy with additional genetic mutations, which makes radical cure very difficult. Precision medicine against advanced cancer is hampered by the lack of systems aimed at multiple target molecules within multiple loci. Here, we report the development of a versatile diagnostic and therapeutic system for advanced cancer, named the Cupid and Psyche system. Based on the strong non-covalent interaction of streptavidin and biotin, a low immunogenic mutated streptavidin, Cupid, and a modified artificial biotin, Psyche, have been designed. Cupid can be fused with various single-chain variable fragment antibodies and forms tetramer to recognize cancer cells precisely. Psyche can be conjugated to a wide range of diagnostic and therapeutic agents against malignant cells. The Cupid and Psyche system can be used in pre-targeting therapy as well as photo-immunotherapy effectively in animal models supporting the concept of a system for precision medicine for multiple targets within multiple loci.
Collapse
Affiliation(s)
- Akira SUGIYAMA
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Takeshi KAWAMURA
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Toshiya TANAKA
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Hirofumi DOI
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Takefumi YAMASHITA
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Keiko SHINODA
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Hideaki FUJITANI
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Kenzo YAMATSUGU
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yohei SHIMIZU
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshifumi TATSUMI
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuki TAKAHASHI
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Motomu KANAI
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Eiichi MIZOHATA
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Tatsuya KAWATO
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Takefumi DOI
- Graduate School and School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Tsuyoshi INOUE
- Graduate School and School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Tatsuhiko KODAMA
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Sharma J, Uchida M, Miettinen HM, Douglas T. Modular interior loading and exterior decoration of a virus-like particle. NANOSCALE 2017; 9:10420-10430. [PMID: 28702648 PMCID: PMC6482854 DOI: 10.1039/c7nr03018e] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Virus-like particles (VLPs) derived from the bacteriophage P22 offer an interesting and malleable platform for encapsulation and multivalent presentation of cargo molecules. The packaging of cargo in P22 VLP is typically achieved through genetically enabled directed in vivo encapsulation. However, this approach does not allow control over the packing density and composition of the encapsulated cargos. Here, we have adopted an in vitro assembly approach to gain control over cargo packaging in P22. The packaging was controlled by closely regulating the stoichiometric ratio of cargo-fused-scaffold protein and wild-type scaffold protein during the in vitro assembly. In a "one-pot assembly reaction" coat protein subunits were incubated with varied ratios of wild-type scaffold protein and cargo-fused-scaffold protein, which resulted in the encapsulation of both components in a co-assembled capsid. These experiments demonstrate that an input stoichiometry can be used to achieve controlled packaging of multiple cargos within the VLP. The porous nature of P22 allows the escape and re-entry of wild-type scaffold protein from the assembled capsid but scaffold protein fused to a protein-cargo cannot traverse the capsid shell due to the size of the cargo. This has allowed us to control and alter the packing density by selectively releasing wild-type scaffold protein from the co-assembled capsids. We have demonstrated these concepts in the P22 system using an encapsulated streptavidin protein and have shown its highly selective interaction with biotin or biotin derivatives. Additionally, this system can be used to encapsulate small molecules coupled to biotin, or display large proteins, that cannot enter the capsid and thus remain available for the multivalent display on the exterior of the capsid when attached to a flexible biotinylated linker. Thus, we have developed a P22 system with controlled protein cargo composition and packing density, to which both small and large molecules can be attached at high copy number on the interior or exterior of the capsid.
Collapse
Affiliation(s)
- Jhanvi Sharma
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, USA.
| | - Masaki Uchida
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, USA.
| | - Heini M Miettinen
- Department of Microbiology & Immunology, Montana State University, PO Box 173520, Bozeman, Montana 59717, USA
| | - Trevor Douglas
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, USA.
| |
Collapse
|
9
|
Jiang L, Liu X, Yuan P, Zhang Y, Chen X. Stereoselective Synthesis of (+)-Annuionone A and (-)-Annuionone B. JOURNAL OF NATURAL PRODUCTS 2017; 80:805-812. [PMID: 28338330 DOI: 10.1021/acs.jnatprod.6b00522] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A stereoselective synthetic approach was utilized to synthesize enantiopure annuionones A (1b) and B (2b), two ionone-type norsesquiterpenoids that both bear a 6-oxabicyclo[3.2.1]octane framework and possess allelopathic activity. A stereoselective Diels-Alder reaction based on chiral trisubstituted dienophile 20 was employed to obtain the optically active polysubstituted cyclohexane core of both natural products. Using this approach, (+)-annuionone A (1b) and (-)-annuionone B (2b) were synthesized from lactol (+)-15 in 10% overall yield.
Collapse
Affiliation(s)
- Lizhen Jiang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University , Chengdu 610064, People's Republic of China
| | - Xiaojing Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University , Chengdu 610064, People's Republic of China
| | - Po Yuan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University , Chengdu 610064, People's Republic of China
| | - Yanli Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University , Chengdu 610064, People's Republic of China
| | - Xiaochuan Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University , Chengdu 610064, People's Republic of China
| |
Collapse
|
10
|
Jain A, Cheng K. The principles and applications of avidin-based nanoparticles in drug delivery and diagnosis. J Control Release 2017; 245:27-40. [PMID: 27865853 PMCID: PMC5222781 DOI: 10.1016/j.jconrel.2016.11.016] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/07/2016] [Indexed: 01/04/2023]
Abstract
Avidin-biotin interaction is one of the strongest non-covalent interactions in the nature. Avidin and its analogues have therefore been extensively utilized as probes and affinity matrices for a wide variety of applications in biochemical assays, diagnosis, affinity purification, and drug delivery. Recently, there has been a growing interest in exploring this non-covalent interaction in nanoscale drug delivery systems for pharmaceutical agents, including small molecules, proteins, vaccines, monoclonal antibodies, and nucleic acids. Particularly, the ease of fabrication without losing the chemical and biological properties of the coupled moieties makes the avidin-biotin system a versatile platform for nanotechnology. In addition, avidin-based nanoparticles have been investigated as diagnostic systems for various tumors and surface antigens. In this review, we will highlight the various fabrication principles and biomedical applications of avidin-based nanoparticles in drug delivery and diagnosis. The structures and biochemical properties of avidin, biotin and their respective analogues will also be discussed.
Collapse
Affiliation(s)
- Akshay Jain
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri Kansas City, Kansas City, MO 64108, United States
| | - Kun Cheng
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri Kansas City, Kansas City, MO 64108, United States.
| |
Collapse
|
11
|
Terai T, Kohno M, Boncompain G, Sugiyama S, Saito N, Fujikake R, Ueno T, Komatsu T, Hanaoka K, Okabe T, Urano Y, Perez F, Nagano T. Artificial Ligands of Streptavidin (ALiS): Discovery, Characterization, and Application for Reversible Control of Intracellular Protein Transport. J Am Chem Soc 2015; 137:10464-7. [DOI: 10.1021/jacs.5b05672] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | | | - Shigeru Sugiyama
- Graduate
School of Science, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Koch R, Wollweber HJ, Müller-Starke H, Wentrup C. α-Oxo-Iminoxyls of Isoxazolones, Pyrazolones and 1,2,3-Triazolone. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|