1
|
Zhu M, Gu T, Liang X, Pandey SK, Gros CP, Xu HJ, Sharma GD. Small molecular donor materials based on β- β-bridged BODIPY dimers with a triphenylamine or carbazole unit for efficient organic solar cells. Dalton Trans 2024; 53:11981-11994. [PMID: 38963010 DOI: 10.1039/d4dt01163e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Herein, we have designed and synthesized two novel BODIPY dimer-based small molecules, denoted as ZMH-1 and ZMH-2, covalently linked and functionalized with triphenylamine (TPA) (ZMH-1) and carbazole (CZ) (ZMH-2) units as the electron donor at the 3- and 5-positions of the BODIPY core, respectively. Their optical and electrochemical properties were investigated. We have fabricated all small molecule bulk heterojunction organic solar cells using these BODIPY-based small molecules as electron donors along with fullerene derivative (PC71BM) and medium bandgap non-fullerene acceptor IDT-TC as electron acceptors. The optimized OSCs based on ZMH-1:PC71BM, ZMH-2:PC71BM, ZMH-1:IDT-IC, and ZMH-2:IDT-IC attain overall PCEs of 8.91%, 6.61%, 11.28%, and 5.48%, respectively. Moreover, when a small amount of PC71BM as guest acceptor is added to the binary host ZMH-1:IDT-TC and ZMH-2:IDT-TC, the ternary OSCs based on ZMH-1 and ZMH-2 reach PCEs of 13.70% and 12.71%, respectively.
Collapse
Affiliation(s)
- Minhao Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Tingting Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Xu Liang
- School of Chemistry and Chemical Engineering, Jiangsu University, 212013 Zhenjiang, China
| | - Sarvesh Kumar Pandey
- Department of Chemistry, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, 462003, India
| | - Claude P Gros
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB, UMR CNRS 6302, Université de Bourgogne, 9, Avenue Alain Savary, BP 47870, 21078 Dijon Cedex, France
| | - Hai-Jun Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453002, China
| | - Ganesh D Sharma
- Department of Physics and Electronics Communication, The LNM Institute of Information Technology, Jamdoli, Jaipur, Rajasthan, 302031, India.
| |
Collapse
|
2
|
Rajagopalan R, Shankar S S, Balasubramaniyan N, Sharma GD. Simple and Efficient Acceptor-Donor-Acceptor-Type Non-fullerene Acceptors for a BODIPY-Thiophene-Backboned Polymer Donor for High-Performance Indoor Photovoltaics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:13405-13414. [PMID: 36857615 DOI: 10.1021/acsami.2c23048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Herein, simple acceptor-donor-acceptor (A-D-A)-type small molecules denoted as DICTF and DRCTF with modification in terminal units were synthesized and used as electron acceptors. With the tuning of the electron-withdrawing units in electron acceptors, their photovoltaic properties were investigated when combined with low-band-gap BODIPY-thiophene-backboned donor material, named P(BdP-HT). The P(BdP-HT):DICTF-based organic solar cells (OSCs) displayed excellent efficiency of around 11.94%, which is superior to the P(BdP-HT):DRCTF counterpart (8.78%). Although the open-circuit voltage (VOC) of the P(BdP-HT):DRCTF-based OSC is greater than that for the P(BdP-HT):DICTF counterpart, the rise in the short-circuit current density (JSC) may be attributed to the fact that the P(BdP-HT):DICTF blend displayed impressive panchromatic absorption compared to P(BdP-HT):DRCTF. The improved fill factor (FF) is responsible for the balanced transport of charges in the P(BdP-HT):DICTF-based device. Moreover, the P(BdP-HT):DRCTF- and P(BdP-HT):DICTF-based OSCs showed 17.68 and 21.84%, respectively, under indoor illumination (1000 lx). To the best of our observation, this might be the first report on BODIPY-based donors with power conversion efficiency (PCE) of 21.84% under indoor illumination conditions.
Collapse
Affiliation(s)
- Raman Rajagopalan
- Advanced Organic Chemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Shyam Shankar S
- Department of Physics, The LNM Institute of Information Technology, Jamdoli, Jaipur, Rajasthan 302031, India
| | - Natarajan Balasubramaniyan
- Advanced Organic Chemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Ganesh D Sharma
- Department of Physics, The LNM Institute of Information Technology, Jamdoli, Jaipur, Rajasthan 302031, India
- Department of Electronic and Communication Engineering, The LNM Institute of Information Technology, Jamdoli, Jaipur, Rajasthan 302031, India
| |
Collapse
|
3
|
Tok M, Say B, Dölek G, Tatar B, Özgür DÖ, Kurukavak ÇK, Kuş M, Dede Y, Çakmak Y. Substitution effects in distyryl BODIPYs for near infrared organic photovoltaics. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Kojima Y, Sugiura S, Suzuki K, Yisilamu Y, Ono K. Synthesis and n-Type Semiconducting Properties of Bis(dioxaborin) Compounds Containing a π-Extended 2,2'-Bithiophene Structure. Chem Asian J 2021; 17:e202101262. [PMID: 34894084 DOI: 10.1002/asia.202101262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/06/2021] [Indexed: 11/10/2022]
Abstract
Bis(dioxaborin) compounds containing π-conjugated systems have been studied as n-type semiconductors for organic field-effect transistors (OFETs). In this study, with the aim of investigating the effect of the extension of the π-conjugation on the n-type semiconducting properties and stability of bis(dioxaborin) compounds, we synthesized new compounds containing 2,2'-bithiophene derivatives extended with an olefin or an acetylene spacer. The absorption maxima of the compounds containing olefin spacers were greatly red-shifted compared with those of the original compound without a π-spacer. The newly synthesized compounds exhibited high electron affinity, and the olefin spacers effectively reduced the on-site Coulomb repulsion in the two-electron reduction of the compounds. An OFET fabricated using one of these compounds having a layer-by-layer crystal structure exhibited n-type semiconductor behavior with a low threshold voltage, most likely due to the small on-site Coulomb repulsion. The electron-transporting properties were investigated by theoretical calculations based on the Marcus theory.
Collapse
Affiliation(s)
- Yohei Kojima
- Graduate School of Engineering, Nagoya Institute of Technology Gokiso, Showa-ku, Nagoya, 466-8555, Japan
| | - So Sugiura
- Graduate School of Engineering, Nagoya Institute of Technology Gokiso, Showa-ku, Nagoya, 466-8555, Japan
| | - Keiji Suzuki
- Graduate School of Engineering, Nagoya Institute of Technology Gokiso, Showa-ku, Nagoya, 466-8555, Japan
| | - Yilihamu Yisilamu
- Graduate School of Engineering, Nagoya Institute of Technology Gokiso, Showa-ku, Nagoya, 466-8555, Japan
| | - Katsuhiko Ono
- Graduate School of Engineering, Nagoya Institute of Technology Gokiso, Showa-ku, Nagoya, 466-8555, Japan
| |
Collapse
|
5
|
Miao J, Wang Y, Liu J, Wang L. Organoboron molecules and polymers for organic solar cell applications. Chem Soc Rev 2021; 51:153-187. [PMID: 34851333 DOI: 10.1039/d1cs00974e] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Organic solar cells (OSCs) are emerging as a new photovoltaic technology with the great advantages of low cost, light-weight, flexibility and semi-transparency. They are promising for portable energy-conversion products and building-integrated photovoltaics. Organoboron chemistry offers an important toolbox to design novel organic/polymer optoelectronic materials and to tune their optoelectronic properties for OSC applications. At present, organoboron small molecules and polymers have become an important class of organic photovoltaic materials. Power conversion efficiencies (PCEs) of 16% and 14% have been realized with organoboron polymer electron donors and electron acceptors, respectively. In this review, we summarize the research progress in various kinds of organoboron photovoltaic materials for OSC applications, including organoboron small molecular electron donors, organoboron small molecular electron acceptors, organoboron polymer electron donors and organoboron polymer electron acceptors. This review also discusses how to tune their opto-electronic properties and active layer morphology for enhancing OSC device performance. We also offer our insight into the opportunities and challenges in improving the OSC device performance of organoboron photovoltaic materials.
Collapse
Affiliation(s)
- Junhui Miao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Yinghui Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| |
Collapse
|
6
|
Dhindsa JS, Buguis FL, Anghel M, Gilroy JB. Band Gap Engineering in Acceptor-Donor-Acceptor Boron Difluoride Formazanates. J Org Chem 2021; 86:12064-12074. [PMID: 34355898 DOI: 10.1021/acs.joc.1c01416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
π-Conjugated molecules with acceptor-donor-acceptor (A-D-A) electronic structures make up an important class of materials due to their tunable optoelectronic properties and applications in, for example, organic light-emitting diodes, nonlinear optical devices, and organic solar cells. The frontier molecular orbital energies, and thus band gaps, of these materials can be tuned by varying the donor and acceptor traits and π-electron counts of the structural components. Herein, we report the synthesis and characterization of a series of A-D-A compounds consisting of BF2 formazanates as electron acceptors bridged by a variety of π-conjugated donors. The results, which are supported by density functional theory calculations, demonstrate rational control of optoelectronic properties and the ability to tune the corresponding band gaps. The narrowest band gaps (EgOpt = 1.38 eV and EgCV = 1.21 eV) were observed when BF2 formazanates and benzodithiophene units were combined. This study provides significant insight into the band gap engineering of materials derived from BF2 formazanates and will inform their future development as semiconductors for use in organic electronics.
Collapse
Affiliation(s)
- Jasveer S Dhindsa
- Department of Chemistry and Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Francis L Buguis
- Department of Chemistry and Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Michael Anghel
- Department of Chemistry and Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Joe B Gilroy
- Department of Chemistry and Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
7
|
Squeo BM, Ganzer L, Virgili T, Pasini M. BODIPY-Based Molecules, a Platform for Photonic and Solar Cells. Molecules 2020; 26:E153. [PMID: 33396319 PMCID: PMC7794854 DOI: 10.3390/molecules26010153] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/22/2020] [Accepted: 12/27/2020] [Indexed: 12/13/2022] Open
Abstract
The 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-based molecules have emerged as interesting material for optoelectronic applications. The facile structural modification of BODIPY core provides an opportunity to fine-tune its photophysical and optoelectronic properties thanks to the presence of eight reactive sites which allows for the developing of a large number of functionalized derivatives for various applications. This review will focus on BODIPY application as solid-state active material in solar cells and in photonic devices. It has been divided into two sections dedicated to the two different applications. This review provides a concise and precise description of the experimental results, their interpretation as well as the conclusions that can be drawn. The main current research outcomes are summarized to guide the readers towards the full exploitation of the use of this material in optoelectronic applications.
Collapse
Affiliation(s)
- Benedetta Maria Squeo
- Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche (CNR), Via A. Corti 12, 20133 Milano, Italy;
| | - Lucia Ganzer
- Istituto di Fotonica e Nanotecnologie (IFN), Consiglio Nazionale delle Ricerche (CNR), Dipartimento di Fisica, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20132 Milano, Italy;
| | - Tersilla Virgili
- Istituto di Fotonica e Nanotecnologie (IFN), Consiglio Nazionale delle Ricerche (CNR), Dipartimento di Fisica, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20132 Milano, Italy;
| | - Mariacecilia Pasini
- Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche (CNR), Via A. Corti 12, 20133 Milano, Italy;
| |
Collapse
|
8
|
Zając D, Sołoducho J, Cabaj J. Organic Triads for Solar Cells Application: A Review. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666200311151421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The need to find alternative sources of energy and environmental protection has
resulted in the significant development of organic photovoltaics. The synthesis of organic
compounds that will ensure the efficiency of the cells has become a key issue. In this
work, we present an overview of materials based on donor-linker-acceptor structural motifs,
and summarize the current state of research which can help in the design of new, effective
photovoltaic materials.
Collapse
Affiliation(s)
- Dorota Zając
- Wroclaw University of Science and Technology, Faculty of Chemistry, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Jadwiga Sołoducho
- Wroclaw University of Science and Technology, Faculty of Chemistry, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Joanna Cabaj
- Wroclaw University of Science and Technology, Faculty of Chemistry, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
9
|
Abdolmaleki S, Ghadermazi M, Bagheri F, Amiri Rudbari H, Bruno G. Evaluation of two novel macrocycles containing pyridine-2,6-dicarboxamide unit as cationic fluorescent sensor. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114292] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
He A, Qin Y, Dai W, Zhou D, Zou J. Effective design of A-D-A small molecules for high performance organic solar cells via F atom substitution and thiophene bridge. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Marques dos Santos J, Jagadamma LK, Latif NM, Ruseckas A, Samuel IDW, Cooke G. BODIPY derivatives with near infra-red absorption as small molecule donors for bulk heterojunction solar cells. RSC Adv 2019; 9:15410-15423. [PMID: 35514843 PMCID: PMC9064333 DOI: 10.1039/c9ra01750j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/20/2019] [Indexed: 11/21/2022] Open
Abstract
The study of small donor molecules as the active component of organic solar cells continues to attract considerable attention due to the range of advantages these molecules have over their polymeric counterparts. Here we report the synthesis and solar cell fabrication of three BODIPY small molecule donors. Two of the dyes feature triphenylamine and phenothiazine as donor units attached to the meso and α-positions of the BODIPY core (TPA-PTZ-DBP and PTZ-TPA-BDP). Additionally, we have synthesised a push–pull derivative featuring phenothiazine moieties in the α-positions and a nitrobenzene in the meso-position (N-TPA-BDP) in order to investigate what effect this type of functionalisation has on the photovoltaic properties compared to the other dyes. The optoelectronic properties were investigated and the dyes showed broad absorption in the near-infrared with high extinction coefficients. Electrochemical measurements indicated good reversibility for the dyes redox processes. In contrast with the all-donor functionalised systems, N-TPA-BDP demonstrated extensive HOMO–LUMO overlap by DFT. The dyes were investigated as donor molecules in bulk heterojunction solar cells along with PC71BM, and under optimal donor to acceptor ratio PTZ-TPA-BDP showed the highest PCE of 1.62%. N-PTZ-BDP:PC71BM was the only blend to further improve upon thermal annealing reaching the highest conversion efficiency among the dyes of 1.71%. A morphology comprised of finely mixed donor and acceptor components is observed for BHJ blends of each of the three donors at their optimum fullerene content. Upon thermal annealing, these morphological features remain mostly the same for PTZ-TPA-BDP:PC71BM and TPA-PTZ-DBP:PC71BM blends whereas for N-PTZ-BDP:PC71BM the domains show a larger size. These dyes show that phenothiazine functionalisation of BODIPY is useful for solar cells because it gives strong and broad absorption extending to the near infra-red and materials with reversible redox properties – both of which are desirable for organic solar cells. We report the synthesis of donor/acceptor functionalised BODIPY derivatives and their incorporation as donor molecules in bulk heterojunction solar cells.![]()
Collapse
Affiliation(s)
| | | | | | - Arvydas Ruseckas
- Organic Semiconductor Centre
- SUPA
- School of Physics and Astronomy
- University of St. Andrews
- UK
| | - Ifor D. W. Samuel
- Organic Semiconductor Centre
- SUPA
- School of Physics and Astronomy
- University of St. Andrews
- UK
| | - Graeme Cooke
- School of Chemistry
- University of Glasgow
- Glasgow
- UK
| |
Collapse
|
12
|
Ho D, Ozdemir R, Kim H, Earmme T, Usta H, Kim C. BODIPY-Based Semiconducting Materials for Organic Bulk Heterojunction Photovoltaics and Thin-Film Transistors. Chempluschem 2018; 84:18-37. [PMID: 31950740 DOI: 10.1002/cplu.201800543] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/22/2018] [Indexed: 12/31/2022]
Abstract
The rapid emergence of organic (opto)electronics as a promising alternative to conventional (opto)electronics has been achieved through the design and development of novel π-conjugated systems. Among various semiconducting structural platforms, 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) π-systems have recently attracted attention for use in organic thin-films transistors (OTFTs) and organic photovoltaics (OPVs). This Review article provides an overview of the developments in the past 10 years on the structural design and synthesis of BODIPY-based organic semiconductors and their application in OTFT/OPV devices. The findings summarized and discussed here include the most recent breakthroughs in BODIPYs with record-high charge carrier mobilities and power conversion efficiencies (PCEs). The most up-to-date design rationales and discussions providing a strong understanding of structure-property-function relationships in BODIPY-based semiconductors are presented. Thus, this review is expected to inspire new research for future materials developments/applications in this family of molecules.
Collapse
Affiliation(s)
- Dongil Ho
- Department of Chemical and Biomolecular Engineering, Sogang University Mapo-gu, Seoul, 04107, Republic of Korea
| | - Resul Ozdemir
- Department of Materials Science and Nanotechnology Engineering, Abdullah Gul University, Kayseri, 38080, Turkey
| | - Hyungsug Kim
- Department of Chemical and Biomolecular Engineering, Sogang University Mapo-gu, Seoul, 04107, Republic of Korea
| | - Taeshik Earmme
- Department of Chemical Engineering, Hongik University Mapo-gu, Seoul, 04066, Republic of Korea
| | - Hakan Usta
- Department of Materials Science and Nanotechnology Engineering, Abdullah Gul University, Kayseri, 38080, Turkey
| | - Choongik Kim
- Department of Chemical and Biomolecular Engineering, Sogang University Mapo-gu, Seoul, 04107, Republic of Korea
| |
Collapse
|
13
|
Mica NA, Almahmoud SAJ, Krishnan Jagadamma L, Cooke G, Samuel IDW. An investigation of the role acceptor side chains play in the processibility and efficiency of organic solar cells fabricated from small molecular donors featuring 3,4-ethylenedioxythiophene cores. RSC Adv 2018; 8:39231-39240. [PMID: 35558030 PMCID: PMC9090895 DOI: 10.1039/c8ra07034b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022] Open
Abstract
Organic photovoltaic devices fabricated from small molecular donors continue to receive significant interest due to their desirable properties such as convenient synthesis, purification and batch-to-batch reproducibility. In this study, we have synthesized two small molecules based on an alternating A–D–A structure, utilizing a central EDOT donor moiety and either 2-ethylhexyl cyanoacetate (SAM-72) or N-(2-ethylhexyl)cyanoacetamide (SAM-80) units as acceptor termini. The small molecules were incorporated into bulk heterojunction solar cells with PC71BM. Our investigations have shown that the side chains utilized for SAM-80 only allow for solution processing using volatile solvents, such as chloroform, which limits the reproducibility of device fabrication. However, SAM-72 displays better solubility and devices fabricated using a SAM-72:PC71BM active layer reached average power conversion efficiencies of 1.9%, with fill factors reaching 60%. Post-processing methods such as thermal and solvent vapor annealing were found to significantly increase the stability of devices, but were not able to improve overall device performance. The chemical nature of the acceptor side chain plays an important role in the processability and photovoltaic performance of EDOT-based small molecule donors.![]()
Collapse
Affiliation(s)
- N A Mica
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy St Andrews Fife KY16 9SS UK
| | - S A J Almahmoud
- Glasgow Centre for Physical Organic Chemistry (GCPOC), WestCHEM, School of Chemistry, University of Glasgow Glasgow G12 8QQ UK
| | - L Krishnan Jagadamma
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy St Andrews Fife KY16 9SS UK
| | - G Cooke
- Glasgow Centre for Physical Organic Chemistry (GCPOC), WestCHEM, School of Chemistry, University of Glasgow Glasgow G12 8QQ UK
| | - I D W Samuel
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy St Andrews Fife KY16 9SS UK
| |
Collapse
|
14
|
Kang H, Si Y, Liu Y, Zhang X, Zhang W, Zhao Y, Yang B, Liu Y, Liu Z. Photophysical/Chemistry Properties of Distyryl-BODIPY Derivatives: An Experimental and Density Functional Theoretical Study. J Phys Chem A 2018; 122:5574-5579. [DOI: 10.1021/acs.jpca.8b02656] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hongwei Kang
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, People’s Republic of China
| | - Yubing Si
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, People’s Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Xiaofan Zhang
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, People’s Republic of China
| | - Weiwei Zhang
- Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yi Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Baocheng Yang
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, People’s Republic of China
| | - Yaxuan Liu
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, People’s Republic of China
| | - Zhongyi Liu
- College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, People’s Republic of China
| |
Collapse
|
15
|
Zhang T, Li Y, Yan J, Liang Y, Xu B, Zheng K, Zhang N. Syntheses and spectroscopic properties of substituted diazaborepins with large stokes shift. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.04.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Naim K, Nair ST, Yadav P, Shanavas A, Neelakandan PP. Supramolecular Confinement within Chitosan Nanocomposites Enhances Singlet Oxygen Generation. Chempluschem 2018; 83:418-422. [PMID: 31957367 DOI: 10.1002/cplu.201800041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/12/2018] [Indexed: 11/10/2022]
Abstract
The synthesis of water-soluble chitosan nanocomposites incorporating BODIPY and the investigation of their photosensitization properties is reported. It was observed that the singlet oxygen generation capability of nanocomposites containing a mixture of BODIPY and iodine-containing molecules are higher than that of the nanocomposites containing BODIPY alone. It is hypothesized that the supramolecular interactions between BODIPY and iodine-containing molecules confined within the nanocomposites lead to the enhanced singlet oxygen generation.
Collapse
Affiliation(s)
- Khalid Naim
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab, 160062, India
| | - Sreejisha T Nair
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab, 160062, India
| | - Pranjali Yadav
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab, 160062, India
| | - Asifkhan Shanavas
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab, 160062, India
| | - Prakash P Neelakandan
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab, 160062, India
| |
Collapse
|
17
|
Liu W, Yao J, Zhan C. A Novel BODIPY-Based Low-Band-Gap Small-Molecule Acceptor for Efficient Non-fullerene Polymer Solar Cells. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201700542] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Wenxu Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry; Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry; Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Chuanlang Zhan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry; Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| |
Collapse
|
18
|
|
19
|
Tailoring the photophysical and photovoltaic properties of boron-difluorodipyrromethene dimers. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Kimura Y, Kawajiri I, Ueki M, Morimoto T, Nishida JI, Ikeda H, Tanaka M, Kawase T. A new fluorophore displaying remarkable solvatofluorochromism and solid-state light emission, and serving as a turn-on fluorescent sensor for cyanide ions. Org Chem Front 2017. [DOI: 10.1039/c7qo00029d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A new fluorophore displays remarkable solvatofluorochromism, a CIEE effect, and an intense blue-green fluorescence in the presence of cyanide ions.
Collapse
Affiliation(s)
- Yosuke Kimura
- Graduate School of Engineering
- University of Hyogo
- Hyogo 671-2280
- Japan
| | - Ikumi Kawajiri
- Graduate School of Engineering
- University of Hyogo
- Hyogo 671-2280
- Japan
| | - Masanori Ueki
- Graduate School of Engineering
- University of Hyogo
- Hyogo 671-2280
- Japan
| | - Takayuki Morimoto
- Graduate School of Engineering
- University of Hyogo
- Hyogo 671-2280
- Japan
| | - Jun-ichi Nishida
- Graduate School of Engineering
- University of Hyogo
- Hyogo 671-2280
- Japan
| | - Hiroshi Ikeda
- Graduate School of Engineering
- Osaka Prefecture University
- Osaka 599-8531
- Japan
- The Research Institute for Molecular Electronic Devices (RIMED)
| | - Mirai Tanaka
- Graduate School of Engineering
- Osaka Prefecture University
- Osaka 599-8531
- Japan
| | - Takeshi Kawase
- Graduate School of Engineering
- University of Hyogo
- Hyogo 671-2280
- Japan
| |
Collapse
|
21
|
Leushina EA, Usol'tsev IA, Bezzubov SI, Moiseeva AA, Terenina MV, Anisimov AV, Taydakov IV, Khoroshutin AV. BODIPY dyes with thienyl- and dithienylthio-substituents – synthesis, redox and fluorescent properties. Dalton Trans 2017; 46:17093-17100. [DOI: 10.1039/c7dt03801a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Novel thienyl- and dithienylthio-BODIPYs were synthesized, which displayed unusual crystal packing and luminescence.
Collapse
Affiliation(s)
- E. A. Leushina
- Department of Petroleum Chemistry
- Department of Chemistry
- M.V. Lomonosov Moscow State University
- Moscow 119991
- Russia
| | - I. A. Usol'tsev
- Department of Petroleum Chemistry
- Department of Chemistry
- M.V. Lomonosov Moscow State University
- Moscow 119991
- Russia
| | - S. I. Bezzubov
- Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences
- Moscow 119991
- Russia
| | - A. A. Moiseeva
- Department of Petroleum Chemistry
- Department of Chemistry
- M.V. Lomonosov Moscow State University
- Moscow 119991
- Russia
| | - M. V. Terenina
- Department of Petroleum Chemistry
- Department of Chemistry
- M.V. Lomonosov Moscow State University
- Moscow 119991
- Russia
| | - A. V. Anisimov
- Department of Petroleum Chemistry
- Department of Chemistry
- M.V. Lomonosov Moscow State University
- Moscow 119991
- Russia
| | - I. V. Taydakov
- P.N. Lebedev Physics Institute of the Russian Academy of Sciences
- Moscow 119991
- Russia
| | - A. V. Khoroshutin
- Department of Petroleum Chemistry
- Department of Chemistry
- M.V. Lomonosov Moscow State University
- Moscow 119991
- Russia
| |
Collapse
|
22
|
Xiao L, Chen S, Gao K, Peng X, Liu F, Cao Y, Wong WY, Wong WK, Zhu X. New Terthiophene-Conjugated Porphyrin Donors for Highly Efficient Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30176-30183. [PMID: 27731985 DOI: 10.1021/acsami.6b09790] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To mimic the natural photosynthetic systems utilizing chlorophylls to absorb light and store light energy, two new porphyrin-based small molecules of PTTR and PTTCNR have been developed for photovoltaic applications. The highest power conversion efficiency of 8.21% is achieved, corresponding to a short-circuit current of 14.30 mA cm-2, open-circuit voltage of 0.82 V, and fill factor of 70.01%. The excellent device performances can be ascribed to the engineering of molecule structure and film morphology. The horizontal conjugation of 3,3″-dihexyl-terthiophene to porphyrin-core with the vertical aliphatic 2-octylundecyl peripheral substitutions, can not only effectively increase the solar flux coverage between the conventional Soret and Q bands of porphyrin unit, but also optimize molecular packing through polymorphism associated with side-chains and the linear π-conjugated backbones. And the additive of 1,8-diiodooctane and subsequent chloroform solvent vapor annealing facilitate the formation of the blend films with [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) characteristics of bicontinuous, interpenetrating networks required for efficient charge separation and transportation.
Collapse
Affiliation(s)
- Liangang Xiao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology , 381 Wushan Road, Guangzhou 510640, China
| | - Song Chen
- Institute of Molecular Functional Materials, Research Centre of Excellence for Organic Electronics, Department of Chemistry and Institute of Advanced Materials, Hong Kong Baptist University , Waterloo Road, Kowloon Tong, Hong Kong China
| | - Ke Gao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology , 381 Wushan Road, Guangzhou 510640, China
| | - Xiaobin Peng
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology , 381 Wushan Road, Guangzhou 510640, China
| | - Feng Liu
- Materials Sciences Division, Lawrence Berkeley National Lab , Berkeley, California 94720, United States
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology , 381 Wushan Road, Guangzhou 510640, China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University , Hung Hom, Hong Kong China
| | - Wai-Kwok Wong
- Institute of Molecular Functional Materials, Research Centre of Excellence for Organic Electronics, Department of Chemistry and Institute of Advanced Materials, Hong Kong Baptist University , Waterloo Road, Kowloon Tong, Hong Kong China
| | - Xunjin Zhu
- Institute of Molecular Functional Materials, Research Centre of Excellence for Organic Electronics, Department of Chemistry and Institute of Advanced Materials, Hong Kong Baptist University , Waterloo Road, Kowloon Tong, Hong Kong China
| |
Collapse
|
23
|
Nakamura T, Furukawa S, Nakamura E. Benzodipyrrole-based Donor-Acceptor-type Boron Complexes as Tunable Near-infrared-Absorbing Materials. Chem Asian J 2016; 11:2016-20. [DOI: 10.1002/asia.201600673] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Tomoya Nakamura
- Department of Chemistry; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Shunsuke Furukawa
- Department of Chemistry; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
- Department of Chemistry; Graduate School of Science and Engineering; Saitama University; 255 Shimo-okubo Sakura-ku, Saitama-city Saitama 338-8570 Japan
| | - Eiichi Nakamura
- Department of Chemistry; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
24
|
Wang H, Xiao L, Yan L, Chen S, Zhu X, Peng X, Wang X, Wong WK, Wong WY. Structural engineering of porphyrin-based small molecules as donors for efficient organic solar cells. Chem Sci 2016; 7:4301-4307. [PMID: 30155076 PMCID: PMC6013801 DOI: 10.1039/c5sc04783h] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/04/2016] [Indexed: 11/21/2022] Open
Abstract
Porphyrin-based small molecules as donors have long been ignored in bulky heterojunction organic solar cells due to their unfavorable aggregation and the low charge mobility. With the aim of striking a delicate balance between molecular design, morphology, interfacial layer and device fabrication to maximize the power conversion efficiency (PCE) of organic solar cells, three comparable porphyrin-based small molecules with an acceptor-donor-acceptor configuration have been developed for use as donor materials in solution processed small molecule bulk heterojunction organic solar cells. In these molecules, electron-deficient 3-ethylrhodanine is introduced into the electron-rich porphyrin core through 5,15-bis(phenylethynyl) linkers. Structural engineering with 10,20-bis(2-hexylnonyl) aliphatic peripheral substituent on the porphyrin core, instead of the aromatic substituents such as 10,20-bis[3,5-di(dodecyloxyl)phenyl], and 10,20-bis(4-dodecyloxylphenyl), can simultaneously facilitate stronger intermolecular π-π stacking and higher charge transfer mobility in the film, leading to a maximum PCE of 7.70% in a conventional device. The inverted devices have also been demonstrated to have long-term ambient stability and a comparable PCE of 7.55%.
Collapse
Affiliation(s)
- Hongda Wang
- Institute of Molecular Functional Materials , Department of Chemistry and Institute of Advanced Materials , Hong Kong Baptist University , Waterloo Road, Kowloon Tong , Hong Kong , P. R. China . ; ;
- HKBU Institute of Research and Continuing Education , Shenzhen Virtual University Park , Shenzhen , 518057 , P. R. China
| | - Liangang Xiao
- Institute of Polymer Optoelectronic Materials and Devices , State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , 381 Wushan Road , Guangzhou 510640 , P. R. China .
| | - Lei Yan
- Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province and Key Lab of Environment-friendly Chemistry and Application in Ministry of Education , College of Chemistry , Xiangtan University , Xiangtan 411105 , Hunan Province , China .
| | - Song Chen
- Institute of Molecular Functional Materials , Department of Chemistry and Institute of Advanced Materials , Hong Kong Baptist University , Waterloo Road, Kowloon Tong , Hong Kong , P. R. China . ; ;
| | - Xunjin Zhu
- Institute of Molecular Functional Materials , Department of Chemistry and Institute of Advanced Materials , Hong Kong Baptist University , Waterloo Road, Kowloon Tong , Hong Kong , P. R. China . ; ;
- HKBU Institute of Research and Continuing Education , Shenzhen Virtual University Park , Shenzhen , 518057 , P. R. China
| | - Xiaobin Peng
- Institute of Polymer Optoelectronic Materials and Devices , State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , 381 Wushan Road , Guangzhou 510640 , P. R. China .
| | - Xingzhu Wang
- Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province and Key Lab of Environment-friendly Chemistry and Application in Ministry of Education , College of Chemistry , Xiangtan University , Xiangtan 411105 , Hunan Province , China .
| | - Wai-Kwok Wong
- Institute of Molecular Functional Materials , Department of Chemistry and Institute of Advanced Materials , Hong Kong Baptist University , Waterloo Road, Kowloon Tong , Hong Kong , P. R. China . ; ;
| | - Wai-Yeung Wong
- Institute of Molecular Functional Materials , Department of Chemistry and Institute of Advanced Materials , Hong Kong Baptist University , Waterloo Road, Kowloon Tong , Hong Kong , P. R. China . ; ;
- HKBU Institute of Research and Continuing Education , Shenzhen Virtual University Park , Shenzhen , 518057 , P. R. China
| |
Collapse
|
25
|
Wada Y, Asada Y, Ikai T, Maeda K, Kuwabara T, Takahashi K, Kanoh S. Synthesis of Thieno[3,4-b]thiophene-Based Donor Molecules with Phenyl Ester Pendants for Organic Solar Cells: Control of Photovoltaic Properties via Single Substituent Replacement. ChemistrySelect 2016. [DOI: 10.1002/slct.201600205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yuya Wada
- Graduate School of Natural Science and Technology; Kanazawa University, Kakuma-machi; Kanazawa 920-1192 Japan
| | - Yuki Asada
- Graduate School of Natural Science and Technology; Kanazawa University, Kakuma-machi; Kanazawa 920-1192 Japan
| | - Tomoyuki Ikai
- Graduate School of Natural Science and Technology; Kanazawa University, Kakuma-machi; Kanazawa 920-1192 Japan
- Research Center for Sustainable Energy and Technology, College of Science and Engineering; Kanazawa University, Kakuma-machi; Kanazawa 920-1192 Japan
| | - Katsuhiro Maeda
- Graduate School of Natural Science and Technology; Kanazawa University, Kakuma-machi; Kanazawa 920-1192 Japan
- Research Center for Sustainable Energy and Technology, College of Science and Engineering; Kanazawa University, Kakuma-machi; Kanazawa 920-1192 Japan
| | - Takayuki Kuwabara
- Graduate School of Natural Science and Technology; Kanazawa University, Kakuma-machi; Kanazawa 920-1192 Japan
- Research Center for Sustainable Energy and Technology, College of Science and Engineering; Kanazawa University, Kakuma-machi; Kanazawa 920-1192 Japan
| | - Kohshin Takahashi
- Graduate School of Natural Science and Technology; Kanazawa University, Kakuma-machi; Kanazawa 920-1192 Japan
- Research Center for Sustainable Energy and Technology, College of Science and Engineering; Kanazawa University, Kakuma-machi; Kanazawa 920-1192 Japan
| | - Shigeyoshi Kanoh
- Graduate School of Natural Science and Technology; Kanazawa University, Kakuma-machi; Kanazawa 920-1192 Japan
- Research Center for Sustainable Energy and Technology, College of Science and Engineering; Kanazawa University, Kakuma-machi; Kanazawa 920-1192 Japan
| |
Collapse
|
26
|
New 8-substituted BODIPY-based chromophores: synthesis, optical and electrochemical properties. HETEROCYCL COMMUN 2016. [DOI: 10.1515/hc-2016-0151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractBODIPY-based chromophores, in which an electron withdrawing difluoro-boraindacene fragment is connected via position 8 to different donor fragments, were synthesized. Their electrochemical and photophysical properties were studied. All compounds exhibit a quasi-reversible oxidation corresponding to the formation of a BODIPY π-radical cation at around 0.8 V vs. FeCp
Collapse
|
27
|
Zhao H, Liao J, Peng M, Wang Y, Zhou W, Li B, Shen S, Xie Z. Synthesis of fluorene-based di-BODIPY dyes containing different aromatic linkers and their properties. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.11.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|