1
|
Takemori H, Kanzaki C, Nomura S, Maeda T, Numata M. Catalytic effect of microflow space for supramolecular block co-polymerization of water-soluble porphyrins. Chem Commun (Camb) 2024; 60:7303-7306. [PMID: 38904123 DOI: 10.1039/d4cc02003k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Using microflow space, a catalytic effect was achieved for supramolecular polymerization. With increasing reactivity at the polymer end, the selective connection of active monomers formed new block domains, avoiding fast homo-assembly. Binding of less-reactive monomers at the polymer end overcame steric bulkiness, affording a stable supramolecular diblock copolymer (SdiBCP).
Collapse
Affiliation(s)
- Haruna Takemori
- Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| | - Chisako Kanzaki
- Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| | - Shota Nomura
- Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| | - Takato Maeda
- Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| | - Munenori Numata
- Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| |
Collapse
|
2
|
Ogi S, Takamatsu A, Matsumoto K, Hasegawa S, Yamaguchi S. Biomimetic Design of a Robustly Stabilized Folded State Enabling Seed-Initiated Supramolecular Polymerization under Microfluidic Mixing. Angew Chem Int Ed Engl 2023; 62:e202306428. [PMID: 37332181 DOI: 10.1002/anie.202306428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/20/2023]
Abstract
We have investigated the folding and assembly behavior of a cystine-based dimeric diamide bearing pyrene units and solubilizing alkyl chains. In low-polarity solvents, it forms a 14-membered ring through double intramolecular hydrogen bonds between two diamide units. The spectroscopic studies revealed that the folded state is thermodynamically unstable and eventually transforms into more energetically stable helical supramolecular polymers that show an enhanced chiral excitonic coupling between the transition dipoles of the pyrene units. Importantly, compared to an alanine-based monomeric diamide, the dimeric diamide exhibits a superior kinetic stability in the metastable folded state, as well as an increased thermodynamic stability in the aggregated state. Accordingly, the initiation of supramolecular polymerization can be regulated using a seeding method even under microfluidic mixing conditions. Furthermore, taking advantage of a self-sorting behavior observed in a mixture of l-cysteine- and d-cysteine-based dimeric diamides, a two-step supramolecular polymerization was achieved by stepwise addition of the corresponding seeds.
Collapse
Affiliation(s)
- Soichiro Ogi
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
- Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Aiko Takamatsu
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Kentaro Matsumoto
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Shintaro Hasegawa
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
- Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| |
Collapse
|
3
|
Yamashita K, Numata M. Automated Supramolecular Polymerization in a Microflow: A Versatile Platform for Multistep Supramolecular Reactions. Chempluschem 2023; 88:e202200254. [PMID: 36328773 DOI: 10.1002/cplu.202200254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/04/2022] [Indexed: 11/10/2022]
Abstract
This work reports a basic microflow system capable of performing multistep supramolecular polymerization. In this system, injection of the monomer, directional supramolecular copolymerization, removal of the unreacted monomer, and purification of the product supramolecular diblock copolymers are realized along a three-stream flow. When injecting a supramolecular polymer into the central stream of the three-stream flow, the supramolecular polymerization always occurs in the central flow, with the two lateral flows serving as supply and removal lines for the monomer. Employing two kinds of perylene bisimide derivatives as monomers, we confirmed that the reaction occurred selectively at the forward-facing terminus of the supramolecular polymer, along with recovery of the unreacted monomer, ultimately leading to a high-purity supramolecular diblock copolymer. Diblock copolymers are basic units for preparing multicomponent supramolecular block copolymers. Thus, connecting the present system in series would, in principle, result in a "microplant" capable of producing supramolecular polymers having desired inner complexity.
Collapse
Affiliation(s)
- Kae Yamashita
- Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University Shimogamo, Sakyo-ku, Kyoto, 606-8522, Japan
| | - Munenori Numata
- Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University Shimogamo, Sakyo-ku, Kyoto, 606-8522, Japan
| |
Collapse
|
4
|
McDonald MN, Zhu Q, Paxton WF, Peterson CK, Tree DR. Active control of equilibrium, near-equilibrium, and far-from-equilibrium colloidal systems. SOFT MATTER 2023; 19:1675-1694. [PMID: 36790855 DOI: 10.1039/d2sm01447e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The development of top-down active control over bottom-up colloidal assembly processes has the potential to produce materials, surfaces, and objects with applications in a wide range of fields spanning from computing to materials science to biomedical engineering. In this review, we summarize recent progress in the field using a taxonomy based on how active control is used to guide assembly. We find there are three distinct scenarios: (1) navigating kinetic pathways to reach a desirable equilibrium state, (2) the creation of a desirable metastable, kinetically trapped, or kinetically arrested state, and (3) the creation of a desirable far-from-equilibrium state through continuous energy input. We review seminal works within this framework, provide a summary of important application areas, and present a brief introduction to the fundamental concepts of control theory that are necessary for the soft materials community to understand this literature. In addition, we outline current and potential future applications of actively-controlled colloidal systems, and we highlight important open questions and future directions.
Collapse
Affiliation(s)
- Mark N McDonald
- Department of Chemical Engineering, Brigham Young University, Provo, Utah, USA.
| | - Qinyu Zhu
- Department of Chemical Engineering, Brigham Young University, Provo, Utah, USA.
| | - Walter F Paxton
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Cameron K Peterson
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, Utah, USA
| | - Douglas R Tree
- Department of Chemical Engineering, Brigham Young University, Provo, Utah, USA.
| |
Collapse
|
5
|
Abstract
How do you get into flow? We trained in flow chemistry during postdoctoral research and are now applying it in new areas: materials chemistry, crystallization, and supramolecular synthesis. Typically, when researchers think of "flow", they are considering predominantly liquid-based organic synthesis; application to other disciplines comes with its own challenges. In this Perspective, we highlight why we use and champion flow technologies in our fields, summarize some of the questions we encounter when discussing entry into flow research, and suggest steps to make the transition into the field, emphasizing that communication and collaboration between disciplines is key.
Collapse
Affiliation(s)
- Andrea Laybourn
- Faculty
of Engineering, University of Nottingham, University Park Campus, Nottingham NG7 2RD, U.K.
| | - Karen Robertson
- Faculty
of Engineering, University of Nottingham, University Park Campus, Nottingham NG7 2RD, U.K.
| | - Anna G. Slater
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| |
Collapse
|
6
|
Tateishi T, Takahashi S, Kikuchi I, Aratsu K, Sato H, Hiraoka S. Unexpected Self-Assembly Pathway to a Pd(II) Coordination Square-Based Pyramid and Its Preferential Formation beyond the Boltzmann Distribution. Inorg Chem 2021; 60:16678-16685. [PMID: 34652136 DOI: 10.1021/acs.inorgchem.1c02570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Experimental and theoretical investigations of the self-assembly process of a Pd(II) coordination M6L4 square-based pyramid (SP) were conducted. It was found that the probable self-assembly pathway, in which the dimerization of M2L2 with two M leads to SP, expected from the connectivity of the building blocks is not a major self-assembly pathway to the M6L4 SP. Whether the M6L4 SP is assembled or M2L2 is trapped is determined by an inter- or intramolecular reaction in a chain-like M2L2X, where X is a leaving ligand. The kinetically trapped state where the M6L4 SP is produced from M2L2 beyond the Boltzmann distribution was realized by a concentration-induced process and was kept for at least 2 months at 298 K.
Collapse
Affiliation(s)
- Tomoki Tateishi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Satoshi Takahashi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Isamu Kikuchi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Keisuke Aratsu
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Kyoto University, Kyoto 615-8510, Japan.,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Kyoto 615-8510, Japan.,Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Shuichi Hiraoka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
7
|
Matoba S, Kanzaki C, Yamashita K, Kusukawa T, Fukuhara G, Okada T, Narushima T, Okamoto H, Numata M. Directional Supramolecular Polymerization in a Dynamic Microsolution: A Linearly Moving Polymer's End Striking Monomers. J Am Chem Soc 2021; 143:8731-8746. [PMID: 34060820 DOI: 10.1021/jacs.1c02644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Although directional chain reactions are common in nature's self-assembly processes and in covalent polymerizations, it has been challenging to perform such processes in artificial one-dimensional self-assembling systems. In this paper, we describe a system, employing perylene bisimide (PBI) derivatives as monomers, for selectively activating one end of a supramolecular polymer during its growth and, thereby, realizing directional supramolecular polymerization. Upon introduction of a solution containing only a single PBI monomer into the microflow channel, nucleation was induced spontaneously. The dependency of the aggregation efficiency on the flow rate suggested that the shear force facilitated collisions among the monomers to overcome the activation energy required for nucleation. Next, by introducing a solution containing both monomer and polymer, we investigated how the shear force influenced the monomer-polymer interactions. In situ fluorescence spectra and linear dichroism revealed that growth of the polymers was accelerated only when they were oriented under the influence of shear stress. Upon linear motion of the oriented polymer, polymer growth at that single end became predominant relative to the nucleation of freely diffusing monomers. When applying this strategy to a two-monomer system, the second (less active) monomer reacted selectively at the forward-facing terminus of the first polymer, leading to the creation of a diblock copolymer through formation of a molecular heterojunction. This strategy-friction-induced activation of a single end of a polymer-should be applicable more generally to directional supramolecular block copolymerizations of various functional molecules, allowing molecular heterojunctions to be made at desired positions in a polymer.
Collapse
Affiliation(s)
- Shota Matoba
- Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Chisako Kanzaki
- Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Kae Yamashita
- Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Takahiro Kusukawa
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Gaku Fukuhara
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan.,JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Tetsuo Okada
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Tetsuya Narushima
- Institute for Molecular Science and The Graduate University for Advanced Studies (Sokendai), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Hiromi Okamoto
- Institute for Molecular Science and The Graduate University for Advanced Studies (Sokendai), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Munenori Numata
- Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| |
Collapse
|
8
|
Khoeini D, Scott TF, Neild A. Microfluidic enhancement of self-assembly systems. LAB ON A CHIP 2021; 21:1661-1675. [PMID: 33949588 DOI: 10.1039/d1lc00038a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dynamic, kinetically-controlled, self-assembly processes are commonly observed in nature and are capable of creating intricate, functional architectures from simple precursors. However, notably, much of the research into molecular self-assembly has been performed using conventional bulk techniques where the resultant species are dictated by thermodynamic stability to yield relatively simple assemblies. Whereas, the environmental control offered by microfluidic systems offers methods to achieve non-equilibrium reaction conditions capable of increasingly sophisticated self-assembled structures. Alterations to the immediate microenvironment during the assembly of the molecules is possible, providing the basis for kinetically-controlled assembly. This review examines the key mechanism offered by microfluidic systems and the architectures required to access them. The mechanisms include diffusion-led mixing, shear gradient alignment, spatial and temporal confinement, and structural templates in multiphase systems. The works are selected and categorised in terms of the microfluidic approaches taken rather than the chemical constructs which are formed.
Collapse
Affiliation(s)
- Davood Khoeini
- Laboratory for Micro Systems, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
| | - Timothy F Scott
- Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia and Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Adrian Neild
- Laboratory for Micro Systems, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
9
|
Tanaka Y, Yamada S, Tanaka D. Continuous Fluidic Techniques for the Precise Synthesis of Metal-Organic Frameworks. Chempluschem 2021; 86:650-661. [PMID: 33864353 DOI: 10.1002/cplu.202000798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/31/2021] [Indexed: 12/18/2022]
Abstract
The continuous fluidics-based synthesis of metal-organic frameworks (MOFs) has attracted considerable attention, resulting in advancements in the reaction efficiency, a continuous production of complex structures, and access to products that are difficult or impossible to attain by bulk synthetic routes. This Minireview discusses the continuous fluidics-based synthesis of MOFs in terms of reaction process control, and is divided into three chapters dealing with the efficient synthesis of high-quality MOFs, the confined-space synthesis of MOF composites with diverse morphologies, and the selective synthesis of metastable products. The products of continuous fluidic synthetic process are introduced (e. g., uniform products, composites, fibers, membranes, and metastable products with advantageous properties that cannot be obtained by bulk synthesis), and their usefulness is demonstrated by referencing representative examples.
Collapse
Affiliation(s)
- Yoko Tanaka
- Department of Chemistry School of Science and Technology, Kwansei Gakuin University, 2-1, Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Saki Yamada
- Department of Chemistry School of Science and Technology, Kwansei Gakuin University, 2-1, Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Daisuke Tanaka
- Department of Chemistry School of Science and Technology, Kwansei Gakuin University, 2-1, Gakuen, Sanda, Hyogo, 669-1337, Japan
| |
Collapse
|
10
|
Li Y, Männel MJ, Hauck N, Patel HP, Auernhammer GK, Chae S, Fery A, Li J, Thiele J. Embedment of Quantum Dots and Biomolecules in a Dipeptide Hydrogel Formed In Situ Using Microfluidics. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yue Li
- Leibniz-Institut für Polymerforschung Dresden e.V. 01069 Dresden Germany
| | - Max J. Männel
- Leibniz-Institut für Polymerforschung Dresden e.V. 01069 Dresden Germany
| | - Nicolas Hauck
- Leibniz-Institut für Polymerforschung Dresden e.V. 01069 Dresden Germany
| | - Himanshu P. Patel
- Leibniz-Institut für Polymerforschung Dresden e.V. 01069 Dresden Germany
| | | | - Soosang Chae
- Leibniz-Institut für Polymerforschung Dresden e.V. 01069 Dresden Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V. 01069 Dresden Germany
- Technische Universität Dresden 01069 Dresden Germany
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Laboratory of Colloids, Interface and Chemical, Thermodynamics Institute of Chemistry Chinese Academy of Sciences 100190 Beijing China
- University of Chinese Academy of Sciences 100049 Beijing China
| | - Julian Thiele
- Leibniz-Institut für Polymerforschung Dresden e.V. 01069 Dresden Germany
| |
Collapse
|
11
|
Li Y, Männel MJ, Hauck N, Patel HP, Auernhammer GK, Chae S, Fery A, Li J, Thiele J. Embedment of Quantum Dots and Biomolecules in a Dipeptide Hydrogel Formed In Situ Using Microfluidics. Angew Chem Int Ed Engl 2021; 60:6724-6732. [PMID: 33283395 PMCID: PMC7986802 DOI: 10.1002/anie.202015340] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Indexed: 01/03/2023]
Abstract
As low-molecular-weight hydrogelators, dipeptide hydrogel materials are suited for embedding multiple organic molecules and inorganic nanoparticles. Herein, a simple but precisely controllable method is presented that enables the fabrication of dipeptide-based hydrogels by supramolecular assembly inside microfluidic channels. Water-soluble quantum dots (QDs) as well as premixed porphyrins and a dipeptide in dimethyl sulfoxide (DMSO) were injected into a Y-shaped microfluidic junction. At the DMSO/water interface, the confined fabrication of a dipeptide-based hydrogel was initiated. Thereafter, the as-formed hydrogel flowed along a meandering microchannel in a continuous fashion, gradually completing gelation and QD entrapment. In contrast to hydrogelation in conventional test tubes, microfluidically controlled hydrogelation led to a tailored dipeptide hydrogel regarding material morphology and nanoparticle distribution.
Collapse
Affiliation(s)
- Yue Li
- Leibniz-Institut für Polymerforschung Dresden e.V.01069DresdenGermany
| | - Max J. Männel
- Leibniz-Institut für Polymerforschung Dresden e.V.01069DresdenGermany
| | - Nicolas Hauck
- Leibniz-Institut für Polymerforschung Dresden e.V.01069DresdenGermany
| | - Himanshu P. Patel
- Leibniz-Institut für Polymerforschung Dresden e.V.01069DresdenGermany
| | | | - Soosang Chae
- Leibniz-Institut für Polymerforschung Dresden e.V.01069DresdenGermany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V.01069DresdenGermany
- Technische Universität Dresden01069DresdenGermany
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Laboratory of Colloids, Interface and Chemical, ThermodynamicsInstitute of ChemistryChinese Academy of Sciences100190BeijingChina
- University of Chinese Academy of Sciences100049BeijingChina
| | - Julian Thiele
- Leibniz-Institut für Polymerforschung Dresden e.V.01069DresdenGermany
| |
Collapse
|
12
|
Kanzaki C, Matoba S, Inagawa A, Fukuhara G, Okada T, Narushima T, Okamoto H, Numata M. Linear Momentum of a Microfluid Realizes an Anisotropic Reaction at the Ends of a Supramolecular Nanofiber. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chisako Kanzaki
- Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Shota Matoba
- Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Arinori Inagawa
- Graduate School of Regional Development and Creativity, Utsunomiya University, Utsunomiya, Tochigi 321-8585, Japan
| | - Gaku Fukuhara
- Department of Chemistry, Tokyo Institute of Technology, Tokyo 152-8551, Japan
- JST, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Tetsuo Okada
- Department of Chemistry, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | - Tetsuya Narushima
- Institute for Molecular Science and The Graduate University for Advanced Studies (Sokendai), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Hiromi Okamoto
- Institute for Molecular Science and The Graduate University for Advanced Studies (Sokendai), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Munenori Numata
- Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| |
Collapse
|
13
|
Fan Q, Li L, Xue H, Zhou H, Zhao L, Liu J, Mao J, Wu S, Zhang S, Wu C, Li X, Zhou X, Wang J. Precise Control Over Kinetics of Molecular Assembly: Production of Particles with Tunable Sizes and Crystalline Forms. Angew Chem Int Ed Engl 2020; 59:15141-15146. [PMID: 32432368 DOI: 10.1002/anie.202003922] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/03/2020] [Indexed: 11/08/2022]
Abstract
It has been long-pursued but remains a challenge to precisely manipulate the molecular assembly process to obtain desired functional structures. Reported here is the control over the assembly of solute molecules, by a programmed recrystallization of solvent crystal grains, to form micro/nanoparticles with tunable sizes and crystalline forms. A quantitative correlation between the protocol of recrystallization temperature and the assembly kinetics results in precise control over the size of assembled particles, ranging from single-atom catalysts, pure drug nanoparticles, to sub-millimeter organic-semiconductor single crystals. The extensive regulation of the assembly rates leads to the unique and powerful capability of tuning the stacking of molecules, involving the formation of single crystals of notoriously crystallization-resistant molecules and amorphous structures of molecules with a very high propensity to crystallize, which endows it with wide-ranging applications.
Collapse
Affiliation(s)
- Qingrui Fan
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Linhai Li
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Han Xue
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Heng Zhou
- Key Laboratory of Protein Sciences, Tsinghua University), Ministry of Education, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Lishan Zhao
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Liu
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Junqiang Mao
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Shuwang Wu
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shizhong Zhang
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of future technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenyang Wu
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xueming Li
- Key Laboratory of Protein Sciences, Tsinghua University), Ministry of Education, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Xin Zhou
- School of Physical Sciences & CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, 100049, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Jianjun Wang
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100190, China.,School of future technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
14
|
Satake A. The Solvent Effect on Weak Interactions in Supramolecular Polymers: Differences between Small Molecular Probes and Supramolecular Polymers. Chempluschem 2020; 85:1542-1548. [PMID: 32697033 DOI: 10.1002/cplu.202000400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/04/2020] [Indexed: 12/27/2022]
Abstract
In this minireview, weak interactions that occur in supramolecular polymers are discussed. Combination of weak and strong interactions plays an important role in the construction of supramolecular polymers. It is beneficial to separate the contributions of the weak interactions, as well as each solvent effect on the weak interactions. However, it is generally difficult to observe each solvent effect separately at work in each interaction. Small molecular probes are useful to estimate the contributions of the weak interaction. But, the results should be treated with caution when applied to supramolecular polymer systems. To overcome the problems, a new solvent parameter, solvation ability (SA), is introduced, which was determined on the balance point of extended and stacked forms of porphyrin-based interconvertible supramolecular polymers.
Collapse
Affiliation(s)
- Akiharu Satake
- Department of Chemistry, Faculty of Science Division II, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
15
|
Fan Q, Li L, Xue H, Zhou H, Zhao L, Liu J, Mao J, Wu S, Zhang S, Wu C, Li X, Zhou X, Wang J. Precise Control Over Kinetics of Molecular Assembly: Production of Particles with Tunable Sizes and Crystalline Forms. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Qingrui Fan
- Key Laboratory of Green Printing Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100190 China
| | - Linhai Li
- Key Laboratory of Green Printing Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100190 China
| | - Han Xue
- Key Laboratory of Green Printing Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100190 China
| | - Heng Zhou
- Key Laboratory of Protein Sciences Tsinghua University) Ministry of Education Beijing China
- School of Life Sciences Tsinghua University Beijing China
| | - Lishan Zhao
- Key Laboratory of Green Printing Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Jie Liu
- Key Laboratory of Green Printing Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Junqiang Mao
- Key Laboratory of Green Printing Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100190 China
| | - Shuwang Wu
- Key Laboratory of Green Printing Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Shizhong Zhang
- Key Laboratory of Green Printing Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of future technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Chenyang Wu
- Key Laboratory of Green Printing Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Xueming Li
- Key Laboratory of Protein Sciences Tsinghua University) Ministry of Education Beijing China
- School of Life Sciences Tsinghua University Beijing China
| | - Xin Zhou
- School of Physical Sciences & CAS Center for Excellence in Topological Quantum Computation University of Chinese Academy of Sciences Beijing 100049 China
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou China
| | - Jianjun Wang
- Key Laboratory of Green Printing Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100190 China
- School of future technology University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
16
|
Kanzaki C, Inagawa A, Fukuhara G, Okada T, Numata M. Proton‐Gradient‐Driven Self‐Assembly of Porphyrin and In Situ Dynamic Analysis in a Microflow Platform. CHEMSYSTEMSCHEM 2020. [DOI: 10.1002/syst.202000006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chisako Kanzaki
- Department of Biomolecular Chemistry Graduate School of Life and Environmental SciencesKyoto Prefectural University, Shimogamo Sakyo-ku Kyoto 606-8522 Japan
| | - Arinori Inagawa
- Graduate School of Regional Development and CreativityUtsunomiya University Tochigi 321-8585 Japan
| | - Gaku Fukuhara
- Department of ChemistryTokyo Institute of Technology Tokyo 152-8551 Japan
- JST, PRESTO Saitama 332-0012 Japan
| | - Tetsuo Okada
- Department of ChemistryTokyo Institute of Technology Tokyo 152-8551 Japan
| | - Munenori Numata
- Department of Biomolecular Chemistry Graduate School of Life and Environmental SciencesKyoto Prefectural University, Shimogamo Sakyo-ku Kyoto 606-8522 Japan
| |
Collapse
|
17
|
Kanzaki C, Nakadozono T, Numata M. Creation of Discrete 1D Microstructures: Directional Dissociation from the Ends of a Metastable Supramolecular Polymer. Chempluschem 2019. [DOI: 10.1002/cplu.201900463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chisako Kanzaki
- Department of Biomolecular Chemistry Graduate School of Life and Environmental Sciences Kyoto Prefectural University Shimogamo, Sakyo-ku, Kyoto 606-8522 Japan
| | - Takuya Nakadozono
- Department of Biomolecular Chemistry Graduate School of Life and Environmental Sciences Kyoto Prefectural University Shimogamo, Sakyo-ku, Kyoto 606-8522 Japan
| | - Munenori Numata
- Department of Biomolecular Chemistry Graduate School of Life and Environmental Sciences Kyoto Prefectural University Shimogamo, Sakyo-ku, Kyoto 606-8522 Japan
| |
Collapse
|
18
|
Valverde LR, Li B, Schroeder CM, Wilson WL. In Situ Photophysical Characterization of π-Conjugated Oligopeptides Assembled via Continuous Flow Processing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10947-10957. [PMID: 31340647 DOI: 10.1021/acs.langmuir.9b01360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bioinspired materials have been developed with the aim of harnessing natural self-assembly for precisely engineered functionality. Microfluidics is poised to play a key role in the directed assembly of advanced materials with ordered nano and mesoscale features. More importantly, there is a strong need for understanding the kinetics of continuous assembly processes. In this work, we describe a continuous microfluidic system for the assembly and alignment of synthetic oligopeptides with π-conjugated cores using a three-dimensional (3D) flow focusing of inlet reactant streams. This system facilitates in situ confocal fluorescence microscopy and in situ fluorescence lifetime imaging microscopy (FLIM), which can be used in unprecedented capacity to characterize the integrity of peptides during the assembly process. To achieve continuous assembly, we integrate chevron patterns in the ceiling and floor of the microdevice to generate a 3D-focused sheath flow of the reactant peptide. Consequently, the peptide stream is directed toward an acidic triggering stream in a cross-slot geometry which mediates assembly into higher-order fiber-like structures. Using this approach, the focused peptide stream is assembled using a planar extensional flow, which ensures high degrees of microstructural alignment within the assembled material. We demonstrate the efficacy of this approach using three different synthetic oligopeptides, and in all cases, we observe the efficient and continuous assembly of oligopeptides. In addition, finite element simulations are used to guide device design and to validate 3D focusing. Overall, this approach presents an efficient and effective method for the continuous assembly and alignment of ordered materials using microfluidics.
Collapse
Affiliation(s)
- Lawrence R Valverde
- Department of Materials Science and Engineering , University of Illinois at Urbana-Champaign , 1304 West Green Street , Urbana , Illinois 61801 , United States
| | - Bo Li
- Department of Chemical and Biomolecular Engineering , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Charles M Schroeder
- Department of Materials Science and Engineering , University of Illinois at Urbana-Champaign , 1304 West Green Street , Urbana , Illinois 61801 , United States
- Department of Chemical and Biomolecular Engineering , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - William L Wilson
- Department of Materials Science and Engineering , University of Illinois at Urbana-Champaign , 1304 West Green Street , Urbana , Illinois 61801 , United States
- Frederick Seitz Materials Research Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Center for Nanoscale Systems, Faculty of Arts and Sciences, Harvard University , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
19
|
Chalard A, Joseph P, Souleille S, Lonetti B, Saffon-Merceron N, Loubinoux I, Vaysse L, Malaquin L, Fitremann J. Wet spinning and radial self-assembly of a carbohydrate low molecular weight gelator into well organized hydrogel filaments. NANOSCALE 2019; 11:15043-15056. [PMID: 31179473 DOI: 10.1039/c9nr02727k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, we describe how a simple single low molecular weight gelator (LMWG) molecule - N-heptyl-d-galactonamide, which is easy to produce at the gram scale - is spun into gel filaments by a wet spinning process based on solvent exchange. A solution of the gelator in DMSO is injected into water and the solvent diffusion triggers the supramolecular self-assembly of the N-heptyl-d-galactonamide molecules into nanometric fibers. These fibers entrap around 97% of water, thus forming a highly hydrated hydrogel filament, deposited in a well organized coil and locally aligned. This self-assembly mechanism also leads to a very narrow distribution of the supramolecular fiber width, around 150 nm. In addition, the self-assembled fibers are oriented radially inside the wet-spun filaments and at a high flow rate, fibers are organized in spirals. As a result, this process gives rise to a high control of the gelator self-assembly compared with the usual thermal sol-gel transition. This method also opens the way to the controlled extrusion at room temperature of these very simple, soft, biocompatible but delicate hydrogels. The gelator concentration and the flow rates leading to the formation of the gel filaments have been screened. The filament diameter, its internal morphology, the solvent exchange and the velocity of the jet have been investigated by video image analysis and electron microscopy. The stability of these delicate hydrogel ropes has been studied, revealing a polymorphic transformation into macroscopic crystals with time under some storage conditions. The cell viability of a neuronal cell line on the filaments has also been estimated.
Collapse
Affiliation(s)
- Anaïs Chalard
- IMRCP, Université de Toulouse, CNRS, Bat 2R1, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Molecular Synchronization Enhances Molecular Interactions: An Explanatory Note of Pressure Effects. CRYSTALS 2018. [DOI: 10.3390/cryst8070300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In this study, we investigated a unique aspect of the supramolecular polymerization of tetrakis (4-sulfonatophenyl) porphyrin (TPPS), a self-assembling porphyrin, under non-equilibrium conditions by subtracting the effects of back-pressure on its polymerization. We focused on the enhanced self-assembly abilities of TPPS under a process of rapid proton diffusion in a microflow channel. Rapid protonation caused synchronization of many sets of protonation/deprotonation equilibria on the molecular scale, leading to the production of many sets of growing suparmolecular spices. Pressure effects in the microflow channel, which could potentially promote self-assembly of TPPS, were negligible, becoming predominant only when the system was in the synchronized state.
Collapse
|
21
|
Sorrenti A, Leira-Iglesias J, Markvoort AJ, de Greef TFA, Hermans TM. Non-equilibrium supramolecular polymerization. Chem Soc Rev 2017; 46:5476-5490. [PMID: 28349143 PMCID: PMC5708531 DOI: 10.1039/c7cs00121e] [Citation(s) in RCA: 355] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Indexed: 12/21/2022]
Abstract
Supramolecular polymerization has been traditionally focused on the thermodynamic equilibrium state, where one-dimensional assemblies reside at the global minimum of the Gibbs free energy. The pathway and rate to reach the equilibrium state are irrelevant, and the resulting assemblies remain unchanged over time. In the past decade, the focus has shifted to kinetically trapped (non-dissipative non-equilibrium) structures that heavily depend on the method of preparation (i.e., pathway complexity), and where the assembly rates are of key importance. Kinetic models have greatly improved our understanding of competing pathways, and shown how to steer supramolecular polymerization in the desired direction (i.e., pathway selection). The most recent innovation in the field relies on energy or mass input that is dissipated to keep the system away from the thermodynamic equilibrium (or from other non-dissipative states). This tutorial review aims to provide the reader with a set of tools to identify different types of self-assembled states that have been explored so far. In particular, we aim to clarify the often unclear use of the term "non-equilibrium self-assembly" by subdividing systems into dissipative, and non-dissipative non-equilibrium states. Examples are given for each of the states, with a focus on non-dissipative non-equilibrium states found in one-dimensional supramolecular polymerization.
Collapse
Affiliation(s)
- Alessandro Sorrenti
- University of Strasbourg , CNRS , ISIS UMR 7006 , F-67000 Strasbourg , France .
| | | | - Albert J. Markvoort
- Computational Biology Group and Institute for Complex Molecular Systems , Eindhoven University of Technology , P.O. Box 513 , 5600 MB Eindhoven , The Netherlands .
| | - Tom F. A. de Greef
- Computational Biology Group and Institute for Complex Molecular Systems , Eindhoven University of Technology , P.O. Box 513 , 5600 MB Eindhoven , The Netherlands .
| | - Thomas M. Hermans
- University of Strasbourg , CNRS , ISIS UMR 7006 , F-67000 Strasbourg , France .
| |
Collapse
|
22
|
An B, Wang X, Cui M, Gui X, Mao X, Liu Y, Li K, Chu C, Pu J, Ren S, Wang Y, Zhong G, Lu TK, Liu C, Zhong C. Diverse Supramolecular Nanofiber Networks Assembled by Functional Low-Complexity Domains. ACS NANO 2017; 11:6985-6995. [PMID: 28609612 DOI: 10.1021/acsnano.7b02298] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Self-assembling supramolecular nanofibers, common in the natural world, are of fundamental interest and technical importance to both nanotechnology and materials science. Despite important advances, synthetic nanofibers still lack the structural and functional diversity of biological molecules, and the controlled assembly of one type of molecule into a variety of fibrous structures with wide-ranging functional attributes remains challenging. Here, we harness the low-complexity (LC) sequence domain of fused in sarcoma (FUS) protein, an essential cellular nuclear protein with slow kinetics of amyloid fiber assembly, to construct random copolymer-like, multiblock, and self-sorted supramolecular fibrous networks with distinct structural features and fluorescent functionalities. We demonstrate the utilities of these networks in the templated, spatially controlled assembly of ligand-decorated gold nanoparticles, quantum dots, nanorods, DNA origami, and hybrid structures. Owing to the distinguishable nanoarchitectures of these nanofibers, this assembly is structure-dependent. By coupling a modular genetic strategy with kinetically controlled complex supramolecular self-assembly, we demonstrate that a single type of protein molecule can be used to engineer diverse one-dimensional supramolecular nanostructures with distinct functionalities.
Collapse
Affiliation(s)
- Bolin An
- School of Physical Science and Technology, ShanghaiTech University , Shanghai 201210, China
- University of Chinese Academy of Sciences , Beijing 100049, China
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032, China
| | - Xinyu Wang
- School of Physical Science and Technology, ShanghaiTech University , Shanghai 201210, China
- University of Chinese Academy of Sciences , Beijing 100049, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, China
| | - Mengkui Cui
- School of Physical Science and Technology, ShanghaiTech University , Shanghai 201210, China
- University of Chinese Academy of Sciences , Beijing 100049, China
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032, China
| | - Xinrui Gui
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science , Shanghai 200032, China
| | - Xiuhai Mao
- School of Physical Science and Technology, ShanghaiTech University , Shanghai 201210, China
| | - Yan Liu
- iHuman Institute, ShanghaiTech University , Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University , Shanghai 201210, China
| | - Ke Li
- School of Physical Science and Technology, ShanghaiTech University , Shanghai 201210, China
- University of Chinese Academy of Sciences , Beijing 100049, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, China
| | - Cenfeng Chu
- iHuman Institute, ShanghaiTech University , Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University , Shanghai 201210, China
| | - Jiahua Pu
- School of Physical Science and Technology, ShanghaiTech University , Shanghai 201210, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Susu Ren
- School of Physical Science and Technology, ShanghaiTech University , Shanghai 201210, China
- University of Chinese Academy of Sciences , Beijing 100049, China
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032, China
| | - Yanyi Wang
- School of Physical Science and Technology, ShanghaiTech University , Shanghai 201210, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Guisheng Zhong
- iHuman Institute, ShanghaiTech University , Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University , Shanghai 201210, China
| | - Timothy K Lu
- Department of Electrical Engineering and Computer Science and Department of Biological Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139-4307, United States
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science , Shanghai 200032, China
| | - Chao Zhong
- School of Physical Science and Technology, ShanghaiTech University , Shanghai 201210, China
| |
Collapse
|
23
|
Numata M, Hirose N. Flowing microenvironments regulate the helical pitch of a semi-artificial polymer. RSC Adv 2016. [DOI: 10.1039/c6ra12944g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel strategy has been developed for tuning a polymer's conformation in a microfluidic system. The helical pitch of a semi-artificial polymer was controlled precisely in a top-down manner under the non-equilibrium regulated in the microflow.
Collapse
Affiliation(s)
- Munenori Numata
- Department of Biomolecular Chemistry
- Graduate School of Life and Environmental Sciences
- Kyoto Prefectural University
- Kyoto 606-8522
- Japan
| | - Naoya Hirose
- Department of Biomolecular Chemistry
- Graduate School of Life and Environmental Sciences
- Kyoto Prefectural University
- Kyoto 606-8522
- Japan
| |
Collapse
|
24
|
Leira-Iglesias J, Sorrenti A, Sato A, Dunne PA, Hermans TM. Supramolecular pathway selection of perylenediimides mediated by chemical fuels. Chem Commun (Camb) 2016; 52:9009-12. [DOI: 10.1039/c6cc01192f] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate supramolecular pathway selection of a perylenediimide derivative in aqueous solution using chemically fueled redox reactions to control assembly/disassembly cycles.
Collapse
Affiliation(s)
- Jorge Leira-Iglesias
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006
- Université de Strasbourg
- CNRS & icFRC
- 67000 Strasbourg
- France
| | - Alessandro Sorrenti
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006
- Université de Strasbourg
- CNRS & icFRC
- 67000 Strasbourg
- France
| | - Akihiro Sato
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006
- Université de Strasbourg
- CNRS & icFRC
- 67000 Strasbourg
- France
| | - Peter A. Dunne
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006
- Université de Strasbourg
- CNRS & icFRC
- 67000 Strasbourg
- France
| | - Thomas M. Hermans
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006
- Université de Strasbourg
- CNRS & icFRC
- 67000 Strasbourg
- France
| |
Collapse
|