1
|
Brotsman VA, Ioffe IN, Troyanov SI. Nonclassical C 86 and C 88 Chlorofullerenes via Complex Chlorination-Promoted Skeletal Transformations of IPR Isomers of C 88 and C 96. Inorg Chem 2024; 63:18543-18546. [PMID: 39312293 DOI: 10.1021/acs.inorgchem.4c03668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Upon high-temperature (340-360 °C) chlorination with VCl4, an isolated-pentagon-rule (IPR) C2-C88(33) fullerene is just chlorinated to C88(33)Cl22 and C88(33)Cl28, but a VCl4/SbCl5 mixture promotes a five-step cage transformation to nonclassical C86(NC2)Cl30 with two heptagons and five pairs of fused pentagons. Another chlorination-promoted seven-step transformation of an IPR fullerene removes as many as four C2 fragments from C96 to give a nonclassical C88(NC1)Cl30 with cage heptagon and six fused pairs of pentagons. We discuss the driving forces behind the observed transformations and probable detailed pathways thereof.
Collapse
Affiliation(s)
- Victor A Brotsman
- Chemistry Department, Moscow State University, Leninskie gory, 119991 Moscow, Russia
| | - Ilya N Ioffe
- Chemistry Department, Moscow State University, Leninskie gory, 119991 Moscow, Russia
| | - Sergey I Troyanov
- Chemistry Department, Moscow State University, Leninskie gory, 119991 Moscow, Russia
| |
Collapse
|
2
|
Ma Y, Zhang JR, Wang RY, Wang SY, Wang CK, Song XN. Structural recognition of three significant C 88 isomers and its chlorinated derivatives by X-ray spectroscopy. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1725670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Yong Ma
- School of Physics and Electronics, Shandong Normal University, Jinan, People's Republic of China
| | - Jun-Rong Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, People's Republic of China
| | - Ruo-Yu Wang
- School of Physics and Electronics, Shandong Normal University, Jinan, People's Republic of China
| | - Sheng-Yu Wang
- School of Physics and Electronics, Shandong Normal University, Jinan, People's Republic of China
| | - Chuan-Kui Wang
- School of Physics and Electronics, Shandong Normal University, Jinan, People's Republic of China
| | - Xiu-Neng Song
- School of Physics and Electronics, Shandong Normal University, Jinan, People's Republic of China
| |
Collapse
|
3
|
Tamm NB, Fritz MA, Troyanov SI. Chloro‐ and Trifluoromethyl Derivatives of Fullerene C
82
, C
82
Cl
14
and C
82
(CF
3
)
14. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nadezhda B. Tamm
- Department of ChemistryMoscow State University 119991 Moscow, Leninskie gory Russia
| | - Maria A. Fritz
- Department of ChemistryMoscow State University 119991 Moscow, Leninskie gory Russia
| | - Sergey I. Troyanov
- Department of ChemistryMoscow State University 119991 Moscow, Leninskie gory Russia
| |
Collapse
|
4
|
Yang S, Ioffe IN, Troyanov SI. Chlorination-Promoted Skeletal Transformations of Fullerenes. Acc Chem Res 2019; 52:1783-1792. [PMID: 31180640 DOI: 10.1021/acs.accounts.9b00175] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Classical fullerenes are built of pentagonal and hexagonal rings, and the conventional syntheses produce only those isomers that obey the isolated-pentagon rule (IPR), where all pentagonal rings are separated from each other by hexagonal rings. Upon exohedral derivatization, the IPR fullerene cages normally retain their connectivity pattern. However, it has been discovered that high-temperature chlorination of fullerenes with SbCl5 or VCl4 can induce skeletal transformations that alter the carbon cage topology, as directly evidenced by single crystal X-ray diffraction studies of the chlorinated products of a series of fullerenes in the broad range of C60 to C102. Two general types of transformations have been identified: (i) the Stone-Wales rearrangement (SWR) that consists of a rotation of a C-C bond by 90°, and (ii) the removal of a C-C bond, i.e., C2 loss (C2L). Single- or multistep SWR and/or C2L transformations afford either classical non-IPR fullerenes bearing fused pentagons (highlighted in red in the TOC picture) or nonclassical (NCx) fullerenes with x = 1-3 heptagonal rings (highlighted in blue in the TOC picture) often flanked by fused pentagons. Several subtypes of the SWR and C2L processes can be further discerned depending on the local topology of the transformed region of the cage. Under the chlorination conditions, the non-IPR and NC carbon cages that would be energetically unfavorable and mostly labile in their pristine state are instantaneously stabilized by chlorination of the pentagon-pentagon junctions and by delimitation of the original spherical π-system into smaller favorable aromatic fragments. The significance of the chlorination-promoted skeletal transformations within the realm of fullerene chemistry is demonstrated by the growing body of examples. To date, these include single- and multistep SWRs in the buckminsterfullerene C60 and in the higher fullerenes C76(1), C78(2), C82(3), and C102(19), single and multistep C2Ls (i.e., cage shrinkage) in C86(16), C88(33), C90(28), C92(50), C96(80), C96(114), and C102(19), and multistep combinations of SWRs and C2Ls in C88(3), C88(33), and C100(18), (IPR isomer numbering in parentheses is according to the spiral algorithm). Remarkably, an IPR precursor can give rise to versatile transformed chlorinated fullerene cages formed via branched pathways. The products can be recovered either in their initial chlorinated form or as more soluble CF3/F derivatives obtained by an additional trifluoromethylation workup. Reconstruction of the skeletal transformation pathways is often complicated due to the lack of the isolable intermediate products in the multistep cases. Therefore, it is usually based on the principle of selecting the shortest pathways between the starting and the final cage. The quantum-chemical calculations illustrate the detailed mechanisms of the SWR and C2L transformations and the thermodynamic driving forces behind them. A particularly important aspect is the interplay between the chlorination patterns and the regiochemistry of the skeletal transformations.
Collapse
Affiliation(s)
- Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ilya N. Ioffe
- Department of Chemistry, Moscow State University, 119991 Moscow, Russia
| | | |
Collapse
|
5
|
Tamm NB, Guan R, Yang S, Kemnitz E, Troyanov SI. Chlorination-Promoted Cage Transformation of IPR C 92 Discovered via Trifluoromethylation under Formation of Non-classical C 92 (NC)(CF 3 ) 22. Chem Asian J 2019; 14:2108-2111. [PMID: 31091007 DOI: 10.1002/asia.201900469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/23/2019] [Indexed: 11/12/2022]
Abstract
High-temperature trifluoromethylation of isolated-pentagon-rule (IPR) fullerene C92 chlorination products followed by HPLC separation of C92 (CF3 )n derivatives resulted in the isolation and X-ray structural characterization of IPR C92 (38)(CF3 )18 and non-classical C92 (NC)(CF3 )22 . The formation of C92 (38)(CF3 )18 as the highest CF3 derivative of the known isomer C92 (38) can be expected. The formation of C92 (NC)(CF3 )22 was interpreted as chlorination-promoted cage transformation of C92 (38) followed by trifluoromethylation of non-classical C92 (NC) chloride. Noticeably, C92 (NC)(CF3 )22 shows the highest degree of trifluoromethylation among all known CF3 derivatives of fullerenes. The addition patterns of C92 (38)(CF3 )18 and C92 (NC)(CF3 )22 are discussed and compared to the chlorination patterns of C92 (38)Cln compounds.
Collapse
Affiliation(s)
- Nadezhda B Tamm
- Chemistry Department, Moscow State University, Leninskie Gory, 119991, Moscow, Russia
| | - Runnan Guan
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China (USTC), 230026, Hefei, China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China (USTC), 230026, Hefei, China
| | - Erhard Kemnitz
- Institute of Chemistry, Humboldt University Berlin, Brook-Taylor.-Str. 2, 12489, Berlin, Germany
| | - Sergey I Troyanov
- Chemistry Department, Moscow State University, Leninskie Gory, 119991, Moscow, Russia
| |
Collapse
|
6
|
Guan R, Jin F, Yang S, Tamm NB, Troyanov SI. Stable C92(26) and C92(38) as Well as Unstable C92(50) and C92(23) Isolated-Pentagon-Rule Isomers As Revealed by Chlorination of C92 Fullerene. Inorg Chem 2019; 58:5393-5396. [DOI: 10.1021/acs.inorgchem.9b00144] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Runnan Guan
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Fei Jin
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Nadezhda B. Tamm
- Chemistry Department, Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Sergey I. Troyanov
- Chemistry Department, Moscow State University, Leninskie Gory, Moscow 119991, Russia
| |
Collapse
|
7
|
Wang Y, Díaz-Tendero S, Alcamí M, Martín F. Topology-Based Approach to Predict Relative Stabilities of Charged and Functionalized Fullerenes. J Chem Theory Comput 2018; 14:1791-1810. [DOI: 10.1021/acs.jctc.7b01048] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yang Wang
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Sergio Díaz-Tendero
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Manuel Alcamí
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), 28049 Madrid, Spain
| | - Fernando Martín
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), 28049 Madrid, Spain
| |
Collapse
|
8
|
Jin F, Wang S, Tamm NB, Yang S, Troyanov SI. Synthesis, Isolation, and Trifluoromethylation of Two Isomers of C 84
-Based Monometallic Cyanide Clusterfullerenes: Interplay between the Endohedral Cluster and the Exohedral Addends. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fei Jin
- Hefei National Laboratory for Physical Sciences at Microscale; CAS Key Laboratory of Materials for Energy Conversion; Department of Materials Science and Engineering; Synergetic Innovation Center of Quantum Information & Quantum Physics; University of Science and Technology of China; Hefei 230026 China
| | - Song Wang
- Hefei National Laboratory for Physical Sciences at Microscale; CAS Key Laboratory of Materials for Energy Conversion; Department of Materials Science and Engineering; Synergetic Innovation Center of Quantum Information & Quantum Physics; University of Science and Technology of China; Hefei 230026 China
| | - Nadezhda B. Tamm
- Department of Chemistry; Moscow State University; 119991 Moscow, Leninskie gory Russia
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale; CAS Key Laboratory of Materials for Energy Conversion; Department of Materials Science and Engineering; Synergetic Innovation Center of Quantum Information & Quantum Physics; University of Science and Technology of China; Hefei 230026 China
| | - Sergey I. Troyanov
- Department of Chemistry; Moscow State University; 119991 Moscow, Leninskie gory Russia
| |
Collapse
|
9
|
Brotsman VA, Ignat'eva DV, Troyanov SI. Chlorination-promoted Transformation of Isolated Pentagon Rule C78
into Fused-pentagons- and Heptagons-containing Fullerenes. Chem Asian J 2017; 12:2379-2382. [DOI: 10.1002/asia.201701011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/04/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Victor A. Brotsman
- Department of Chemistry; Moscow State University; 119991 Moscow Leninskie gory Russia
| | - Daria V. Ignat'eva
- Department of Chemistry; Moscow State University; 119991 Moscow Leninskie gory Russia
| | - Sergey I. Troyanov
- Department of Chemistry; Moscow State University; 119991 Moscow Leninskie gory Russia
| |
Collapse
|
10
|
Jin F, Wang S, Tamm NB, Yang S, Troyanov SI. Synthesis, Isolation, and Trifluoromethylation of Two Isomers of C84
-Based Monometallic Cyanide Clusterfullerenes: Interplay between the Endohedral Cluster and the Exohedral Addends. Angew Chem Int Ed Engl 2017; 56:11990-11994. [DOI: 10.1002/anie.201707298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Fei Jin
- Hefei National Laboratory for Physical Sciences at Microscale; CAS Key Laboratory of Materials for Energy Conversion; Department of Materials Science and Engineering; Synergetic Innovation Center of Quantum Information & Quantum Physics; University of Science and Technology of China; Hefei 230026 China
| | - Song Wang
- Hefei National Laboratory for Physical Sciences at Microscale; CAS Key Laboratory of Materials for Energy Conversion; Department of Materials Science and Engineering; Synergetic Innovation Center of Quantum Information & Quantum Physics; University of Science and Technology of China; Hefei 230026 China
| | - Nadezhda B. Tamm
- Department of Chemistry; Moscow State University; 119991 Moscow, Leninskie gory Russia
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale; CAS Key Laboratory of Materials for Energy Conversion; Department of Materials Science and Engineering; Synergetic Innovation Center of Quantum Information & Quantum Physics; University of Science and Technology of China; Hefei 230026 China
| | - Sergey I. Troyanov
- Department of Chemistry; Moscow State University; 119991 Moscow, Leninskie gory Russia
| |
Collapse
|
11
|
Jin F, Yang S, Troyanov SI. New Isolated-Pentagon-Rule Isomers of Fullerene C 98 Captured as Chloro Derivatives. Inorg Chem 2017; 56:4780-4783. [PMID: 28414221 DOI: 10.1021/acs.inorgchem.7b00568] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fullerene C98 possesses 259 isomers obeying the isolated pentagon rule (IPR), from which two, nos. 116 and 248, have been confirmed earlier as chloro derivatives. High-temperature chlorination of C98-containing mixtures afforded crystals of several chloro derivatives, and their structure elucidation by X-ray crystallography revealed the presence of new isomers, nos. 107, 109, and 120, in the fullerene soot. Evidence for an isomer of no. 111 is also presented. In addition, a new chloride of the known isomer 248 has been isolated and structurally studied. The chlorination patterns of the chlorides are discussed in terms of the formation of isolated C═C bonds and aromatic substructures on the fullerene cages.
Collapse
Affiliation(s)
- Fei Jin
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering, University of Science and Technology of China (USTC) , Hefei 230026, China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering, University of Science and Technology of China (USTC) , Hefei 230026, China
| | - Sergey I Troyanov
- Chemistry Department, Moscow State University , Leninskie Gory, 119991 Moscow, Russia
| |
Collapse
|
12
|
Jin F, Yang S, Kemnitz E, Troyanov SI. Skeletal Transformation of a Classical Fullerene C 88 into a Nonclassical Fullerene Chloride C 84Cl 30 Bearing Quaternary Sequentially Fused Pentagons. J Am Chem Soc 2017; 139:4651-4654. [PMID: 28335594 DOI: 10.1021/jacs.7b01490] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A classical fullerene is composed of hexagons and pentagons only, and its stability is generally determined by the Isolated-Pentagon-Rule (IPR). Herein, high-temperature chlorination of a mixture containing a classical IPR-obeying fullerene C88 resulted in isolation and X-ray crystallographic characterization of non-IPR, nonclassical (NC) fullerene chloride C84(NC2)Cl30 (1) containing two heptagons. The carbon cage in C84(NC2)Cl30 contains 14 pentagons, 12 of which form two pairs of fused pentagons and two groups of quaternary sequentially fused pentagons, which have never been observed in reported carbon cages. All 30 Cl atoms form an unprecedented single chain of ortho attachments on the C84 cage. A reconstruction of the pathway of the chlorination-promoted skeletal transformation revealed that the previously unknown IPR isomer C88(3) is converted into 1 by two losses of C2 fragments followed by two Stone-Wales rearrangements, resulting in the formation of very stable chloride with rather short C-Cl bonds.
Collapse
Affiliation(s)
- Fei Jin
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC) , Hefei 230026, China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC) , Hefei 230026, China
| | - Erhard Kemnitz
- Institute of Chemistry, Humboldt University Berlin Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Sergey I Troyanov
- Department of Chemistry, Moscow State University , 119991 Moscow, Leninskie gory, Russia
| |
Collapse
|
13
|
Wang S, Yang S, Kemnitz E, Troyanov SI. New Giant Fullerenes Identified as Chloro Derivatives: Isolated-Pentagon-Rule C108(1771)Cl12 and C106(1155)Cl24 as well as Nonclassical C104Cl24. Inorg Chem 2016; 55:5741-3. [PMID: 27276659 DOI: 10.1021/acs.inorgchem.6b00809] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
High temperature chlorination of HPLC fractions of higher fullerenes followed by single crystal X-ray diffraction with the use of synchrotron radiation resulted in the structure determination of IPR C106(1155)Cl24 and IPR C108(1771)Cl12. C106(1155)Cl24 is cocrystallized with C104Cl24, a chloride of the nonclassical isomer of C104. The moderately stable isomer C106(1155) and the most stable C108(1771) represent so far the largest pristine fullerenes with known cages.
Collapse
Affiliation(s)
- Song Wang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion & Department of Materials Science and Engineering, University of Science and Technology of China (USTC) , Hefei 230026, China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion & Department of Materials Science and Engineering, University of Science and Technology of China (USTC) , Hefei 230026, China
| | - Erhard Kemnitz
- Institute of Chemistry, Humboldt University of Berlin , Brook-Taylor.-Str.2, 12489 Berlin, Germany
| | - Sergey I Troyanov
- Chemistry Department, Moscow State University , Leninskie Gory, 119991 Moscow, Russia
| |
Collapse
|
14
|
Wang S, Yang S, Kemnitz E, Troyanov SI. The First Experimentally Confirmed Isolated Pentagon Rule (IPR) Isomers of Higher Fullerene C98 Captured as Chlorides, C98(248)Cl22 and C98(116)Cl20. Chemistry 2016; 22:5138-41. [PMID: 26919123 DOI: 10.1002/chem.201504556] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Indexed: 11/11/2022]
Abstract
High-temperature chlorination of pristine C98 fullerene isomers separated by HPLC from the fullerene soot afforded crystals of C98Cl22 and C98Cl20. An X-ray structure elucidation revealed, respectively, the presence of carbon cages of the most stable C2-C98(248) and rather unstable C1-C98(116), which represent the first isolated pentagon rule (IPR) isomers of fullerene C98 confirmed experimentally. The chlorination patterns of the chlorides are discussed in terms of the formation of isolated C=C bonds and aromatic substructures on the fullerene cages.
Collapse
Affiliation(s)
- Song Wang
- CAS Key Laboratory of Materials for Energy Conversion & Department of Material Science and Engineering, University of Science and Technology of China (USTC), Hefei, 230026, China
| | - Shangfeng Yang
- CAS Key Laboratory of Materials for Energy Conversion & Department of Material Science and Engineering, University of Science and Technology of China (USTC), Hefei, 230026, China.
| | - Erhard Kemnitz
- Institute of Chemistry, Humboldt University of Berlin, Brook-Taylor-Str.2, 12489, Berlin, Germany.
| | - Sergey I Troyanov
- Chemistry Department, Moscow State University, 119991, Moscow, Leninskie gory, Russia.
| |
Collapse
|