1
|
Xu H, Wang QY, Jiang M, Li SS. Application of valence-variable transition-metal-oxide-based nanomaterials in electrochemical analysis: A review. Anal Chim Acta 2024; 1295:342270. [PMID: 38355227 DOI: 10.1016/j.aca.2024.342270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
The construction of materials with rapid electron transfer is considered an effective method for enhancing electrochemical activity in electroanalysis. It has been widely demonstrated that valence changes in transition metal ions can promote electron transfer and thus increase electrochemical activity. Recently, valence-variable transition metal oxides (TMOs) have shown popular application in electrochemical analysis by using their abundant valence state changes to accelerate electron transfer during electrochemical detection. In this review, we summarize recent research advances in valence changes of TMOs and their application in electrochemical analysis. This includes the definition and mechanism of valence change, the association of valence changes with electronic structure, and their applications in electrochemical detection, along with the use of density functional theory (DFT) to simulate the process of electron transfer during valence changes. Finally, the challenges and opportunities for developing and applying valence changes in electrochemical analysis are also identified.
Collapse
Affiliation(s)
- Huan Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China
| | - Qiu-Yu Wang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China
| | - Min Jiang
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Shan-Shan Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China.
| |
Collapse
|
2
|
Ahn H, Ahn H, An J, Kim H, Hong JW, Han SW. Role of Surface Strain at Nanocrystalline Pt{110} Facets in Oxygen Reduction Catalysis. NANO LETTERS 2022; 22:9115-9121. [PMID: 36350225 DOI: 10.1021/acs.nanolett.2c03611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We have developed a synthesis method of rhombic dodecahedral Pd@Pt core-shell nanocrystals bound exclusively by {110} facets with controlled numbers of Pt atomic layers to study the surface strain-catalytic activity relationship of Pt{110} facets. Through control over growth kinetics, the epitaxial and conformal overgrowth of Pt shells on the {110} facets of rhombic dodecahedral Pd nanocrystals could be achieved. Notably, the electrocatalytic activity of the Pd@Pt nanocrystals toward oxygen reduction reaction decreased as their Pt shells became thinner and thus more in-plane compressive surface strain was applied, which is in sharp contrast to previous reports on Pt-based catalysts. Density functional theory calculations revealed that the characteristic strain-activity relationship of Pt{110} facets is the result of the counteraction of out-of-plane surface strain against the applied in-plane surface strain, which can effectively impose a tensile environment on the surface atoms of the Pd@Pt nanocrystals under the compressive in-plane strain.
Collapse
Affiliation(s)
- Hojin Ahn
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Hochan Ahn
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Jihun An
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Hyungjun Kim
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Jong Wook Hong
- Department of Chemistry, University of Ulsan, Ulsan 44776, Korea
| | - Sang Woo Han
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| |
Collapse
|
3
|
Chen Y, Zheng X, Cai J, Zhao G, Zhang B, Luo Z, Wang G, Pan H, Sun W. Sulfur Doping Triggering Enhanced Pt–N Coordination in Graphitic Carbon Nitride-Supported Pt Electrocatalysts toward Efficient Oxygen Reduction Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yaping Chen
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Jinyan Cai
- Hefei National Laboratory for Physical Science at Microscale and Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Guoqiang Zhao
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
| | - Bingxing Zhang
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zhouxin Luo
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
| | - Gongming Wang
- Hefei National Laboratory for Physical Science at Microscale and Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hongge Pan
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Science and Technology for New Energy, Xi’an Technological University, Xi’an 710021, P. R. China
| | - Wenping Sun
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
4
|
Wu T, Sun M, Huang B. Atomic‐Strain Mapping of High‐Index Facets in Late‐Transition‐Metal Nanoparticles for Electrocatalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tong Wu
- Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University, Hung Hom Kowloon Hong Kong SAR China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University, Hung Hom Kowloon Hong Kong SAR China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University, Hung Hom Kowloon Hong Kong SAR China
| |
Collapse
|
5
|
Wu T, Sun M, Huang B. Atomic-Strain Mapping of High-Index Facets in Late-Transition-Metal Nanoparticles for Electrocatalysis. Angew Chem Int Ed Engl 2021; 60:22996-23001. [PMID: 34431602 DOI: 10.1002/anie.202110636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Indexed: 11/06/2022]
Abstract
Although high-index facets (HIF) endows excellent catalytic activity through undercoordinated sites with strain effect, current characterizations techniques still cannot unravel the detailed strain distributions to understand the origins of electroactivity. Nevertheless, theoretical principles to quantify the structural features and their effects on catalytic activity improvements on HIFs are still lacking, which renders the experimental efforts laborious. In this work, we explore the quantification of surface structural features and establish a database of atomic strain distributions for the late-transition metal HIF nanoparticle models. The surface reactivities of the nanoparticles have been examined by adsorption energy calculations and their correlations with structural features are observed. Our proposed theoretical principles on surface characterizations of high-index facets nanomaterials will promote the design and synthesis of efficient transition metal based electrocatalysts.
Collapse
Affiliation(s)
- Tong Wu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| |
Collapse
|
6
|
Lee DW, Woo HY, Lee DHD, Jung MC, Lee D, Lee M, Kim JB, Chae JY, Han MJ, Paik T. N,N-Dimethylformamide-Assisted Shape Evolution of Highly Uniform and Shape-Pure Colloidal Copper Nanocrystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103302. [PMID: 34468086 DOI: 10.1002/smll.202103302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/18/2021] [Indexed: 06/13/2023]
Abstract
In this paper, the N,N-dimethylformamide (DMF)-assisted shape evolution of highly uniform and shape-pure copper nanocrystals (Cu NCs) is presented for the first time. Colloidal Cu NCs are synthesized via the disproportionation reaction of copper (I) bromide in the presence of a non-polar solvent mixture. It is observed that the shape of Cu NCs is systematically controlled by the addition of different amounts of DMF to the reaction mixture in high-temperature reaction conditions while maintaining a high size uniformity and shape purity. With increasing amount of DMF in the reaction mixture, the morphology of the Cu NCs change from a cube enclosed by six {100} facets, to a sphere with mixed surface facets, and finally, to an octahedron enclosed by eight {111} facets. The origin of this shape evolution is understood via first-principles density functional theory calculations, which allows the study of the change in the relative surface stability according to surface-coordinating adsorbates. Further, the shape-dependent plasmonic properties are systematically investigated with highly uniform and ligand-exchanged colloidal Cu NCs dispersed in acetonitrile. Finally, the facet-dependent electrocatalytic activities of the shape-controlled Cu NCs are investigated to reveal the activities of the highly uniform and shape-pure Cu NCs in the methanol oxidation reaction.
Collapse
Affiliation(s)
- Da Won Lee
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ho Young Woo
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Dong Hyun David Lee
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Myung-Chul Jung
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Donguk Lee
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - MinJi Lee
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jong Bae Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ji Yeon Chae
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Myung Joon Han
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Taejong Paik
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| |
Collapse
|
7
|
Formic acid electrooxidation on small, {1 0 0} structured, and Pd decorated carbon-supported Pt nanoparticles. J Catal 2021. [DOI: 10.1016/j.jcat.2021.05.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Khairullina E, Tumkin II, Stupin DD, Smikhovskaia AV, Mereshchenko AS, Lihachev AI, Vasin AV, Ryazantsev MN, Panov MS. Laser-Assisted Surface Modification of Ni Microstructures with Au and Pt toward Cell Biocompatibility and High Enzyme-Free Glucose Sensing. ACS OMEGA 2021; 6:18099-18109. [PMID: 34308043 PMCID: PMC8296552 DOI: 10.1021/acsomega.1c01880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/16/2021] [Indexed: 05/10/2023]
Abstract
We investigated the influence of morphology of Ni microstructures modified with Au and Pt on their cell biocompatibility and electrocatalytic activity toward non-enzymatic glucose detection. Synthesis and modification were carried out using a simple and inexpensive approach based on the method of laser-induced deposition of metal microstructures from a solution on the surface of various dielectrics. Morphological analysis of the fabricated materials demonstrated that the surface of the Ni electrode has a hierarchical structure with large-scale 10 μm pores and small-scale 10 nm irregularities. In turn, the Ni-Pt surface has large-scale cavities, small-scale pores (1-1.5 μm), and a few tens of nanometer particles opposite to Ni-Au that reveals no obvious hierarchical structure. These observations were supported by impedance spectroscopy confirming the hierarchy of the surface topography of Ni and Ni-Pt structures. We tested the biocompatibility of the fabricated Ni-based electrodes with the HeLa cells. It was shown that the Ni-Au electrode has a much better cell adhesion than Ni-Pt with a more complex morphology. On the contrary, porous Ni and Ni-Pt electrodes with a more developed surface area than that of Ni-Au have better catalytic performance toward enzymeless glucose sensing, revealing greater sensitivity, selectivity, and stability. In this regard, modification of Ni with Pt led to the most prominent results providing rather good glucose detection limits (0.14 and 0.19 μA) and linear ranges (10-300 and 300-1500 μA) as well as the highest sensitivities of 18,570 and 2929 μA mM-1 cm-2. We also proposed some ideas to clarify the observed behavior and explain the influence of morphology of the fabricated electrodes on their electrocatalytic activity and biocompatibility.
Collapse
Affiliation(s)
| | - Ilya I. Tumkin
- Saint
Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Daniil D. Stupin
- Nanotechnology
Research and Education Centre RAS, Saint
Petersburg Academic University, 8/3 Khlopina Street, St. Petersburg 194021, Russia
| | | | - Andrey S. Mereshchenko
- Saint
Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Alexey I. Lihachev
- Ioffe
Institute, 26 Politekhnicheskaya, St. Petersburg 194021, Russian Federation
| | - Andrey V. Vasin
- Peter
the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya Str, 195251 St. Petersburg, Russia
| | - Mikhail N. Ryazantsev
- Saint
Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
- Nanotechnology
Research and Education Centre RAS, Saint
Petersburg Academic University, 8/3 Khlopina Street, St. Petersburg 194021, Russia
| | - Maxim S. Panov
- Saint
Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| |
Collapse
|
9
|
Highly Porous Au-Pt Bimetallic Urchin-Like Nanocrystals for Efficient Electrochemical Methanol Oxidation. NANOMATERIALS 2021; 11:nano11010112. [PMID: 33419079 PMCID: PMC7825411 DOI: 10.3390/nano11010112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 01/04/2023]
Abstract
Highly porous Au–Pt urchin-like bimetallic nanocrystals have been prepared by a one-pot wet-chemical synthesis method. The porosity of urchin-like bimetallic nanocrystals was controlled by amounts of hydrazine used as reductant. The prepared highly porous Au-Pt urchin-like nanocrystals were superior catalysts of electrochemical methanol oxidation due to high porosity and surface active sites by their unique morphology. This approach will pave the way for the design of bimetallic porous materials with unprecedented functions.
Collapse
|
10
|
Myekhlai M, Benedetti TM, Gloag L, Poerwoprajitno AR, Cheong S, Schuhmann W, Gooding JJ, Tilley RD. Controlling the Number of Branches and Surface Facets of Pd-Core Ru-Branched Nanoparticles to Make Highly Active Oxygen Evolution Reaction Electrocatalysts. Chemistry 2020; 26:15501-15504. [PMID: 32844508 DOI: 10.1002/chem.202003561] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/24/2020] [Indexed: 11/07/2022]
Abstract
Producing stable but active materials is one of the enduring challenges in electrocatalysis and other types of catalysis. Producing branched nanoparticles is one potential solution. Controlling the number of branches and branch size of faceted branched nanoparticles is one of the major synthetic challenges to achieve highly active and stable nanocatalysts. Herein, we use a cubic-core hexagonal-branch mechanism to synthesize branched Ru nanoparticles with control over the size and number of branches. This structural control is the key to achieving high exposure of active {10-11} facets and optimum number of Ru branches that enables improved catalytic activity for oxygen evolution reaction while maintaining high stability.
Collapse
Affiliation(s)
- Munkhshur Myekhlai
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Tania M Benedetti
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Lucy Gloag
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | | | - Soshan Cheong
- Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, d-44780, Bochum, Germany
| | - J Justin Gooding
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia.,Australian Research Council Centre of Excellence in, Convergent Bio-Nano Science and Technology, School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Richard D Tilley
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia.,Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
11
|
Antoniassi RM, Erikson H, Solla‐Gullón J, Torresi RM, Feliu JM. Small (<5 nm), Clean, and Well‐Structured Cubic Platinum Nanoparticles: Synthesis and Electrochemical Characterization. ChemElectroChem 2020. [DOI: 10.1002/celc.202001336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Rodolfo M. Antoniassi
- Instituto de Electroquímica Universidad de Alicante Ap. 99 03080 Alicante Spain
- Depto. Química Fundamental Instituto de Química Universidade de São Paulo Av. Prof. Lineu Prestes, 748 05508-000 São Paulo, SP Brazil
| | - Heiki Erikson
- Instituto de Electroquímica Universidad de Alicante Ap. 99 03080 Alicante Spain
- Institute of Chemistry University of Tartu Ravila 14a 50411 Tartu Estonia
| | - Jose Solla‐Gullón
- Instituto de Electroquímica Universidad de Alicante Ap. 99 03080 Alicante Spain
| | - Roberto M. Torresi
- Depto. Química Fundamental Instituto de Química Universidade de São Paulo Av. Prof. Lineu Prestes, 748 05508-000 São Paulo, SP Brazil
| | - Juan M. Feliu
- Instituto de Electroquímica Universidad de Alicante Ap. 99 03080 Alicante Spain
| |
Collapse
|
12
|
Laser-Induced Synthesis of Composite Materials Based on Iridium, Gold and Platinum for Non-Enzymatic Glucose Sensing. MATERIALS 2020; 13:ma13153359. [PMID: 32751164 PMCID: PMC7436056 DOI: 10.3390/ma13153359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022]
Abstract
A simple approach for in situ laser-induced modification of iridium-based materials to increase their electrocatalytic activity towards enzyme-free glucose sensing was proposed. For this purpose, we deposited gold and platinum separately and as a mixture on the surface of pre-synthesized iridium microstructures upon laser irradiation at a wavelength of 532 nm. Then, we carried out the comparative investigation of their morphology, elemental and phase composition as well as their electrochemical properties. The best morphology and, as a result, the highest sensitivity (~9960 µA/mM cm2) with respect to non-enzymatic determination of D-glucose were demonstrated by iridium-gold-platinum microstructures also showing low limit of detection (~0.12 µM), a wide linear range (0.5 µM–1 mM) along with good selectivity, reproducibility and stability.
Collapse
|
13
|
Han Y, Kim J, Lee SU, Choi SI, Hong JW. Synthesis of Pd-Pt Ultrathin Assembled Nanosheets as Highly Efficient Electrocatalysts for Ethanol Oxidation. Chem Asian J 2020; 15:1324-1329. [PMID: 32052599 DOI: 10.1002/asia.202000041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/12/2020] [Indexed: 11/09/2022]
Abstract
Control over composition and morphology of nanocrystals (NCs) is significant to develop advanced catalysts applicable to polymer electrolyte membrane fuel cells and further overcome the performance limitations. Here, we present a facile synthesis of Pd-Pt alloy ultrathin assembled nanosheets (UANs) by regulating the growth behavior of Pd-Pt nanostructures. Iodide ions supplied from KI play as capping agents for the {111} plane to promote 2-dimensional (2D) growth of Pd and Pt, and the optimal concentrations of cetyltrimethylammonium chloride and ascorbic acid result in the generation of Pd-Pt alloy UANs in high yield. The prepared Pd-Pt alloy UANs exhibited the remarkable enhancement of the catalytic activity and stability toward ethanol oxidation reaction compared to irregular-shaped Pd-Pt alloy NCs, commercial Pd/C, and commercial Pt/C. Our results confirm that the Pd-Pt alloy composition and ultrathin 2D morphology offer high accessible active sites and favorable electronic structure for enhancing electrocatalytic activity.
Collapse
Affiliation(s)
- Yeji Han
- Department of Chemistry, University of Ulsan, Ulsan, 44776, Republic of Korea
| | - Jeonghyeon Kim
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Su-Un Lee
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology, 141, Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Sang-Il Choi
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jong Wook Hong
- Department of Chemistry, University of Ulsan, Ulsan, 44776, Republic of Korea
| |
Collapse
|
14
|
Huang H, Chen R, Liu M, Wang J, Kim MJ, Ye Z, Xia Y. Aqueous Synthesis of Pd–M (M = Pd, Pt, and Au) Decahedra with Concave Facets for Catalytic Applications. Top Catal 2020. [DOI: 10.1007/s11244-020-01235-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Kim HC, Pramadewandaru RK, Lee S, Hong JW. Active Bumpy PtPd Nanocubes for Methanol Oxidation Reaction. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.11948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Heon Chul Kim
- Department of ChemistryUniversity of Ulsan Ulsan 44776 South Korea
| | | | - Su‐Un Lee
- Carbon Resources Institute, Korea Research Institute of Chemical Technology 141, Gajeong‐ro, Yuseong‐gu Daejeon 34114 South Korea
| | - Jong Wook Hong
- Department of ChemistryUniversity of Ulsan Ulsan 44776 South Korea
| |
Collapse
|
16
|
Rodriguez P, Solla-Gullón J. Editorial: Electrocatalysis on Shape-Controlled Nanoparticles. Front Chem 2020; 7:885. [PMID: 31921792 PMCID: PMC6932981 DOI: 10.3389/fchem.2019.00885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/09/2019] [Indexed: 11/26/2022] Open
Affiliation(s)
| | - José Solla-Gullón
- Institute of Electrochemistry, University of Alicante, Alicante, Spain
| |
Collapse
|
17
|
Poerwoprajitno AR, Gloag L, Cheong S, Gooding JJ, Tilley RD. Synthesis of low- and high-index faceted metal (Pt, Pd, Ru, Ir, Rh) nanoparticles for improved activity and stability in electrocatalysis. NANOSCALE 2019; 11:18995-19011. [PMID: 31403640 DOI: 10.1039/c9nr05802h] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Driven by the quest for future energy solution, faceted metal nanoparticles are being pursued as the next generation electrocatalysts for renewable energy applications. Thanks to recent advancement in solution phase synthesis, different low- and high-index facets on metal nanocrystals become accessible and are tested for specific electrocatalytic reactions. This minireview summarises the key approaches to prepare nanocrystals containing the most catalytically active platinum group metals (Pt, Pd, Ru, Ir and Rh) exposed with low- and high-index facets using solution phase synthesis. Electrocatalytic studies related to the different facets are highlighted to emphasise the importance of exposing facets for catalysing these reactions, namely oxygen reduction reaction (ORR), hydrogen oxidation reaction (HOR), alcohol oxidation including methanol (MOR) and ethanol oxidation reactions (EOR), formic acid oxidation reaction (FAOR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The future outlook discusses the challenges and opportunities for making electrocatalysts that are even more active and stable.
Collapse
Affiliation(s)
- Agus R Poerwoprajitno
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Lucy Gloag
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia. and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Soshan Cheong
- Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - J Justin Gooding
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia. and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Richard D Tilley
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia. and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia and Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
18
|
Ren H, Cui J, Sun S. Water-guided synthesis of well-defined inorganic micro-/nanostructures. Chem Commun (Camb) 2019; 55:9418-9431. [PMID: 31334510 DOI: 10.1039/c9cc04293h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water is one of the most commonplace solvents employed in wet chemical synthesis; however, it can sometimes play important roles such as an effective inducer or morphology-directing agent when introduced into a special reaction system, resulting in the formation of inorganic micro-/nanostructures with well-defined configurations. A better understanding of the key roles of water in the chemical synthesis will unlock a door to the design of many more novel single-component and hybrid nanocomposite architectures. Therefore, it is imperative to comprehensively review the topic of water-guided synthesis of well-defined micro-/nanostructures. Unfortunately, the significance of water has been underestimated and an in-depth study about the exact action of water in morphology-control is still lacking. In this review, we focus on the recent advances made in the development of the shape-controlled synthesis of inorganic micro-/nanostructures achieved by only adjusting the amount of water through some typical examples, including noble metals, metal oxides, perovskites, metal sulfides and oxysalts. In particular, the theory principles, synthesis strategies and growth mechanisms of the water-guided synthesis of well-defined inorganic micro-/nanostructures have been mainly highlighted. Finally, several current issues and challenges of this topic that need to be addressed in future investigations are briefly presented.
Collapse
Affiliation(s)
- Haoqi Ren
- Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology, School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, Shaanxi, People's Republic of China.
| | | | | |
Collapse
|
19
|
Lee YW, Ahn H, Lee SE, Woo H, Han SW. Fine Control over the Compositional Structure of Trimetallic Core-Shell Nanocrystals for Enhanced Electrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2019; 11:25901-25908. [PMID: 31251023 DOI: 10.1021/acsami.9b06498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pt-based multimetallic nanocrystals (NCs) have attracted tremendous research interest because of their excellent catalytic properties in various electrocatalysis fields. However, the development of rational synthesis approaches that can give multimetallic NCs with desirable compositional structures is still a radical issue. In the present work, we devised an efficient strategy for the systematic control of the spatial distribution of constituent elements in Pt-based trimetallic core-shell NCs, through which NCs with distinctly different compositional structures, such as Au@PdPt, Au@Pd@Pt, AuPd@Pt, and AuPdPt@Pt core-shell NCs, could selectively be generated. The adjustment of the amount of a reducing agent, hydrazine, which can provide control over the relative reduction kinetics of multiple metals, is the key to the selective formation of NCs. Through extensive studies on the effect of the compositional structure of the trimetallic NCs on their catalytic function toward the methanol electro-oxidation reaction, we found that the Au@Pd@Pt NCs exhibited considerably enhanced catalytic performance in comparison to the other trimetallic NCs as well as to their binary counterparts, a commercial catalyst, and reported Pt-based nanocatalysts due to the optimized surface electronic structure. The present strategy will be useful to design and construct multicomponent catalytic systems for various energy and environmental applications.
Collapse
Affiliation(s)
- Young Wook Lee
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury , KAIST , Daejeon 34141 , Korea
| | - Hochan Ahn
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury , KAIST , Daejeon 34141 , Korea
| | - Seung Eun Lee
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury , KAIST , Daejeon 34141 , Korea
| | - Hyunje Woo
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury , KAIST , Daejeon 34141 , Korea
| | - Sang Woo Han
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury , KAIST , Daejeon 34141 , Korea
| |
Collapse
|
20
|
Kim KS, Hong Y, Kim HC, Choi SI, Hong JW. Ultrathin-Polyaniline-Coated Pt-Ni Alloy Nanooctahedra for the Electrochemical Methanol Oxidation Reaction. Chemistry 2019; 25:7185-7190. [PMID: 30916839 DOI: 10.1002/chem.201900238] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Indexed: 01/24/2023]
Abstract
Controlling the morphology and composition of nanocatalysts constructed from metals and conductive polymers has attracted attention owing to their great potential for the development of high-efficiency catalysts for various catalytic applications. Herein, a facile synthetic approach for ultrathin-polyaniline-coated Pt-Ni nanooctahedra (Pt-Ni@PANI hybrids) with controllable PANI shell thicknesses is presented. Pt-Ni nanooctahedra/C catalysts enclosed by PANI shells with thicknesses from 0.6 to 2.4 nm were obtained by fine control over the amount of aniline. The various Pt-Ni@PANI hybrids exhibited electrocatalytic activity toward the methanol oxidation reaction that is highly dependent on the thickness of the PANI shell. Pt-Ni@PANI hybrids with the thinnest PANI shells (0.6 nm) showed markedly improved electrocatalytic performance for the methanol oxidation reaction compared with Pt-Ni@PANI hybrids with thicker PANI shells, Pt-Ni nanooctahedra/C, and commercial Pt/C due to synergistic benefits of ultrathin PANI shells and Pt-Ni alloy.
Collapse
Affiliation(s)
- Kyung Soo Kim
- Department of Chemistry, University of Ulsan, Ulsan, 44776, Korea
| | - Youngmin Hong
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, Korea
| | - Heon Chul Kim
- Department of Chemistry, University of Ulsan, Ulsan, 44776, Korea
| | - Sang-Il Choi
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, Korea
| | - Jong Wook Hong
- Department of Chemistry, University of Ulsan, Ulsan, 44776, Korea
| |
Collapse
|
21
|
Iqbal M, Kaneti YV, Kim J, Yuliarto B, Kang YM, Bando Y, Sugahara Y, Yamauchi Y. Chemical Design of Palladium-Based Nanoarchitectures for Catalytic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804378. [PMID: 30633438 DOI: 10.1002/smll.201804378] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Palladium (Pd) plays an important role in numerous catalytic reactions, such as methanol and ethanol oxidation, oxygen reduction, hydrogenation, coupling reactions, and carbon monoxide oxidation. Creating Pd-based nanoarchitectures with increased active surface sites, higher density of low-coordinated atoms, and maximized surface coverage for the reactants is important. To address the limitations of pure Pd, various Pd-based nanoarchitectures, including alloys, intermetallics, and supported Pd nanomaterials, have been fabricated by combining Pd with other elements with similar or higher catalytic activity for many catalytic reactions. Herein, recent advances in the preparation of Pd-based nanoarchitectures through solution-phase chemical reduction and electrochemical deposition methods are summarized. Finally, the trend and future outlook in the development of Pd nanocatalysts toward practical catalytic applications are discussed.
Collapse
Affiliation(s)
- Muhammad Iqbal
- International Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yusuf Valentino Kaneti
- International Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jeonghun Kim
- Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Brian Yuliarto
- Department of Engineering Physics and Research Center for Nanoscience and Nanotechnology, Institute of Technology Bandung, Ganesha 10, Bandung, 40132, Indonesia
| | - Yong-Mook Kang
- Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620, South Korea
| | - Yoshio Bando
- International Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Institute of Molecular Plus, Tianjin University, Nankai District, Tianjin, 300072, P. R. China
- Australian Institute of Innovative Materials, University of Wollongong, Squires Way, North Wollongong, NSW, 2500, Australia
| | - Yoshiyuki Sugahara
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan
- Kagami Memorial Laboratory for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo, 169-0051, Japan
| | - Yusuke Yamauchi
- Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheunggu, Yongin-si, Gyeonggi-do, 446-701, South Korea
| |
Collapse
|
22
|
García-Cruz L, Montiel V, Solla-Gullón J. Shape-controlled metal nanoparticles for electrocatalytic applications. PHYSICAL SCIENCES REVIEWS 2019. [DOI: 10.1515/psr-2017-0124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Abstract
The application of shape-controlled metal nanoparticles is profoundly impacting the field of electrocatalysis. On the one hand, their use has remarkably enhanced the electrocatalytic activity of many different reactions of interest. On the other hand, their usage is deeply contributing to a correct understanding of the correlations between shape/surface structure and electrochemical reactivity at the nanoscale. However, from the point of view of an electrochemist, there are a number of questions that must be fully satisfied before the evaluation of the shaped metal nanoparticles as electrocatalysts including (i) surface cleaning, (ii) surface structure characterization, and (iii) correlations between particle shape and surface structure. In this chapter, we will cover all these aspects. Initially, we will collect and discuss about the different practical protocols and procedures for obtaining clean shaped metal nanoparticles. This is an indispensable requirement for the establishment of correct correlations between shape/surface structure and electrochemical reactivity. Next, we will also report how some easy-to-do electrochemical experiments including their subsequent analyses can enormously contribute to a detailed characterization of the surface structure of the shaped metal nanoparticles. At this point, we will remark that the key point determining the resulting electrocatalytic activity is the surface structure of the nanoparticles (obviously, the atomic composition is also extremely relevant) but not the particle shape. Finally, we will summarize some of the most significant advances/results on the use of these shaped metal nanoparticles in electrocatalysis covering a wide range of electrocatalytic reactions including fuel cell-related reactions (electrooxidation of formic acid, methanol and ethanol and oxygen reduction) and also CO2 electroreduction.
Graphical Abstract:
Collapse
|
23
|
Yin HJ, Zhou JH, Zhang YW. Shaping well-defined noble-metal-based nanostructures for fabricating high-performance electrocatalysts: advances and perspectives. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00689c] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights recent advances in shaping protocols and structure-activity relationships of noble-metal-based catalysts with well-defined nanostructures in electrochemical reactions.
Collapse
Affiliation(s)
- Hai-Jing Yin
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| | - Jun-Hao Zhou
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| | - Ya-Wen Zhang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| |
Collapse
|
24
|
Kim KS, Kim HC, Hong JW. Controlled Synthesis of Pd Nanocube‐Polyaniline Hybrids for Ethanol Oxidation Reaction. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kyung Soo Kim
- Department of ChemistryUniversity of Ulsan Ulsan 44776 South Korea
| | - Heon Chul Kim
- Department of ChemistryUniversity of Ulsan Ulsan 44776 South Korea
| | - Jong Wook Hong
- Department of ChemistryUniversity of Ulsan Ulsan 44776 South Korea
| |
Collapse
|
25
|
Feng J, Gao C, Yin Y. Stabilization of noble metal nanostructures for catalysis and sensing. NANOSCALE 2018; 10:20492-20504. [PMID: 30398268 DOI: 10.1039/c8nr06757k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Noble metal nanocrystals have been widely used as active components in catalysis and chemical/bio-sensing. The sizes, structures, and shapes of noble metal nanocrystals are crucial to their electronic, optical, and catalytic properties. However, metal nanocrystals tend to lose their structural and morphological properties when they are subjected to thermal and chemical treatment. Therefore, stabilization of noble metal nanostructures remains a challenge. In this feature article, we present our recent efforts on the stabilization of noble metal nanocrystals, i.e., using inorganic and non-metal solids as supports and physical barriers, protecting the nanocrystal surface by a metal coating, and forming alloys with other metals. At the end of this review, we provide our perspectives on the future development of effective methods for nanocrystal stabilization.
Collapse
Affiliation(s)
- Ji Feng
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| | | | | |
Collapse
|
26
|
Zhang L, Zhang XF, Chen XL, Wang AJ, Han DM, Wang ZG, Feng JJ. Facile solvothermal synthesis of Pt 71Co 29 lamellar nanoflowers as an efficient catalyst for oxygen reduction and methanol oxidation reactions. J Colloid Interface Sci 2018; 536:556-562. [PMID: 30390581 DOI: 10.1016/j.jcis.2018.10.080] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 10/28/2022]
Abstract
The research for highly efficient and stable electrocatalysts in fuel cells has attracted substantial interest. Herein, bimetallic alloyed Pt71Co29 lamellar nanoflowers (LNFs) with abundant active sites were obtained by a one-pot solvothermal method, where cetyltrimethylammonium chloride (CTAC) and 1-nitroso-2-naphthol (1-N-2-N) served as co-structure-directors, while oleylamine (OAm) as the solvent and reducing agent. The fabricated Pt71Co29 LNFs exhibited the higher mass activity (MA, 128.29 mA mg-1) for oxygen reduction reaction (ORR) than those of home-made Pt48Co52 nanodendrites (NDs), Pt79Co21 NDs and commercial Pt black with the values of 39.46, 49.42 and 22.91 mA mg-1, respectively. Meanwhile, the MA (666.23 mA mg-1) and specific activity (SA, 2.51 mA cm-2) of the constructed Pt71Co29 LNFs for methanol oxidation reaction (MOR) are superior than those of Pt48Co52 NDs (213.91 mA mg-1, 1.99 mA cm-2), Pt79Co21 NDs (210.09 mA mg-1, 1.12 mA cm-2) and Pt black (57.03 mA mg-1, 0.25 mA cm-2). Also, the Pt71Co29 LNFs catalyst exhibited the best durable ability relative to the references. This work demonstrates that the developed strategy provides a facile platform for synthesis of high-performance, low-cost and robust catalysts in practical catalysis, energy storage and conversion.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Xiao-Fang Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Xue-Lu Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - De-Man Han
- Department of Chemistry, Taizhou University, Jiaojiang 318000, PR China
| | - Zhi-Gang Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| |
Collapse
|
27
|
Lee YW, Im M, Hong JW, Han SW. Dendritic Ternary Alloy Nanocrystals for Enhanced Electrocatalytic Oxidation Reactions. ACS APPLIED MATERIALS & INTERFACES 2017; 9:44018-44026. [PMID: 29172429 DOI: 10.1021/acsami.7b14763] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Engineering the morphology and composition of multimetallic nanocrystals composed of noble and 3d transition metals has been of great interest due to its high potential to the development of high-performance catalytic materials for energy and sustainability. In the present work, we developed a facile aqueous approach for the formation of homogeneous ternary alloy nanocrystals with a dendritic shape, Pt-Pd-Cu nanodendrites, of which synthesis is hard to be achieved because of synthetic difficulties. Proper choice of stabilizer and fine control over the amount of stabilizer and reductant allowed the successful formation of Pt-Pd-Cu nanodendrites with controlled sizes and compositions. The prepared ternary alloy nanodendrites exhibited considerably improved electrocatalytic performance toward methanol and ethanol oxidation reactions compared to their binary alloy counterparts and commercial Pt and Pd catalysts, as well as to previously reported Pt- and Pd-based nanocatalysts because of synergism between their morphological and compositional characteristics. We anticipate that the present approach will be helpful to develop efficient electrocatalysis systems for practical applications.
Collapse
Affiliation(s)
- Young Wook Lee
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST , Daejeon 34141, Korea
| | - Mintaek Im
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST , Daejeon 34141, Korea
| | - Jong Wook Hong
- Department of Chemistry, University of Ulsan , Ulsan 44610, Korea
| | - Sang Woo Han
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST , Daejeon 34141, Korea
| |
Collapse
|
28
|
Ying J, Janiak C, Xiao YX, Wei H, Yang XY, Su BL. Shape-Controlled Surface-Coating to Pd@Mesoporous Silica Core-Shell Nanocatalysts with High Catalytic Activity and Stability. Chem Asian J 2017; 13:31-34. [DOI: 10.1002/asia.201701452] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/05/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Jie Ying
- State Key Laboratory Advanced Technology for Materials Synthesis and Processing; Wuhan University of Technology; 122, Luoshi Road Wuhan 430070 China
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie; Heinrich-Heine-Universität Düsseldorf; 40204 Düsseldorf Germany
| | - Yu-Xuan Xiao
- State Key Laboratory Advanced Technology for Materials Synthesis and Processing; Wuhan University of Technology; 122, Luoshi Road Wuhan 430070 China
| | - Hao Wei
- State Key Laboratory Advanced Technology for Materials Synthesis and Processing; Wuhan University of Technology; 122, Luoshi Road Wuhan 430070 China
| | - Xiao-Yu Yang
- State Key Laboratory Advanced Technology for Materials Synthesis and Processing; Wuhan University of Technology; 122, Luoshi Road Wuhan 430070 China
| | - Bao-Lian Su
- State Key Laboratory Advanced Technology for Materials Synthesis and Processing; Wuhan University of Technology; 122, Luoshi Road Wuhan 430070 China
- Laboratory of Inorganic Materials Chemistry (CMI); University of Namur; 61, rue de Bruxelles 5000 Namur Belgium
| |
Collapse
|
29
|
Facile synthesis of bimetallic gold-palladium nanocrystals as effective and durable advanced catalysts for improved electrocatalytic performances of ethylene glycol and glycerol oxidation. J Colloid Interface Sci 2017; 509:10-17. [PMID: 28881200 DOI: 10.1016/j.jcis.2017.08.063] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 11/22/2022]
Abstract
In this work, well-defined bimetallic AuPd alloyed nanocrystals (AuPd NCs) were facilely synthesized by a straightforward and controllable one-step wet-chemical strategy, using a biomolecule (L-hydroxyproline, L-Hyp) as the green stabilizer and the structure-directing agent. Their morphology, size, composition, crystal structures and growth mechanism were investigated by a series of techniques. The synthesized architectures exhibited enlarged electrochemically active surface area (ECSA), improved catalytic activity, enhanced durability and stability towards ethylene glycol oxidation reaction (EGOR) and glycerol oxidation reaction (GOR) in alkaline electrolytes in comparison with commercial Pd black catalyst.
Collapse
|
30
|
Kim HJ, Ruqia B, Kang MS, Lim SB, Choi R, Nam KM, Seo WS, Lee G, Choi SI. Shape-controlled Pt nanocubes directly grown on carbon supports and their electrocatalytic activity toward methanol oxidation. Sci Bull (Beijing) 2017; 62:943-949. [PMID: 36659465 DOI: 10.1016/j.scib.2017.05.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/18/2017] [Accepted: 05/23/2017] [Indexed: 01/21/2023]
Abstract
Synthesis of shape-controlled Pt nanocrystals is substantial and important for enhancing chemical and electrochemical reactions. However, the removal of capping agents, shape-controlling chemicals, on Pt surfaces is essential prior to conducting the catalytic reactions. Here we report a facile one-pot synthesis of Pt nanocubes directly grown on carbon supports (Pt nanocubes/C) with modulating the kinetic reaction factors for shaping the nanocrystals, but without adding any capping agents for preserving the clean Pt surfaces. Well-dispersed Pt nanocubes/C shows enhanced activity and long-term stability toward methanol oxidation reaction compared to the commercial Pt/C catalyst.
Collapse
Affiliation(s)
- Hee Jin Kim
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Bibi Ruqia
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Mi Sung Kang
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Su Bin Lim
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ran Choi
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Ki Min Nam
- Department of Chemistry, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Won Seok Seo
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea.
| | - Gaehang Lee
- Korea Basic Science Institute (KBSI) and University of Science and Technology, Daejeon 34133, Republic of Korea.
| | - Sang-Il Choi
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|