1
|
Sheetal S, Mittal R, Gupta N. Selective synthesis of fluorescent metal nanoclusters over metal nanoparticles. Mikrochim Acta 2024; 191:735. [PMID: 39528840 DOI: 10.1007/s00604-024-06812-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Metal nanoparticles and nanoclusters are pivotal in nanomaterial science, each offering unique properties for diverse applications. Nanoclusters, typically smaller than 2 nm, exhibit distinct optical and electronic characteristics due to quantum confinement, resulting in fluorescence emission. In contrast, metal nanoparticles, sized between 2 and 100 nm, exhibit absorption spectra. Both are synthesized by reducing metal precursors in the presence of a suitable stabilizing agent. While nanoparticles have been the historical research focus, recent attention has shifted to nanoclusters for their exceptional properties and their synthesis has evolved significantly over the past few decades. This review discusses the selective synthesis of nanoclusters over nanoparticles, emphasizing the role of various factors such as ligand concentration (metal-to-ligand ratio), reducing agents, pH, reaction time and temperature, solvents, and assistant reagents. Higher ligand concentrations stabilize smaller nanoclusters by preventing aggregation, while lower concentrations lead to larger nanoparticles. Stronger reducing agents produce smaller, more uniform particles, whereas weaker reducing agents yield larger ones. pH affects nanocluster size and emission properties. Solvents and assistant reagents influence reaction kinetics and material properties. Temperature and reaction time also play critical roles in controlling nanocluster size and properties. These insights guide the optimized synthesis of metal nanoclusters, for their specific applications.
Collapse
Affiliation(s)
- Sheetal Sheetal
- Department of Chemistry, Netaji Subhas University of Technology, Dwarka Sector-3, Dwarka, Delhi, 110078, India
| | - Ritika Mittal
- Department of Chemistry, Netaji Subhas University of Technology, Dwarka Sector-3, Dwarka, Delhi, 110078, India
| | - Nancy Gupta
- Department of Chemistry, Netaji Subhas University of Technology, Dwarka Sector-3, Dwarka, Delhi, 110078, India.
| |
Collapse
|
2
|
Kachanov A, Kostyusheva A, Brezgin S, Karandashov I, Ponomareva N, Tikhonov A, Lukashev A, Pokrovsky V, Zamyatnin AA, Parodi A, Chulanov V, Kostyushev D. The menace of severe adverse events and deaths associated with viral gene therapy and its potential solution. Med Res Rev 2024; 44:2112-2193. [PMID: 38549260 DOI: 10.1002/med.22036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 08/09/2024]
Abstract
Over the past decade, in vivo gene replacement therapy has significantly advanced, resulting in market approval of numerous therapeutics predominantly relying on adeno-associated viral vectors (AAV). While viral vectors have undeniably addressed several critical healthcare challenges, their clinical application has unveiled a range of limitations and safety concerns. This review highlights the emerging challenges in the field of gene therapy. At first, we discuss both the role of biological barriers in viral gene therapy with a focus on AAVs, and review current landscape of in vivo human gene therapy. We delineate advantages and disadvantages of AAVs as gene delivery vehicles, mostly from the safety perspective (hepatotoxicity, cardiotoxicity, neurotoxicity, inflammatory responses etc.), and outline the mechanisms of adverse events in response to AAV. Contribution of every aspect of AAV vectors (genomic structure, capsid proteins) and host responses to injected AAV is considered and substantiated by basic, translational and clinical studies. The updated evaluation of recent AAV clinical trials and current medical experience clearly shows the risks of AAVs that sometimes overshadow the hopes for curing a hereditary disease. At last, a set of established and new molecular and nanotechnology tools and approaches are provided as potential solutions for mitigating or eliminating side effects. The increasing number of severe adverse reactions and, sadly deaths, demands decisive actions to resolve the issue of immune responses and extremely high doses of viral vectors used for gene therapy. In response to these challenges, various strategies are under development, including approaches aimed at augmenting characteristics of viral vectors and others focused on creating secure and efficacious non-viral vectors. This comprehensive review offers an overarching perspective on the present state of gene therapy utilizing both viral and non-viral vectors.
Collapse
Affiliation(s)
- Artyom Kachanov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Anastasiya Kostyusheva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Sergey Brezgin
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Ivan Karandashov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Natalia Ponomareva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Andrey Tikhonov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Alexander Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Vadim Pokrovsky
- Laboratory of Biochemical Fundamentals of Pharmacology and Cancer Models, Blokhin Cancer Research Center, Moscow, Russia
- Department of Biochemistry, People's Friendship University, Russia (RUDN University), Moscow, Russia
| | - Andrey A Zamyatnin
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Belozersky Research, Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alessandro Parodi
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Vladimir Chulanov
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Infectious Diseases, Sechenov University, Moscow, Russia
| | - Dmitry Kostyushev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
3
|
Saffari Z, Cohan RA, Sepahi M, Sadeqi M, Khoobi M, Fard MH, Ghavidel A, Amiri FB, Aghasadeghi MR, Norouzian D. Signal amplification of a quartz crystal microbalance immunosensor by gold nanoparticles-polyethyleneimine for hepatitis B biomarker detection. Sci Rep 2023; 13:21851. [PMID: 38071203 PMCID: PMC10710426 DOI: 10.1038/s41598-023-48766-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
The procedures currently used for hepatitis B (HB) detection are not suitable for screening, clinical diagnosis, and point-of-care testing (POCT). Therefore, we developed and tested a QCM-based immunosensor by surface modification with AuNP-PEIs to amplify the signal and provide an oriented-immobilization surface. The AuNP-PEIs were characterized by ICP-Mass, UV/Vis, DLS, FE-SEM, and ATR-FTIR. After coating AuNP-PEIs on the gold electrode surface, anti-HBsAg antibodies were immobilized using NHS/EDC chemistry based on response surface methodology (RSM) optimization. The efficiency of the immunosensor was assessed by human sera and data were compared to gold-standard ELISA using receiver-operating-characteristic (ROC) analysis. FE-SEM, AFM, EDS, and EDS mapping confirmed AuNP-PEIs are homogeneously distributed on the surface with a high density and purity. After antibody immobilization, the immunosensor exhibited good recognition of HBsAg with a calibration curve of ∆F = - 6.910e-7x + 10(R2 = 0.9905), a LOD of 1.49 ng/mL, and a LOQ of 4.52 ng/mL. The immunosensor yielded reliable and accurate results with a specificity of 100% (95% CI 47.8-100.0) and sensitivity of 100% (95% CI 96.2-100.0). In conclusion, the fabricated immunosensor has the potential as an analytic tool with high sensitivity and specificity. However, further investigations are needed to convert it to a tiny lab-on-chip for HB diagnosis in clinical samples.
Collapse
Affiliation(s)
- Zahra Saffari
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Reza Ahangari Cohan
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Mina Sepahi
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Mahdi Sadeqi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Khoobi
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amir Ghavidel
- Physics Department, Sharif University of Technology, Tehran, Iran
| | - Fahimeh Bagheri Amiri
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | | | - Dariush Norouzian
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, 1316943551, Iran.
| |
Collapse
|
4
|
Lee J, Lee JH, Lee SY, Park SA, Kim JH, Hwang D, Kim KA, Kim HS. Antioxidant Iron Oxide Nanoparticles: Their Biocompatibility and Bioactive Properties. Int J Mol Sci 2023; 24:15901. [PMID: 37958885 PMCID: PMC10649306 DOI: 10.3390/ijms242115901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
A lot of nanomaterials have been applied to various nano-biotechnological fields, such as contrast agents, drug or gene delivery systems, cosmetics, and so on. Despite the expanding usage of nanomaterials, concerns persist regarding their potential toxicity. To address this issue, many scientists have tried to develop biocompatible nanomaterials containing phytochemicals as a promising solution. In this study, we synthesized biocompatible nanomaterials by using gallic acid (GA), which is a phytochemical, and coating it onto the surface of iron oxide nanoparticles (IONPs). Importantly, the GA-modified iron oxide nanoparticles (GA-IONPs) were successfully prepared through environmentally friendly methods, avoiding the use of harmful reagents and extreme conditions. The presence of GA on the surface of IONPs improved their stability and bioactive properties. In addition, cell viability assays proved that GA-IONPs possessed excellent biocompatibility in human dermal papilla cells (HDPCs). Additionally, GA-IONPs showed antioxidant activity, which reduced intracellular reactive oxygen species (ROS) levels in an oxidative stress model induced by hydrogen peroxide (H2O2). To investigate the impact of GA-IONPs on exosome secretions from oxidative stress-induced cells, we analyzed the number and characteristics of exosomes in the culture media of HDPCs after H2O2 stimulation or GA-IONP treatment. Our analysis revealed that both the number and proportions of tetraspanins (CD9, CD81, and CD63) in exosomes were similar in the control group and the GA-IONP-treated groups. In contrast, exosome secretion was increased, and the proportion of tetraspanin was changed in the H2O2-treated group compared to the control group. It demonstrated that treatment with GA-IONPs effectively attenuated exosome secretion induced by H2O2-induced oxidative stress. Therefore, this GA-IONP exhibited outstanding promise for applications in the field of nanobiotechnology.
Collapse
Affiliation(s)
- Jaewook Lee
- Research Institute for Biomolecular Chemistry, Dongguk University, Seoul 04620, Republic of Korea
| | - Ji-Heon Lee
- 4D Convergence Technology Institute (National Key Technology Institute in University), Korea National University of Transportation, Jungpyeong 27909, Republic of Korea
| | - Seung-Yeul Lee
- Genomictree, Inc., 44-6 10-ro Techno, Daejeon 34027, Republic of Korea
| | - Sin A Park
- Genomictree, Inc., 44-6 10-ro Techno, Daejeon 34027, Republic of Korea
| | - Jae Hoon Kim
- Genomictree, Inc., 44-6 10-ro Techno, Daejeon 34027, Republic of Korea
| | - Dajeong Hwang
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kyung A Kim
- Yonsei Cancer Center, Seoul 30722, Republic of Korea (H.S.K.)
| | - Han Sang Kim
- Yonsei Cancer Center, Seoul 30722, Republic of Korea (H.S.K.)
- Division of Medical Oncology, Department of Internal Medicine, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
5
|
Yaiwong P, Anuthum S, Sangthong P, Jakmunee J, Bamrungsap S, Ounnunkad K. A new portable toluidine blue/aptamer complex-on-polyethyleneimine-coated gold nanoparticles-based sensor for label-free electrochemical detection of alpha-fetoprotein. Front Bioeng Biotechnol 2023; 11:1182880. [PMID: 37284243 PMCID: PMC10239980 DOI: 10.3389/fbioe.2023.1182880] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/28/2023] [Indexed: 06/08/2023] Open
Abstract
The quantification of alpha-fetoprotein (AFP) as a potential liver cancer biomarker which is generally found in ultratrace level is of significance in biomedical diagnostics. Therefore, it is challenging to find a strategy to fabricate a highly sensitive electrochemical device towards AFP detection through electrode modification for signal generation and amplification. This work shows the construction of a simple, reliable, highly sensitive, and label-free aptasensor based on polyethyleneimine-coated gold nanoparticles (PEI-AuNPs). A disposable ItalSens screen-printed electrode (SPE) is employed for fabricating the sensor by successive modifying with PEI-AuNPs, aptamer, bovine serum albumin (BSA), and toluidine blue (TB), respectively. The AFP assay is easily performed when the electrode is inserted into a small Sensit/Smart potentiostat connected to a smartphone. The readout signal of the aptasensor derives from the electrochemical response of TB intercalating into the aptamer-modified electrode after binding with the target. The decrease in current response of the proposed sensor is proportional to the AFP concentration due to the restriction of the electron transfer pathway of TB by a number of insulating AFP/aptamer complexes on the electrode surface. PEI-AuNPs improve SPE's reactivity and provide a large surface area for aptamer immobilization whereas aptamer provides selectivity to the target AFP. Consequently, this electrochemical biosensor is highly sensitive and selective for AFP analysis. The developed assay reveals a linear range of detection from 10 to 50000 pg mL-1 with R 2 = 0.9977 and provided a limit of detection (LOD) of 9.5 pg mL-1 in human serum. With its simplicity and robustness, it is anticipated that this electrochemical-based aptasensor will be a benefit for the clinical diagnosis of liver cancer and further developed for other biomarkers analysis.
Collapse
Affiliation(s)
- Patrawadee Yaiwong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- The Graduate School, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn Anuthum
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- The Graduate School, Chiang Mai University, Chiang Mai, Thailand
| | - Padchanee Sangthong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Jaroon Jakmunee
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Suwussa Bamrungsap
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Kontad Ounnunkad
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
6
|
Craciun BF, Clima L, Bostiog DI, Silion M, Calin M, Peptanariu D, Pinteala M. Multilayer gold nanoparticles as non-viral vectors for targeting MCF-7 cancer cells. BIOMATERIALS ADVANCES 2022; 144:213201. [PMID: 36436432 DOI: 10.1016/j.bioadv.2022.213201] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/31/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
Cargocomplexes play a vital role in non-viral delivery methods due to their capacity to target certain cells (or cells through the cell-division cycle) and inject their (macro)molecular "cargo" into them. The development of gene carriers that can efficiently transport and deliver genetic material into human-targeted cells with minimal toxicity is an important challenge in the field. The present study reports the straightforward preparation and testing of a modular non-viral gene carrier based on AuNPs. The design, synthesis, and in vitro evaluation of multilayer gold nanoparticles (AuNPs) as non-viral gene carriers with high transfection efficiency, reduced cytotoxicity for targeted therapeutic delivery of nucleic acids to MCF-7 cancer cells are presented. The developed non-viral vector is based on supramolecular "host-guest" inclusion complexes of β-cyclodextrin, positioned on the AuNPs surface over a layer of polyethyleneimine, and adamantyl moiety from polyethylene glycol conjugated decapeptide (WXEAAYQRFL). First, the β-CD functionalized PEI was utilized as the template for the synthesis of AuNPs of controlled sizes. The reaction produced small AuNPs with a cationic layer which is known for efficient condensation of genetic material and β-CD suitable for the decoration of the carrier with targeting moieties using "host-guest" inclusion complexation. Subsequently, adamantine-polyethylene glycol conjugated decapeptide was attached to the AuNPs. The in vitro results have validated the ability of the proposed systems to selectively target tumor cells with high efficacy and low toxicity due to the unique affinity of the aptamer-functionalized nanoparticles toward breast cancer cells. The findings of this work demonstrated that the proposed modular system may represent a very promising platform for the AuNP-based non-viral vectors mainly due to the versatility of the system, which allows for the facile exchange of several types of ligands for improving the targeting properties and transfection efficiency, or for providing better protection from the endocytotic systems.
Collapse
Affiliation(s)
- Bogdan Florin Craciun
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania
| | - Lilia Clima
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania
| | - Denisse-Iulia Bostiog
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania
| | - Mihaela Silion
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania
| | - Manuela Calin
- Medical and Pharmaceutical BioNanoTechnologies Laboratory (BioNanoMed), "Nicolae Simionescu" Institute of Cellular Biology and Pathology, Bucharest, Romania
| | - Dragos Peptanariu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania.
| | - Mariana Pinteala
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania.
| |
Collapse
|
7
|
An Z, Cao B, Zhang J, Zhang B, Zhou C, Hu X, Chen W. Efficient Transient Expression of Plasmid DNA Using Poly (2-( N, N-Dimethylamino) Ethyl Methacrylate) in Plant Cells. Front Bioeng Biotechnol 2022; 10:805996. [PMID: 35273955 PMCID: PMC8902165 DOI: 10.3389/fbioe.2022.805996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/19/2022] [Indexed: 11/30/2022] Open
Abstract
Nanomaterials have been widely studied for their potential to become the new generation of nanocarriers in gene transfection, yet it remains still difficult to apply them efficiently and succinctly to plant cells. Poly (2-(N,N-dimethylamino) ethyl methacrylate) (PDMAEMA), which possesses temperature and pH dual-sensitivity, has largely been applied in animal cells, but it is rarely involved in plant cells. As a proof of concept, PDMAEMA as a gene carrier is incubated with plasmid GFP (pGFP) to explore its transfection ability in plants, and cationic polymer polyethylenimine (PEI) is used as a control. pGFP was efficiently condensed into the nanostructure by electrostatic interactions at an N/P (amino group from cationic polymers/phosphate group from plasmid DNA (pDNA)) ratio of 15; after complexation into nanocarriers, pGFP was protected from endonuclease degradation according to the DNase I digestion assay. After incubation with protoplasts and leaves, GFP was observed with confocal microscopy in plant cells. Western blot experiments confirmed GFP expression at the protein level. Toxicity assay showed PDMAEMA had a lower toxicity than PEI. These results showed that transient expression of pGFP was readily achieved in Arabidopsis thaliana and Nicotiana benthamiana. Notably, PDMAEMA showed lower cytotoxicity than PEI upon incubation with Nicotiana benthamiana leaves. PDMAEMA exhibited great potency for DNA delivery in plant cells. This work provides us with new ideas of more concise and more effective methods for plant transformation.
Collapse
Affiliation(s)
- Zishuai An
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Bing Cao
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Junzhe Zhang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Baihong Zhang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Chengqian Zhou
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
| | - Xianglong Hu
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Wenli Chen
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
8
|
Pang C, Fan KS, Wei L, Kolar MK. Gene therapy in wound healing using nanotechnology. Wound Repair Regen 2020; 29:225-239. [PMID: 33377593 DOI: 10.1111/wrr.12881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/11/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022]
Abstract
Wound healing is a complex and highly regulated process that is susceptible to a variety of failures leading to delayed wound healing or chronic wounds. This is becoming an increasingly global burden on the healthcare system. Treatment of wounds has evolved considerably to overcome barriers to wound healing especially within the field of regenerative medicine that focuses on the replacement of tissues or organs. Improved understanding of the pathophysiology of wound healing has enabled current advances in technology to allow better optimization of microenvironment within wounds. This approach may help tackle wounds that are difficult to treat and help reduce the global burden of the disease. This article provides an overview of the physiology in wound healing and the application of gene therapy using nanotechnology in the management of wounds.
Collapse
Affiliation(s)
- Calver Pang
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Ka Siu Fan
- Faculty of Medicine, St. George's, University of London, London, United Kingdom
| | - Lanxuan Wei
- Centre for Rheumatology and Connective Tissue Diseases, Division of Medicine, University College London, London, United Kingdom
| | - Mallappa K Kolar
- Sheffield Teaching Hospitals, NHS Foundation Trust, Sheffield, United Kingdom
| |
Collapse
|
9
|
Abstract
Nanomaterials are popularly used in drug delivery, disease diagnosis and therapy. Among a number of functionalized nanomaterials such as carbon nanotubes, peptide nanostructures, liposomes and polymers, gold nanoparticles (Au NPs) make excellent drug and anticancer agent carriers in biomedical and cancer therapy application. Recent advances of synthetic technique improved the surface coating of Au NPs with accurate control of particle size, shape and surface chemistry. These make the gold nanomaterials a much easier and safer cancer agent and drug to be applied to the patient’s tumor. Although many studies on Au NPs have been published, more results are in the pipeline due to the rapid development of nanotechnology. The purpose of this review is to assess how the novel nanomaterials fabricated by Au NPs can impact biomedical applications such as drug delivery and cancer therapy. Moreover, this review explores the viability, property and cytotoxicity of various Au NPs.
Collapse
|
10
|
Giesen B, Nickel AC, Garzón Manjón A, Vargas Toscano A, Scheu C, Kahlert UD, Janiak C. Influence of synthesis methods on the internalization of fluorescent gold nanoparticles into glioblastoma stem-like cells. J Inorg Biochem 2019; 203:110952. [PMID: 31794896 DOI: 10.1016/j.jinorgbio.2019.110952] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/14/2019] [Accepted: 11/22/2019] [Indexed: 10/25/2022]
Abstract
Glioblastoma (GBM) is an aggressive disease with currently no satisfying treatment option available. GBM cells with stem cell properties are thought to be responsible for the initiation and propagation of the disease, as well as main contributors to the emergence of therapy resistance. In this work, we developed a novel method to synthesize fluorescent gold nanoparticles as potential drug and gene delivery systems for GBM therapy, able to penetrate three-dimensional stem cell selected patient-derived GBM neurosphere systems in vitro. By using polyethylene imine (PEI) as a stabilizer and reducing agent, as well as fluorescein isothiocyanate (FITC) as a fluorescent marker, our fully in-house developed fluorescent gold nanoparticles (AuPEI-FITC NPs) with core sizes between 3 and 6 nm were obtained via a fast microwave-assisted reaction. Cytotoxicity, adsorption and internalization of AuPEI-FITC NPs into the cell lines JHH520, 407 and GBM1 were investigated using the cellular growth assay and fluorescence-activated cell sorting (FACS) analysis. AuPEI-FITC NPs showed no apparent cytotoxicity and an uptake in cells of up to ~80%. A differentiation between surface-bound and internalized AuPEI-FITC NPs was possible by quenching extracellular signals. This resulted in a maximal internalization degree of 61%, which depends highly on the synthesis method of the nanoparticles and the cell type tested. The best internalization was found for AuPEI-FITC1 which was prepared in a one pot reaction from KAuCl4, PEI and FITC. Thus, appropriately synthesized AuPEI-FITC NPs show great potential as vehicles to transport DNA or drugs in GBM cells.
Collapse
Affiliation(s)
- Beatriz Giesen
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany
| | - Ann-Christin Nickel
- Klinik für Neurochirurgie, Universitätsklinikum Düsseldorf, 40225 Düsseldorf, Germany
| | - Alba Garzón Manjón
- Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
| | - Andrés Vargas Toscano
- Klinik für Neurochirurgie, Universitätsklinikum Düsseldorf, 40225 Düsseldorf, Germany
| | - Christina Scheu
- Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
| | - Ulf Dietrich Kahlert
- Klinik für Neurochirurgie, Universitätsklinikum Düsseldorf, 40225 Düsseldorf, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK), Essen/Düsseldorf, Germany.
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany.
| |
Collapse
|
11
|
Fuller MA, Köper I. Biomedical applications of polyelectrolyte coated spherical gold nanoparticles. NANO CONVERGENCE 2019; 6:11. [PMID: 31016413 PMCID: PMC6478786 DOI: 10.1186/s40580-019-0183-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/20/2019] [Indexed: 05/28/2023]
Abstract
Surface modified gold nanoparticles are becoming more and more popular for use in biomaterials due to the possibility for specific targeting and increased biocompatibility. This review provides a summary of the recent literature surrounding polyelectrolyte coatings on spherical gold nanoparticles and their potential biomedical applications. The synthesis and layer-by layer coating approach are briefly discussed together with common characterisation methods. The potential applications and recent developments in drug delivery, gene therapy, photothermal therapy and imaging are summarized as well as the effects on cellular uptake and toxicity. Finally, the future outlook for polyelectrolyte coated gold nanoparticles is explored, focusing on their use in biomedicine.
Collapse
Affiliation(s)
- Melanie A. Fuller
- Flinders Institute for NanoScale Science and Technology, Flinders University, Bedford Park, SA 5042 Australia
| | - Ingo Köper
- Flinders Institute for NanoScale Science and Technology, Flinders University, Bedford Park, SA 5042 Australia
| |
Collapse
|
12
|
Grabowska M, Grześkowiak BF, Szutkowski K, Wawrzyniak D, Głodowicz P, Barciszewski J, Jurga S, Rolle K, Mrówczyński R. Nano-mediated delivery of double-stranded RNA for gene therapy of glioblastoma multiforme. PLoS One 2019; 14:e0213852. [PMID: 30889203 PMCID: PMC6424419 DOI: 10.1371/journal.pone.0213852] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/03/2019] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common type of malignant gliomas, characterized by genetic instability, intratumoral histopathological variability and unpredictable clinical behavior. Disappointing results in the treatment of gliomas with surgery, radiation and chemotherapy have fueled a search for new therapeutic targets and treatment modalities. Here we report new approach towards RNA interference therapy of glioblastoma multiforme based on the magnetic nanoparticles delivery of the double-stranded RNA (dsRNA) with homological sequences to mRNA of tenascin-C (TN-C), named ATN-RNA. The obtained nanocomposite consisted of polyethyleneimine (PEI) coated magnetic nanoparticles conjugated to the dsRNA show high efficiency in ATN-RNA delivery, resulting not only in significant TN-C expression level suppressesion, but also impairing the tumor cells migration. Moreover, synthesized nanomaterials show high contrast properties in magnetic resonance imaging (MRI) and low cytotoxicity combining with lack of induction of interferon response. We believe that the present work is a successful combination of effective, functional, non-immunostimulatory dsRNA delivery system based on magnetic nanoparticles with high potential for further application in GBM therapy.
Collapse
Affiliation(s)
- Małgorzata Grabowska
- Department of Molecular Neurooncology, Institute of Bioorganic Chemistry Polish Academy of Science, Poznan, Poland
| | | | - Kosma Szutkowski
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Dariusz Wawrzyniak
- Department of Molecular Neurooncology, Institute of Bioorganic Chemistry Polish Academy of Science, Poznan, Poland
| | - Paweł Głodowicz
- Department of Molecular Neurooncology, Institute of Bioorganic Chemistry Polish Academy of Science, Poznan, Poland
| | - Jan Barciszewski
- Department of Epigenetics, Institute of Bioorganic Chemistry Polish Academy of Science, Poznan, Poland
| | - Stefan Jurga
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Katarzyna Rolle
- Department of Molecular Neurooncology, Institute of Bioorganic Chemistry Polish Academy of Science, Poznan, Poland
- Centre for Advanced Technologies, Poznan, Poland
- * E-mail: (RM); (KR)
| | - Radosław Mrówczyński
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Poznan, Poland
- * E-mail: (RM); (KR)
| |
Collapse
|
13
|
Bouché M, Fournel S, Kichler A, Selvam T, Gallani J, Bellemin‐Laponnaz S. Straightforward Synthesis of L‐PEI‐Coated Gold Nanoparticles and Their Biological Evaluation. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800489] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mathilde Bouché
- Institut de Physique et Chimie des Matériaux de Strasbourg CNRS ‐ Université de Strasbourg 23 rue du Loess 67000 Strasbourg France
| | - Sylvie Fournel
- Faculté de Pharmacie Université de Strasbourg‐CNRS UMR 7199 74 Route du Rhin, BP 60024 67401 Illkirch Cedex France
| | - Antoine Kichler
- Faculté de Pharmacie Université de Strasbourg‐CNRS UMR 7199 74 Route du Rhin, BP 60024 67401 Illkirch Cedex France
| | - Tamilselvi Selvam
- Institut de Physique et Chimie des Matériaux de Strasbourg CNRS ‐ Université de Strasbourg 23 rue du Loess 67000 Strasbourg France
| | - Jean‐Louis Gallani
- Institut de Physique et Chimie des Matériaux de Strasbourg CNRS ‐ Université de Strasbourg 23 rue du Loess 67000 Strasbourg France
| | - Stéphane Bellemin‐Laponnaz
- Institut de Physique et Chimie des Matériaux de Strasbourg CNRS ‐ Université de Strasbourg 23 rue du Loess 67000 Strasbourg France
| |
Collapse
|
14
|
Devulapally R, Lee T, Barghava-Shah A, Sekar TV, Foygel K, Bachawal SV, Willmann JK, Paulmurugan R. Ultrasound-guided delivery of thymidine kinase-nitroreductase dual therapeutic genes by PEGylated-PLGA/PIE nanoparticles for enhanced triple negative breast cancer therapy. Nanomedicine (Lond) 2018; 13:1051-1066. [PMID: 29790803 PMCID: PMC6219432 DOI: 10.2217/nnm-2017-0328] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/06/2018] [Indexed: 11/21/2022] Open
Abstract
AIM Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype. Since no targeted therapy is available, gene-directed enzyme prodrug therapy (GDEPT) could be an attractive strategy for treating TNBC. MATERIALS & METHODS Polyethylene glycol (PEG)ylated-poly(lactic-co-glycolic acid)/polyethyleneimine nanoparticles (PLGA/PEI NPs) were synthesized and complexed with TK-NTR fusion gene. Ultrasound (US) and microbubble (MB) mediated sonoporation was used for efficient delivery of the TK-NTR-DNA-NP complex to TNBC tumor in vivo for cancer therapy. Therapeutic effect was evaluated by treating TNBC cells in vitro and tumor xenograft in vivo by using prodrugs ganciclovir (GCV) and CB1954. RESULTS TNBC cells treated with GCV/CB1954 prodrugs after transfection of TK-NTR-DNA by PEGylated-PLGA/PEI NP resulted in high apoptotic-index. US-MB image-guided delivery of TK-NTR-DNA-NP complex displayed significant expression level of TK-NTR protein and showed tumor reduction when treated with GCV/CB1954 prodrugs in TNBC xenograft in vivo. CONCLUSION US-MB image-guided delivery of TK-NTR gene by PEGylated-PLGA/PEI NPs could be a potential prodrug therapy for TNBC in the clinic.
Collapse
Affiliation(s)
| | - Taehwa Lee
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | | | - Thillai V Sekar
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Kira Foygel
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | | | | | | |
Collapse
|
15
|
Ortega-Muñoz M, Blanco V, Hernandez-Mateo F, Lopez-Jaramillo FJ, Santoyo-Gonzalez F. Catalytic Materials Based on Surface Coating with Poly(ethyleneimine)-Stabilized Gold Nanoparticles. ChemCatChem 2017. [DOI: 10.1002/cctc.201700776] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mariano Ortega-Muñoz
- Department of Organic Chemistry; Biotechnology Institute; Faculty of Sciences; University of Granada; 18071 Granada Spain
| | - Victor Blanco
- Department of Organic Chemistry; Biotechnology Institute; Faculty of Sciences; University of Granada; 18071 Granada Spain
| | - Fernando Hernandez-Mateo
- Department of Organic Chemistry; Biotechnology Institute; Faculty of Sciences; University of Granada; 18071 Granada Spain
| | - F. Javier Lopez-Jaramillo
- Department of Organic Chemistry; Biotechnology Institute; Faculty of Sciences; University of Granada; 18071 Granada Spain
| | - Francisco Santoyo-Gonzalez
- Department of Organic Chemistry; Biotechnology Institute; Faculty of Sciences; University of Granada; 18071 Granada Spain
| |
Collapse
|
16
|
Liu J, Zhao D, Li L, Weng M, Zhang C, Zhang S, Zhu J, Feng Y, Shih K, Huang W. Mini-Sized Carbon Nitride Nanosheets with Double Excitation- and pH-Dependent Fluorescence Behaviors for Two-Photon Cell Imaging. Chem Asian J 2017; 12:835-840. [PMID: 28239980 DOI: 10.1002/asia.201700201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Indexed: 11/08/2022]
Abstract
Synthesis of mini-sized carbon nitride nanosheets (CNNSs) by traditional methods remains a challenge. Herein, size-tunable and uniform mini-sized CNNSs are synthesized by hydrothermal carbonization of a single polyethyleneimine (PEI) precursor. The as-obtained mini-sized CNNSs possess uniform size, good hydrophilicity and abundant nitrogen active sites, which not only exhibit double excitation- and pH-dependent fluorescence behaviors, but also two-photon excitation fluorescence. áThe resulting CNNSs display low toxicity and can be efficiently delivered into live cells for two-photon fluorescence imaging, offering great potential as fluorescence probes in biochemical applications.
Collapse
Affiliation(s)
- Jinhua Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, NanjingTech, 30 South Puzhu Road, Nanjing, 211816, China
| | - Duoduo Zhao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, NanjingTech, 30 South Puzhu Road, Nanjing, 211816, China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, NanjingTech, 30 South Puzhu Road, Nanjing, 211816, China
| | - Minrui Weng
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, NanjingTech, 30 South Puzhu Road, Nanjing, 211816, China
| | - Chengwu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, NanjingTech, 30 South Puzhu Road, Nanjing, 211816, China
| | - Shiyu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, NanjingTech, 30 South Puzhu Road, Nanjing, 211816, China
| | - Jixin Zhu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, NanjingTech, 30 South Puzhu Road, Nanjing, 211816, China
| | - Yong Feng
- Department of Civil Engineering, University of Hong Kong, Porkfulam Road, Hong Kong, China
| | - Kaimin Shih
- Department of Civil Engineering, University of Hong Kong, Porkfulam Road, Hong Kong, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, NanjingTech, 30 South Puzhu Road, Nanjing, 211816, China
| |
Collapse
|