1
|
Nipate AB, Rao MR. Pd-Catalysed Direct Arylation of Distyrylbenzene: Strong Dual-state Fluorescence and Electrochromism. Chemistry 2024; 30:e202400015. [PMID: 38226834 DOI: 10.1002/chem.202400015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/17/2024]
Abstract
Distyrylbenzenes (DSBs) are well-known for their strong multicolour fluorescence. Fluorescence tuning of DSB via further functionalization/arylation, on the other hand, is uncommon. This paper reports a Pd-catalysed direct arylation approach for introducing different aryl groups onto fluorobenzene-containing DSB moiety (7) in high yields (67-72 %). The versatile methodology allows the substitution of neutral [tolyl (1)], electron-deficient [p-formyl benzene (2), p-acetyl benzene (3), p-nitrobenzene (4)] and electron-rich [carbazole (5), triphenylamine (6)] aryl groups. The electron-deficient aryls render mono-substitution, while the electron-rich counterparts promote di-substitution. The compounds (1-6) show blue, green, and yellow fluorescence in both the solution and solid states; the fluorescence quantum yields reach >98 % and the peak maxima span from 425 to 560 nm. The mono-carbazole DSB (5) exhibit white light emission (WLM) in polar solvents (acetone, DMF, CH3CN, DMSO and NMP) with very high fluorescence quantum yields (φf) of 60-80 %. For WLM, such high efficiency (φf) is somewhat uncommon. Moreover, visible-to-NIR reversible electrochromism is demonstrated by the TPA-integrated DSB (6). The colour of 6 changes from pristine light yellow to orange, and the absorption maxima shifts from 372 to 1500 nm when a positive potential of 1.0 V vs Ag/Ag+ is applied. Moreover, the system shows high colouration efficiency in the NIR region with fast switching speeds for colouration and decolouration as fast as 0.98 s and 1.05 s.
Collapse
Affiliation(s)
- Atul B Nipate
- Department of Chemistry, IIT Dharwad, Dharwad, 580011, Karnataka, India
| | - M Rajeswara Rao
- Department of Chemistry, IIT Dharwad, Dharwad, 580011, Karnataka, India
| |
Collapse
|
2
|
Wu MX, Hong QY, Li M, Jiang WL, Huang B, Lu S, Wang H, Yang HB, Zhao XL, Shi X. Self-assembly of conformation-adaptive dihydrophenazine-based coordination cages. Chem Commun (Camb) 2024; 60:1184-1187. [PMID: 38193861 DOI: 10.1039/d3cc04864k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
In this study, we designed and synthesized three conformation-adaptive Pd2L4- and Pd3L6-type coordination cages based on three dihydrophenazine-based ligands with different lengths. Interestingly, the shorter ligands L1 and L2 self-assembled into Pd2L4-type coordination cages while the longer ligand L3 formed Pd3L6-type one, mainly driven by the anion template effect. All coordination cages were confirmed through single-crystal X-ray diffraction, and their structural conformations underwent great changes compared with those of their corresponding ligands. Moreover, the conformational changes also significantly affected their photophysical and electrochemical properties which were distinct from their parent ligands.
Collapse
Affiliation(s)
- Meng-Xiang Wu
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, 3663 N, Zhongshan Road, Shanghai 200062, P. R. China.
| | - Qiong-Yan Hong
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, 3663 N, Zhongshan Road, Shanghai 200062, P. R. China.
| | - Minghui Li
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, 3663 N, Zhongshan Road, Shanghai 200062, P. R. China.
| | - Wei-Ling Jiang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, 3663 N, Zhongshan Road, Shanghai 200062, P. R. China.
| | - Bin Huang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, 3663 N, Zhongshan Road, Shanghai 200062, P. R. China.
| | - Shuai Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Hai-Bo Yang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, 3663 N, Zhongshan Road, Shanghai 200062, P. R. China.
| | - Xiao-Li Zhao
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, 3663 N, Zhongshan Road, Shanghai 200062, P. R. China.
| | - Xueliang Shi
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, 3663 N, Zhongshan Road, Shanghai 200062, P. R. China.
| |
Collapse
|
3
|
Munteanu T, Mazan V, Elhabiri M, Benbouziyane C, Canard G, Jacquemin D, Siri O, Pascal S. A Strategy to Design Substituted Tetraamino-Phenazine Dyes and Access to an NIR-Absorbing Benzoquinonediimine-Fused Quinoxaline. Org Lett 2023. [PMID: 37216490 DOI: 10.1021/acs.orglett.3c01251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The straightforward access to N- or C-substituted dinitro-tetraamino-phenazines (P1-P5) is enabled in oxidative conditions via formation of two intermolecular C-N bonds from accessible 5-nitrobenzene-1,2,4-triamine precursors. The photophysical studies revealed green absorbing and orange-red emitting dyes, with enhanced fluorescence in the solid state. Further reduction of the nitro functions led to the isolation of a benzoquinonediimine-fused quinoxaline (P6), which undergoes diprotonation to form a dicationic coupled trimethine dye absorbing beyond 800 nm.
Collapse
Affiliation(s)
- Tatiana Munteanu
- Aix Marseille Univ, CNRS, CINaM, UMR 7325, 13009 Marseille, France
| | - Valérie Mazan
- Université de Strasbourg, Université de Haute-Alsace, CNRS, LIMA, UMR 7042, Equipe Chimie Bioorganique et Médicinale, ECPM, 67000 Strasbourg, France
| | - Mourad Elhabiri
- Université de Strasbourg, Université de Haute-Alsace, CNRS, LIMA, UMR 7042, Equipe Chimie Bioorganique et Médicinale, ECPM, 67000 Strasbourg, France
| | | | - Gabriel Canard
- Aix Marseille Univ, CNRS, CINaM, UMR 7325, 13009 Marseille, France
| | - Denis Jacquemin
- Université de Nantes, CEISAM, UMR 6230, CNRS, 44322 Nantes, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| | - Olivier Siri
- Aix Marseille Univ, CNRS, CINaM, UMR 7325, 13009 Marseille, France
| | - Simon Pascal
- Aix Marseille Univ, CNRS, CINaM, UMR 7325, 13009 Marseille, France
- Université de Nantes, CEISAM, UMR 6230, CNRS, 44322 Nantes, France
| |
Collapse
|
4
|
Dosso J, Prato M. N,N-Diphenyl Dihydrophenazines: Using π-Extension to Access Dicationic Multifunctional Materials. Chemistry 2023; 29:e202203637. [PMID: 36519970 DOI: 10.1002/chem.202203637] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Dihydrophenazines are receiving increasing attention due to applications in numerous fields of chemistry, from light emission to organo-photocatalysis. Despite this growing interest and numerous works involving the preparation of radical cations based on this scaffold, the isolation and study of the aromatic dications obtained by 2 electron oxidation of dihydrophenazines is still mostly unexplored. From this point of view, along with the substitution at the N atoms generally used to tune dihydrophenazine properties, the π-extension of the phenazine core could play a crucial role in making dicationic states accessible. This could result in an extension of the knowledge on these elusive dications and in potentially highly interesting applications ranging from material science to molecular actuators.
Collapse
Affiliation(s)
- Jacopo Dosso
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Centre of Excellence for Nanostructured Materials, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Centre of Excellence for Nanostructured Materials, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy.,Centre for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia San Sebastián, Spain.,Basque Fdn Sci, Ikerbasque, 48013, Bilbao, Spain
| |
Collapse
|
5
|
Steffenfauseweh H, Rottschäfer D, Vishnevskiy YV, Neumann B, Stammler HG, Szczepanik DW, Ghadwal RS. Isolation of an Annulated 1,4-Distibabenzene Diradicaloid. Angew Chem Int Ed Engl 2023; 62:e202216003. [PMID: 36598396 DOI: 10.1002/anie.202216003] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
The first 1,4-distibabenzene-1,4-diide compound [(ADC)Sb]2 (5) based on an anionic dicarbene (ADC) (ADC=PhC{N(Dipp)C}2 , Dipp=2,6-iPr2 C6 H3 ) is reported as a bordeaux-red solid. Compound 5, featuring a central six-membered C4 Sb2 ring with formally SbI atoms may be regarded as a base-stabilized cyclic bis-stibinidene in which each of the Sb atoms bears two lone-pairs of electrons. 5 undergoes 2 e-oxidation with Ph3 C[B(C6 F5 )4 ] to afford [(ADC)Sb]2 [B(C6 F5 )4 ]2 (6) as a brick-red solid. Each of the Sb atoms of 6 has an unpaired electron and a lone-pair. The broken-symmetry open-shell singlet diradical solution for (6)2+ is calculated to be 2.13 kcal mol-1 more stable than the closed-shell singlet. The diradical character of (6)2+ according to SS-CASSCF (state-specific complete active space self-consistent field) and UHF (unrestricted Hartree-Fock) methods amounts to 36 % and 39 %, respectively. Treatments of 6 with (PhE)2 yield [(ADC)Sb(EPh)]2 [B(C6 F5 )4 ]2 (7-E) (E=S or Se). Reaction of 5 with (cod)Mo(CO)4 affords [(ADC)Sb]2 Mo(CO)4 (8).
Collapse
Affiliation(s)
- Henric Steffenfauseweh
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Dennis Rottschäfer
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany.,Current address: Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str. 4, Marburg, Germany
| | - Yury V Vishnevskiy
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Hans-Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Dariusz W Szczepanik
- Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Rajendra S Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| |
Collapse
|
6
|
Dosso J, Bartolomei B, Demitri N, Cossío FP, Prato M. Phenanthrene-Extended Phenazine Dication: An Electrochromic Conformational Switch Presenting Dual Reactivity. J Am Chem Soc 2022; 144:7295-7301. [PMID: 35412820 PMCID: PMC9052754 DOI: 10.1021/jacs.2c00493] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
The synthesis and
isolation of one of the few examples of a π-extended
diamagnetic phenazine dication have been achieved by oxidizing a phenanthrene-based
dihydrophenazine precursor. The resulting dication was isolated and
fully characterized, highlighting an aromatic distorted structure,
generated by the conformational change upon the oxidation of the dihydrophenazine
precursor, which is also correlated with a marked electrochromic change
in the UV–vis spectrum. The aromaticity of the dication has
also been investigated theoretically, proving that the species is
aromatic based on all major criteria (structural, magnetic, and energetic).
Moreover, the material presents an intriguing dual reactivity, resulting
in ring contraction to a π-extended triarylimidazolinium and
reduction to the dihydrophenazine precursor, depending on the nature
of the nucleophile involved. This result helps shed light on the yet
largely unexplored reactivity and properties of extended dicationic
polycyclic aromatic hydrocarbons (PAHs). In particular, the fact that
the molecule can undergo a reversible change in conformation upon
oxidation and reduction opens potential applications for this class
of derivatives as molecular switches and actuators.
Collapse
Affiliation(s)
- Jacopo Dosso
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Centre of Excellence for Nanostructured Materials, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Beatrice Bartolomei
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Centre of Excellence for Nanostructured Materials, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Nicola Demitri
- Elettra─Sincrotrone, Trieste S.S., 14 Km 163.5, Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Fernando P Cossío
- Departamento de Química Orgánica I, Instituto de Innovaciónen Química Avanzada (ORFEO-CINQA), University of the Basque Country (UPV/EHU), Paseo Manuel Lardizabal 3, 20018 Donostia/San Sebastián, Spain.,Donostia International Physics Center (DIPC), Paseo Manuel Lardizabal 4, 20018 Donostia/San Sebastián, Spain
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Centre of Excellence for Nanostructured Materials, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127 Trieste, Italy.,Centre for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia San Sebastián, Spain.,Basque Fdn Sci, Ikerbasque, 48013 Bilbao, Spain
| |
Collapse
|
7
|
Jiang WL, Huang B, Wu MX, Zhu YK, Zhao XL, Shi X, Yang HB. Post-Synthetic Modification of Metal-Organic Frameworks Bearing Phenazine Radical Cations for aza-Diels-Alder Reactions. Chem Asian J 2021; 16:3985-3992. [PMID: 34652071 DOI: 10.1002/asia.202100883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/22/2021] [Indexed: 11/07/2022]
Abstract
Metal-organic frameworks (MOFs) consisting of organic radicals are of great interest because they have exhibited unique and intriguing optical, electronic, magnetic, and chemo-catalytic properties, and thus have demonstrated great potential applications in optical, electronic, and magnetic devices, and as catalysts. However, the preparation of MOFs bearing stable organic radicals is very challenging because most organic radicals are highly reactive and difficult to incorporate into the framework of MOFs. Herein we reported a post-synthetic modification strategy to prepare a novel MOF containing phenazine radical cations, which was used as heterogeneous catalyst for aza-Diels-Alder reaction. The zinc-based metal-organic framework Zn2 (PHZ)2 (dabco) (N) was successfully synthesized from 5,10-di(4-benzoic acid)-5,10-dihydrophenazine (PHZ), triethylene diamine (dabco) with Zn(NO3 )2 ⋅ 6H2 O by solvothermal method. The as-synthesized MOF N was partially oxidized by AgSbF6 to form MOF R containing ∼10% phenazine radical cation species. The resultant MOF R was found to keep the original crystal type of N and very persistent under ambient conditions. Consequently, MOF R was successfully employed in radical cation-catalyzed aza-Diels-Alder reactions with various imine substrates at room temperature with high reaction conversion. Moreover, heterogeneous catalyst MOF R was reusable up to five times without much loss of catalytic activity, demonstrating its excellent stability and recyclability. Therefore, the post-synthetic modification developed in this work is expected to become a versatile strategy to prepare radical-based MOFs for the application of heterogeneous catalysts in organic synthesis.
Collapse
Affiliation(s)
- Wei-Ling Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Bin Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Meng-Xiang Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Ye-Kai Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Xiao-Li Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Xueliang Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| |
Collapse
|
8
|
Tanaka Y, Tajima K, Fukui N, Shinokubo H. Dinaphtho[1,8‐
bc
:1′,8′‐
fg
][1,5]dithiocine Bisimide. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuki Tanaka
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Furo-chi, Chikusa-ku 464-8603 Nagoya Japan
| | - Keita Tajima
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Furo-chi, Chikusa-ku 464-8603 Nagoya Japan
| | - Norihito Fukui
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Furo-chi, Chikusa-ku 464-8603 Nagoya Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Furo-chi, Chikusa-ku 464-8603 Nagoya Japan
| |
Collapse
|
9
|
Wagner C, Kreis F, Popp D, Hübner O, Kaifer E, Himmel H. 1,2,4,5-Tetrakis(tetramethylguanidino)-3,6-diethynyl-benzenes: Fluorescent Probes, Redox-Active Ligands and Strong Organic Electron Donors. Chemistry 2020; 26:10336-10347. [PMID: 32368816 PMCID: PMC7497081 DOI: 10.1002/chem.202001557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/30/2020] [Indexed: 11/25/2022]
Abstract
In this work, the change of reactivity induced by the introduction of two para-ethynyl substituents (CCSi(iPr)3 or CCH) to the organic electron-donor 1,2,4,5-tetrakis(tetramethylguanidino)-benzene is evaluated. The redox-properties and redox-state dependent fluorescence are evaluated, and dinuclear CuI and CuII complexes synthesized. The Lewis-acidic B(C6 F5 )3 substitutes the proton of the ethynyl -CCH groups to give new anionic -CCB(C6 F5 )3 - substituents, leading eventually to a novel dianionic strong electron donor in its diprotonated form. Its two-electron oxidation with dioxygen in the presence of a copper catalyst yields the first redox-active guanidine that is neutral (instead of cationic) in its oxidized form.
Collapse
Affiliation(s)
- Conrad Wagner
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Franka Kreis
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Dennis Popp
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Olaf Hübner
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Elisabeth Kaifer
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Hans‐Jörg Himmel
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
10
|
Lohmeyer L, Kaifer E, Wadepohl H, Himmel H. 1,2,5,6-Tetrakis(guanidino)-Naphthalenes: Electron Donors, Fluorescent Probes and Redox-Active Ligands. Chemistry 2020; 26:5834-5845. [PMID: 32017282 PMCID: PMC7318682 DOI: 10.1002/chem.201905471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/23/2020] [Indexed: 01/07/2023]
Abstract
New redox-active 1,2,5,6-tetrakis(guanidino)-naphthalene compounds, isolable and storable in the neutral and deep-green dicationic redox states and oxidisable further in two one-electron steps to the tetracations, are reported. Protonation switches on blue fluorescence, with the fluorescence intensity (quantum yield) increasing with the degree of protonation. Reactions with N-halogenosuccinimides or N-halogenophthalimides led to a series of new redox-active halogeno- and succinimido-/phthalimido-substituted derivatives. These highly selective reactions are proposed to proceed via the tri- or tetracationic state as the intermediate. The derivatives are oxidised reversibly at slightly higher potentials than that of the unsubstituted compounds to dications and further to tri- and tetracations. The integration of redox-active ligands in the transition-metal complexes shifts the redox potentials to higher values and also allows reversible oxidation in two potentially separated one-electron steps.
Collapse
Affiliation(s)
- Lukas Lohmeyer
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Elisabeth Kaifer
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Hubert Wadepohl
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Hans‐Jörg Himmel
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
11
|
Werr M, Kaifer E, Wadepohl H, Himmel HJ. Tuneable Redox Chemistry and Electrochromism of Persistent Symmetric and Asymmetric Azine Radical Cations. Chemistry 2019; 25:12981-12990. [PMID: 31306523 DOI: 10.1002/chem.201902216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/21/2019] [Indexed: 12/16/2022]
Abstract
Molecular organic radicals have been intensively studied in the last decades, due to their interesting optical, magnetic and redox properties. Here we report the synthesis and characterisation of persistent organic radicals from one-electron oxidation of redox-active azines (RAAs), composed of two guanidinyl or related groups. By connecting two different groups together, asymmetric compounds result. In this way a series of compounds with varying redox potential is obtained that could be oxidised reversibly to the mono- and the dicationic charge states. The accessible redox states were fully determined by chemical redox reactions. The standard Gibbs free energy change for disproportionation of the radical monocation into the dication and the neutral molecule in solution, estimated from cyclovoltammetric measurements, varies between 43 and 71 kJ mol-1 . While the neutral RAAs absorb predominately UV light, the radical monocations display strong absorptions covering almost the entire visible region and extending for some compounds into the NIR region. A detailed analysis of this highly reversible electrochromism is presented, and the fast switching characteristics are demonstrated in an electrochromic test device.
Collapse
Affiliation(s)
- Marco Werr
- Anorganisch Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Elisabeth Kaifer
- Anorganisch Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Hubert Wadepohl
- Anorganisch Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Hans-Jörg Himmel
- Anorganisch Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
12
|
Hiroto S. Synthesis of π‐Functional Molecules through Oxidation of Aromatic Amines. Chem Asian J 2019; 14:2514-2523. [DOI: 10.1002/asia.201900213] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/20/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Satoru Hiroto
- Graduate School of Human and Environmental StudiesKyoto University Yoshidanihonmatsu-cho, Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
13
|
Takiguchi A, Wakita M, Hiroto S, Shinokubo H. Synthesis of Dihydropyrazine-fused Porphyrin Dimers. CHEM LETT 2019. [DOI: 10.1246/cl.190002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Asahi Takiguchi
- Graduate School of Engineering, Nagoya University, Aichi 466-8502, Japan
| | - Mana Wakita
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Satoru Hiroto
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Hiroshi Shinokubo
- Graduate School of Engineering, Nagoya University, Aichi 466-8502, Japan
| |
Collapse
|
14
|
Synthesis and photophysical properties of dinaphtho[2,3-b:2′,3′-i]dihydrophenazine derivatives. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.03.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Sun TG, Li ZJ, Shao JY, Zhong YW. Electrochromism in Electropolymerized Films of Pyrene-Triphenylamine Derivatives. Polymers (Basel) 2019; 11:E73. [PMID: 30960057 PMCID: PMC6402011 DOI: 10.3390/polym11010073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/01/2019] [Accepted: 01/02/2019] [Indexed: 12/19/2022] Open
Abstract
Two star-shaped multi-triphenylamine derivatives 1 and 2 were prepared, where 2 has an additional phenyl unit between a pyrene core and surrounding triphenylamine units. The oxidative electropolymerization of 1 and 2 occurred smoothly to give thin films of polymers P1 and P2. The electrochemistry and spectroelectrochemistry of P1 and P2 were examined, showing two-step absorption spectral changes in the near-infrared region. The electrochromic properties, including contrast ratio, response time, and cyclic stability of P1 and P2 were investigated and compared. Thin film of P2 displays slightly better electrochromic performance than P1, with a contrast ratio of 45% at 1475 nm being achieved.
Collapse
Affiliation(s)
- Tian-Ge Sun
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhi-Juan Li
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jiang-Yang Shao
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yu-Wu Zhong
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Hiroto S, Shinokubo H. Synthesis of Heteroatom-Containing Curved π-Conjugated Molecules. J SYN ORG CHEM JPN 2018. [DOI: 10.5059/yukigoseikyokaishi.76.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Yen HJ, Liou GS. Recent advances in triphenylamine-based electrochromic derivatives and polymers. Polym Chem 2018. [DOI: 10.1039/c8py00367j] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Triphenylamine-containing electrochromic materials with great potential applications in low energy-consumption displays, light-adapting mirrors in vehicles, and smart windows have experienced an exponential growth of research interests. In this review, the newly developed triphenylamine-based derivatives and polymers are reviewed and elaborated.
Collapse
Affiliation(s)
- Hung-Ju Yen
- Institute of Chemistry
- Academia Sinica
- Nankang
- Taiwan
| | - Guey-Sheng Liou
- Institute of Polymer Science and Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| |
Collapse
|