1
|
Wang J, Taki M, Ohba Y, Arita M, Yamaguchi S. Fluorescence Lifetime Imaging of Lipid Heterogeneity in the Inner Mitochondrial Membrane with a Super-photostable Environment-Sensitive Probe. Angew Chem Int Ed Engl 2024; 63:e202404328. [PMID: 38804831 DOI: 10.1002/anie.202404328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Indexed: 05/29/2024]
Abstract
The inner mitochondrial membrane (IMM) undergoes dynamic morphological changes, which are crucial for the maintenance of mitochondrial functions as well as cell survival. As the dynamics of the membrane are governed by its lipid components, a fluorescent probe that can sense spatiotemporal alterations in the lipid properties of the IMM over long periods of time is required to understand mitochondrial physiological functions in detail. Herein, we report a red-emissive IMM-labeling reagent with excellent photostability and sensitivity to its environment, which enables the visualization of the IMM ultrastructure using super-resolution microscopy as well as of the lipid heterogeneity based on the fluorescence lifetime at the single mitochondrion level. Combining the probe and fluorescence lifetime imaging microscopy (FLIM) showed that peroxidation of unsaturated lipids in the IMM by reactive oxygen species caused an increase in the membrane order, which took place prior to mitochondrial swelling.
Collapse
Affiliation(s)
- Junwei Wang
- Institute of Transformative Bio-Molecules, Nagoya University, Furo, Chikusa, Nagoya 464-8601, Japan
| | - Masayasu Taki
- Institute of Transformative Bio-Molecules, Nagoya University, Furo, Chikusa, Nagoya 464-8601, Japan
| | - Yohsuke Ohba
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo 105-8512, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Makoto Arita
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo 105-8512, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama-City University, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shigehiro Yamaguchi
- Institute of Transformative Bio-Molecules, Nagoya University, Furo, Chikusa, Nagoya 464-8601, Japan
- Department of Chemistry, Graduate School of Science, Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
2
|
Inai N, Yamaguchi S, Yanai T. Theoretical Insight into the Effect of Phosphorus Oxygenation on Nonradiative Decays: Comparative Analysis of P-Bridged Stilbene Analogs. ACS PHYSICAL CHEMISTRY AU 2023; 3:540-552. [PMID: 38034034 PMCID: PMC10683489 DOI: 10.1021/acsphyschemau.3c00038] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 12/02/2023]
Abstract
Incorporation of the phosphorus element into a π-conjugated skeleton offers valuable prospects for adjusting the electronic structure of the resulting functional π-electron systems. Trivalent phosphorus has the potential to decrease the LUMO level through σ*-π* interaction, which is further enhanced by its oxygenation to the pentavalent P center. This study shows that utilizing our computational analysis to examine excited-state dynamics based on radiative/nonradiative rate constants and fluorescence quantum yield (ΦF) is effective for analyzing the photophysical properties of P-containing organic dyes. We theoretically investigate how the trivalent phosphanyl group and pentavalent phosphine oxide moieties affect radiative and nonradiative decay processes. We evaluate four variations of P-bridged stilbene analogs. Our analysis reveals that the primary decay pathway for photoexcited bis-phosphanyl-bridged stilbene is the intersystem crossing (ISC) to the triplet state and nonradiative. The oxidation of the phosphine moiety, however, suppresses the ISC due to the relative destabilization of the triplet states. The calculated rate constants match an increase in experimental ΦF from 0.07 to 0.98, as simulated from 0.23 to 0.94. The reduced HOMO-LUMO gap supports a red shift in the fluorescence spectra relative to the phosphine analog. The thiophene-fused variant with the nonoxidized trivalent P center exhibits intense emission with a high ΦF, 0.95. Our prediction indicates that the ISC transfer is obstructed owing to the relatively destabilized triplet state induced by the thiophene substitution. Conversely, the thiophene-fused analog with the phosphine oxide moieties triggers a high-rate internal conversion mediated by conical intersection, leading to a decreased ΦF.
Collapse
Affiliation(s)
- Naoto Inai
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furo-cho,
Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Shigehiro Yamaguchi
- Department
of Chemistry, Graduate School of Science and Integrated Research Consortium
on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Institute
of Transformative Bio-Molecules, (WPI-ITbM), Nagoya University, Furo-cho,
Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Takeshi Yanai
- Department
of Chemistry, Graduate School of Science and Integrated Research Consortium
on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Institute
of Transformative Bio-Molecules, (WPI-ITbM), Nagoya University, Furo-cho,
Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
3
|
D'Imperio N, Pelliccioli V, Grecchi S, Bossi A, Vasile F, Cauteruccio S, Arkhypchuk AI, Kumar Gupta A, Orthaber A, Ott S, Licandro E. Highly Conjugated Bis(benzo[
b
]phosphole)‐
P
‐oxides: Synthesis and Electrochemical, Optical, and Computational Studies. European J Org Chem 2022. [DOI: 10.1002/ejoc.202201209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Nicolas D'Imperio
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
- Department of Chemistry, Ångström Laboratory Uppsala University Box 523 751 20 Uppsala Sweden
| | - Valentina Pelliccioli
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
| | - Sara Grecchi
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
| | - Alberto Bossi
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” Consiglio Nazionale delle Ricerche (CNR-SCITEC) Via Fantoli 16/15 20138 Milano Italy
- SmartMatLab Center via Golgi 19 I-20133 Milano Italy
| | - Francesca Vasile
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
| | - Silvia Cauteruccio
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
| | - Anna I. Arkhypchuk
- Department of Chemistry, Ångström Laboratory Uppsala University Box 523 751 20 Uppsala Sweden
| | - Arvind Kumar Gupta
- Department of Chemistry, Ångström Laboratory Uppsala University Box 523 751 20 Uppsala Sweden
| | - Andreas Orthaber
- Department of Chemistry, Ångström Laboratory Uppsala University Box 523 751 20 Uppsala Sweden
| | - Sascha Ott
- Department of Chemistry, Ångström Laboratory Uppsala University Box 523 751 20 Uppsala Sweden
| | - Emanuela Licandro
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
- SmartMatLab Center via Golgi 19 I-20133 Milano Italy
| |
Collapse
|
4
|
Yang Y, Kim OS, Kim B, Liu G, Song J, Liu D, Ma G, Kim Y, Kim O. A Novel Fluorescent Dye Extracted from Buddleja officinalis for Labeling Mitochondria after Fixation. SCANNING 2022; 2022:7486005. [PMID: 35711296 PMCID: PMC9187463 DOI: 10.1155/2022/7486005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/25/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Mitochondria are versatile organelles and function by communicating with cellular ecosystems. The fluorescent colocalization analysis after fixation is a highly intuitive method to understand the role of mitochondria. However, there are few fluorescent dyes available for mitochondrial staining after fixation. In this study, a novel fluorescent dye (BO-dye), extracted from Buddleja officinalis, was applied for mitochondrial staining in fixed immortalized human oral keratinocytes. The BO-dye (excitation: 414 nm, emission: 677 nm) is a small fluorescent molecular dye, which can cross the cytomembrane without permeabilization. We assume that the BO-dye could aggregate and bind to the mitochondria stably. BO-dye exhibited a mega-Stokes shift (>250 nm), which is an important feature that could reduce self-quenching and enhance the signal-to-noise ratio. Analysis of photophysical properties revealed that the BO-dye is temperature and pH insensitive, and it exhibits superior photostability. These results indicate that BO-dye can be considered an alternative fluorescent dye for labeling mitochondria after fixation.
Collapse
Affiliation(s)
- Ying Yang
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
- Dental Implant Center, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Ok-Su Kim
- Department of Periodontology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Byunggook Kim
- Department of Oral Medicine, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Guo Liu
- Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jianan Song
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Danyang Liu
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Guowu Ma
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Dalian Medical University, Dalian 116044, China
| | - Young Kim
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Okjoon Kim
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
5
|
Ikeda S, Yoshimura A, Shirahata T, Matano Y, Misaki Y. π-Conjugated Molecules Containing Tetrathiafulvalene and Benzo[ b]phosphole Oxide: Synthesis, Structure, and Electrochemical and Optical Properties. CHEM LETT 2021. [DOI: 10.1246/cl.210218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Shunki Ikeda
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Aya Yoshimura
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
- Research Unit for Power Generation and Storage Materials, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Takashi Shirahata
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
- Research Unit for Power Generation and Storage Materials, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
- Research Unit for Development of Organic Superconductors, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Yoshihiro Matano
- Department of Chemistry, Faculty of Science, Niigata University, Nishi-ku, Niigata 950-2181, Japan
| | - Yohji Misaki
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
- Research Unit for Power Generation and Storage Materials, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
- Research Unit for Development of Organic Superconductors, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
6
|
Yoshimura A, Misaki Y. Periphery Modification of Tetrathiafulvalenes: Recent Development and Applications. CHEM REC 2021; 21:3520-3531. [PMID: 34086402 DOI: 10.1002/tcr.202100107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/17/2022]
Abstract
Tetrathiafulvalene (TTF) and its analogs are fascinating molecules in materials science based on their excellent electron-donating abilities. This personal account describes recent advances in the synthesis of TTF analogs for functional materials via the palladium-catalyzed modification of peripheries of TTF analogs. We first consider three types of molecules: fluorophore-TTF hybrid molecules, multi-redox systems, and an organic ligand for metal-organic frameworks. These molecules were successfully synthesized via Stille coupling or palladium-catalyzed direct C-H arylation and their structural, electrochemical, and optical properties were clarified. Subsequently, phosphorus-substituted TTF analogs were successfully synthesized for future applications of redox-active phosphine ligands for metal catalysts. The development of these molecules can significantly affect the advancement of chemical science.
Collapse
Affiliation(s)
- Aya Yoshimura
- Department of Applied Chemistry, Graduate School of Science and Engineering/ Research Unit for Power Generation and Storage Materials, Ehime University, 3 Bunkyo-cho, Matsuyama, 790-8577, Japan
| | - Yohji Misaki
- Department of Applied Chemistry, Graduate School of Science and Engineering/ Research Unit for Power Generation and Storage Materials, Ehime University, 3 Bunkyo-cho, Matsuyama, 790-8577, Japan.,Research Unit for Development of Organic Superconductors, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
| |
Collapse
|
7
|
Kurimoto Y, Yamashita J, Mitsudo K, Sato E, Suga S. Electrosynthesis of Phosphacycles via Dehydrogenative C-P Bond Formation Using DABCO as a Mediator. Org Lett 2021; 23:3120-3124. [PMID: 33818115 DOI: 10.1021/acs.orglett.1c00807] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The first electrochemical synthesis of diarylphosphole oxides (DPOs) was achieved under mild conditions. The practical protocol employs commercially available and inexpensive DABCO as a hydrogen atom transfer (HAT) mediator, leading to various DPOs in moderate to good yields. This procedure can also be applied to the synthesis of six-membered phosphacycles, such as phenophosphazine derivatives. Mechanistic studies suggested that the reaction proceeds via an electro-generated phosphinyl radical.
Collapse
Affiliation(s)
- Yuji Kurimoto
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Jun Yamashita
- Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Koichi Mitsudo
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Eisuke Sato
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Seiji Suga
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
8
|
Xu S, Huang H, Yuan C, Liu F, Ding H, Xiao Q. Synthesis and photophysical properties of donor-substituted phenyl-phosphachromones as potential TADF materials. Org Chem Front 2021. [DOI: 10.1039/d1qo00121c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of novel arylamine-substituted phenyl-phosphachromones were constructed via post-functionalization.
Collapse
Affiliation(s)
- Shuangshuang Xu
- Institute of Organic Chemistry
- Jiangxi Science & Technology Normal University
- Key Laboratory of Organic Chemistry
- Nanchang 330013
- China
| | - Haiyang Huang
- Institute of Organic Chemistry
- Jiangxi Science & Technology Normal University
- Key Laboratory of Organic Chemistry
- Nanchang 330013
- China
| | - Chengxiong Yuan
- Institute of Organic Chemistry
- Jiangxi Science & Technology Normal University
- Key Laboratory of Organic Chemistry
- Nanchang 330013
- China
| | - Fen Liu
- Institute of Organic Chemistry
- Jiangxi Science & Technology Normal University
- Key Laboratory of Organic Chemistry
- Nanchang 330013
- China
| | - Haixin Ding
- Institute of Organic Chemistry
- Jiangxi Science & Technology Normal University
- Key Laboratory of Organic Chemistry
- Nanchang 330013
- China
| | - Qiang Xiao
- Institute of Organic Chemistry
- Jiangxi Science & Technology Normal University
- Key Laboratory of Organic Chemistry
- Nanchang 330013
- China
| |
Collapse
|
9
|
Hu W, Li EQ, Duan Z, Mathey F. Concise Synthesis of Phospholene and Its P-Stereogenic Derivatives. J Org Chem 2020; 85:14772-14778. [PMID: 32375482 DOI: 10.1021/acs.joc.0c00545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A simple method to build phospholene derivatives has been achieved in a one-pot reaction with readily available o-alkynylaryl bromides and alkylphosphine oxides. This method is also applicable to synthesize P-stereogenic phospholenes, and the resulting chiral phosphine was utilized as a ligand for coordination chemistry.
Collapse
Affiliation(s)
- Wei Hu
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Er-Qing Li
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zheng Duan
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - François Mathey
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
10
|
|
11
|
Nakatsuka S, Watanabe Y, Kamakura Y, Horike S, Tanaka D, Hatakeyama T. Solvent‐Vapor‐Induced Reversible Single‐Crystal‐to‐Single‐Crystal Transformation of a Triphosphaazatriangulene‐Based Metal–Organic Framework. Angew Chem Int Ed Engl 2019; 59:1435-1439. [DOI: 10.1002/anie.201912195] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Soichiro Nakatsuka
- Department of Chemistry School of Science and Technology Kwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
| | - Yusuke Watanabe
- Department of Chemistry School of Science and Technology Kwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
| | - Yoshinobu Kamakura
- Department of Chemistry School of Science and Technology Kwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
| | - Satoshi Horike
- Institute for Integrated Cell-Material Sciences Institute for Advanced Study Kyoto University Yoshida-Honmachi, Sakyo-ku Kyoto 606-8501 Japan
| | - Daisuke Tanaka
- Department of Chemistry School of Science and Technology Kwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
| | - Takuji Hatakeyama
- Department of Chemistry School of Science and Technology Kwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
| |
Collapse
|
12
|
Nakatsuka S, Watanabe Y, Kamakura Y, Horike S, Tanaka D, Hatakeyama T. Solvent‐Vapor‐Induced Reversible Single‐Crystal‐to‐Single‐Crystal Transformation of a Triphosphaazatriangulene‐Based Metal–Organic Framework. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Soichiro Nakatsuka
- Department of Chemistry School of Science and Technology Kwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
| | - Yusuke Watanabe
- Department of Chemistry School of Science and Technology Kwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
| | - Yoshinobu Kamakura
- Department of Chemistry School of Science and Technology Kwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
| | - Satoshi Horike
- Institute for Integrated Cell-Material Sciences Institute for Advanced Study Kyoto University Yoshida-Honmachi, Sakyo-ku Kyoto 606-8501 Japan
| | - Daisuke Tanaka
- Department of Chemistry School of Science and Technology Kwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
| | - Takuji Hatakeyama
- Department of Chemistry School of Science and Technology Kwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
| |
Collapse
|
13
|
Parke SM, Tanaka S, Yu H, Hupf E, Ferguson MJ, Zhou Y, Naka K, Rivard E. Highly Fluorescent Benzophosphole Oxide Block-Copolymer Micelles. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01661] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Sarah M. Parke
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Susumu Tanaka
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Haoyang Yu
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Emanuel Hupf
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Michael J. Ferguson
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Yuqiao Zhou
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
14
|
Nishida JI, Kawakami Y, Yamamoto S, Matsui Y, Ikeda H, Hirao Y, Kawase T. Synthesis and Photophysical Studies of Dibenzophosphole Oxides with D-A-D Triad Structures. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jun-ichi Nishida
- Department of Applied Chemistry; Graduate School of Engineering; University of Hyogo; 2167 Shosha, Himeji, Hyogo 671-2280 Japan
| | - Yoshihiro Kawakami
- Department of Applied Chemistry; Graduate School of Engineering; University of Hyogo; 2167 Shosha, Himeji, Hyogo 671-2280 Japan
| | - Shun Yamamoto
- Department of Applied Chemistry; Graduate School of Engineering; Osaka Prefecture University; 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 Japan
| | - Yasunori Matsui
- Department of Applied Chemistry; Graduate School of Engineering; Osaka Prefecture University; 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 Japan
- The Research Institute for Molecular Electronic Devices (RIMED); Graduate School of Engineering; Osaka Prefecture University, 11 Gakuen-cho, Naka-ku, Sakai, Osaka; 599-8531 Japan
| | - Hiroshi Ikeda
- Department of Applied Chemistry; Graduate School of Engineering; Osaka Prefecture University; 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 Japan
- The Research Institute for Molecular Electronic Devices (RIMED); Graduate School of Engineering; Osaka Prefecture University, 11 Gakuen-cho, Naka-ku, Sakai, Osaka; 599-8531 Japan
| | - Yasukazu Hirao
- Department of Chemistry; Graduate School of Science; Osaka University; 560-0043 Japan
| | - Takeshi Kawase
- Department of Applied Chemistry; Graduate School of Engineering; University of Hyogo; 2167 Shosha, Himeji, Hyogo 671-2280 Japan
| |
Collapse
|
15
|
Wu D, Zheng J, Xu C, Kang D, Hong W, Duan Z, Mathey F. Phosphindole fused pyrrolo[3,2-b]pyrroles: a new single-molecule junction for charge transport. Dalton Trans 2019; 48:6347-6352. [PMID: 30994138 DOI: 10.1039/c9dt01299k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new family of phosphindole fused ladder-type heteroacenes with a pyrrolo[3,2-b]pyrrole core were synthesized and characterized, which show good luminescence efficiency, high thermostability and tunable conductance.
Collapse
Affiliation(s)
- Di Wu
- International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
16
|
Affiliation(s)
- Guanyu Tao
- College of Chemistry and Molecular Engineering, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Zheng Duan
- College of Chemistry and Molecular Engineering, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Francois Mathey
- College of Chemistry and Molecular Engineering, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P.R. China
| |
Collapse
|
17
|
Federmann P, Wagner HK, Antoni PW, Mörsdorf JM, Pérez Lustres JL, Wadepohl H, Motzkus M, Ballmann J. P-Protected Diphosphadibenzo[a,e]pentalenes and Their Mono- and Dicationic P-Bridged Ladder Stilbenes. Org Lett 2019; 21:2033-2038. [DOI: 10.1021/acs.orglett.9b00161] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Patrick Federmann
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, D-69120 Heidelberg, Germany
| | - Hannah K. Wagner
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, D-69120 Heidelberg, Germany
| | - Patrick W. Antoni
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, D-69120 Heidelberg, Germany
| | - Jean-Marc Mörsdorf
- Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| | - José Luis Pérez Lustres
- Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| | - Hubert Wadepohl
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, D-69120 Heidelberg, Germany
| | - Marcus Motzkus
- Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| | - Joachim Ballmann
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, D-69120 Heidelberg, Germany
| |
Collapse
|