1
|
Zhang X, Chang M, Ni T, Xu X, Zong L, Li T. Construction of quaternary alkyl motifs through palladium-catalyzed oxidative coupling of 1,3-dicarbonyl compounds with alkenes followed by C-C bond cleavage. Chem Commun (Camb) 2024; 60:10958-10961. [PMID: 39258723 DOI: 10.1039/d4cc03676j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
A palladium-catalyzed coupling reaction has been developed for the generation of tertiary alkylation products by reacting olefins with diversely functionalized 1,3-dicarbonyls. The reaction involves the tertiary C-H alkylation of 1,3-dicarbonyls with olefins to produce a tertiary alcohol, followed by C-C bond cleavage.
Collapse
Affiliation(s)
- Xu Zhang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Mengfan Chang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Tongtong Ni
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Xuefeng Xu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Luyi Zong
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
- Henan Tianguan Group Co., Ltd, China
| | - Ting Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| |
Collapse
|
2
|
Liu H, Shi L, Tan X, Kang B, Luo G, Jiang H, Qi C. Et 2 Zn-Mediated Gem-Dicarboxylation of Cyclopropanols with CO 2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307633. [PMID: 38126667 PMCID: PMC10916615 DOI: 10.1002/advs.202307633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Indexed: 12/23/2023]
Abstract
An unprecedented Et2 Zn-mediated gem-dicarboxylation of C─C/C─H single bond of cyclopropanols with CO2 is disclosed, which provides a straightforward and efficient methodology for the synthesis of a variety of structurally diverse and useful malonic acids in moderate to excellent yields. The protocol features mild reaction conditions, excellent functional group compatibility, broad substrate scope, and facile derivatization of the products. DFT calculations confirm that the transition-metal-free transformation proceeds through a novel ring-opening/α-functionalization/ring-closing/ring-opening/β-functionalization (ROFCOF) process, and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) plays dual important roles in the transformation.
Collapse
Affiliation(s)
- Hongjian Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Lei Shi
- Institutes of Physical Science and Information TechnologyAnhui UniversityHefei230601China
| | - Xiaobin Tan
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Bangxiong Kang
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Gen Luo
- Institutes of Physical Science and Information TechnologyAnhui UniversityHefei230601China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Chaorong Qi
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510640China
| |
Collapse
|
3
|
Samanta A, Pramanik S, Mondal S, Maity S. Zinc acetate-promoted blocking of the ATRA process with alkyl halides enabling photochemical alkylamination of olefins. Chem Commun (Camb) 2022; 58:8400-8403. [PMID: 35796040 DOI: 10.1039/d2cc02574d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organic photoredox-catalyzed alkylamination of olefins is performed with alkyl halides and nitrile solvent by blocking the traditional photoredox-ATRA process with Zn(OAc)2. A range of carbon-centered radicals (α-alkylcarbonyl, benzyl, cyanomethyl) are effectively participating in this strategy giving rise to versatile carboamination products with high synthetic value.
Collapse
Affiliation(s)
- Apurba Samanta
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, 826004, India.
| | - Shyamal Pramanik
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, 826004, India.
| | - Subhashis Mondal
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, 826004, India.
| | - Soumitra Maity
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, 826004, India.
| |
Collapse
|
4
|
Hernández‐Lladó P, Garrec K, Schmitt DC, Burton JW. Transition Metal‐Free, Visible Light‐Mediated Radical Cyclisation of Malonyl Radicals onto 5‐Ring Heteroaromatics. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pol Hernández‐Lladó
- Department of Chemistry Chemistry Research Laboratory University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Kilian Garrec
- Department of Chemistry Chemistry Research Laboratory University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Daniel C. Schmitt
- Medicine Design Pfizer Worldwide Research Development and Medical Groton Connecticut 06340 United States
| | - Jonathan W. Burton
- Department of Chemistry Chemistry Research Laboratory University of Oxford Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
5
|
Budnikov AS, Krylov IB, Lastovko AV, Paveliev SA, Romanenko AR, Nikishin GI, Terent'ev AO. Stable and reactive diacetyliminoxyl radical in oxidative C-O coupling with β-dicarbonyl compounds and their complexes. Org Biomol Chem 2021; 19:7581-7586. [PMID: 34524335 DOI: 10.1039/d1ob01269j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
As a rule, reactive free radicals used in organic synthesis are too labile to be isolated, whereas persistent radicals are inert and find limited synthetic application. In the present study, the unusually stable diacetyliminoxyl radical was presented as a "golden mean" between transient and stable unreactive radicals. It was successfully employed as a reagent for oxidative C-O coupling with β-dicarbonyl compounds. Using this model radical the catalytic activity of acids, bases and transition metal ions in free-radical coupling was revealed.
Collapse
Affiliation(s)
- Alexander S Budnikov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation.
| | - Igor B Krylov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation. .,D.I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya sq., Moscow 125047, Russian Federation
| | - Andrey V Lastovko
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation. .,M. V. Lomonosov Moscow State University, 1 Leninskie Gory, Moscow 119991, Russian Federation
| | - Stanislav A Paveliev
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation.
| | - Alexander R Romanenko
- D.I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya sq., Moscow 125047, Russian Federation
| | - Gennady I Nikishin
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation.
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation. .,D.I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya sq., Moscow 125047, Russian Federation
| |
Collapse
|
6
|
Singh D, Chowdhury SR, Pramanik S, Maity S. Molecular iodine enabled generation of iminyl radicals from oximes: A facile route to imidazo[1,2-a]pyridines and its regioselective C-3 sulfenylated products from simple pyridines. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Li M, Zheng L, Ma L, Chen Y. Transition Metal-Free Oxidative Cross-Coupling Reaction of Activated Olefins with N-Alkyl Amides. J Org Chem 2021; 86:3989-3998. [PMID: 33573381 DOI: 10.1021/acs.joc.0c02837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The K2S2O8-mediated transition metal-free oxidative cross-coupling reaction of activated olefins with N-alkyl amides was developed, and the reaction gave N-allylic amides in moderate to good yield. This reaction protocol was suitable for different kinds of activated olefins.
Collapse
Affiliation(s)
- Miaomiao Li
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Lei Zheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Li Ma
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Yunfeng Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| |
Collapse
|
8
|
Asahara H, Nishiwaki N, Kamidate R. Regiodivergent Ring Opening Reactions of 2-Arylated 3-Nitrocyclopropane-1,1-dicarboxylates Leading to Polyfunctionalized Dipoles. HETEROCYCLES 2021. [DOI: 10.3987/com-20-s(k)21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Roy Chowdhury S, Singh D, Hoque IU, Maity S. Organic Dye-Catalyzed Intermolecular Radical Coupling of α-Bromocarbonyls with Olefins: Photocatalytic Synthesis of 1,4-Ketocarbonyls Using Air as an Oxidant. J Org Chem 2020; 85:13939-13950. [DOI: 10.1021/acs.joc.0c01985] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Deepak Singh
- Department of Chemistry, Indian Institute of Technology (ISM) Dhanbad, JH 826004, India
| | - Injamam Ul Hoque
- Department of Chemistry, Indian Institute of Technology (ISM) Dhanbad, JH 826004, India
| | - Soumitra Maity
- Department of Chemistry, Indian Institute of Technology (ISM) Dhanbad, JH 826004, India
| |
Collapse
|
10
|
Zhang J, Xiao D, Tan H, Liu W. Highly Selective Synthesis of 2- tert-Butoxy-1-Arylethanones via Copper(I)-Catalyzed Oxidation/ tert-Butoxylation of Aryl Olefins with TBHP. J Org Chem 2020; 85:3929-3935. [PMID: 32052627 DOI: 10.1021/acs.joc.9b03156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A practical and environmentally friendly protocol for the selective oxidation of aryl olefins to arylethanone derivatives by using a Cu(I) catalyst and tert-butyl hydroperoxide (TBHP) has been developed. A series of 2-tert-butoxy-1-arylethanones were obtained in moderate to good yields under mild conditions with high selectivity. In this method, TBHP acts not only as an oxidant but also as the tert-butoxy and carbonyl oxygen sources. This enables one-step oxidation/tert-butoxylation. Various allyl peroxides were also synthesized from allyl substrates.
Collapse
Affiliation(s)
- Jiantao Zhang
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming 525000, People's Republic of China
| | - Duoduo Xiao
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming 525000, People's Republic of China
| | - Hua Tan
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming 525000, People's Republic of China
| | - Weibing Liu
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming 525000, People's Republic of China
| |
Collapse
|
11
|
Mir BA, Rajamanickam S, Begum P, Patel BK. Copper(I) Catalyzed Differential Peroxidation of Terminal and Internal Alkenes Using TBHP. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Bilal Ahmad Mir
- Department of Chemistry; Indian Institute of Technology Guwahati; North Guwahati -781039 Assam India
| | - Suresh Rajamanickam
- Department of Chemistry; Indian Institute of Technology Guwahati; North Guwahati -781039 Assam India
| | - Pakiza Begum
- Department of Chemistry; Indian Institute of Technology Guwahati; North Guwahati -781039 Assam India
| | - Bhisma K. Patel
- Department of Chemistry; Indian Institute of Technology Guwahati; North Guwahati -781039 Assam India
| |
Collapse
|
12
|
Han W, Yang Y, Zhu Y, Shi Y. A facile copper(i)-catalyzed homo-coupling of indanone derivatives using diaziridinone under mild conditions. Org Biomol Chem 2019; 17:6998-7001. [PMID: 31304944 DOI: 10.1039/c9ob00901a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel and efficient Cu(i)-catalyzed homo-coupling of indanone derivatives using diaziridinone as an oxidant is described. A variety of 1,4-dicarbonyl compounds bearing two adjacent quaternary stereocenters were obtained in high yields with high diastereoselectivities via a base-free and operationally simple process under mild reaction conditions.
Collapse
Affiliation(s)
- Wenyong Han
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | | | | | |
Collapse
|
13
|
Hoque IU, Chowdhury SR, Maity S. Photoredox-Catalyzed Intermolecular Radical Arylthiocyanation/Arylselenocyanation of Alkenes: Access to Aryl-Substituted Alkylthiocyanates/Alkylselenocyanates. J Org Chem 2019; 84:3025-3035. [DOI: 10.1021/acs.joc.8b03155] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Injamam Ul Hoque
- Department of Applied Chemistry, Indian Institute of Technology (ISM) Dhanbad, JH 826004, India
| | | | - Soumitra Maity
- Department of Applied Chemistry, Indian Institute of Technology (ISM) Dhanbad, JH 826004, India
| |
Collapse
|