1
|
Patel MA, Kapdi AR. Ubiquitous Role of Phosphine-Based Water-Soluble Ligand in Promoting Catalytic Reactions in Water. CHEM REC 2024; 24:e202400057. [PMID: 39162777 DOI: 10.1002/tcr.202400057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/26/2024] [Indexed: 08/21/2024]
Abstract
Catalysis has been at the forefront of the developments that has revolutionised synthesis and provided the impetus in the discovery of platform technologies for efficient C-C or C-X bond formation. Current environmental situation however, demands a change in strategy with catalysis being promoted more in solvents that are benign (Water) and for that the development of hydrophilic ligands (especially phosphines) is a necessity which could promote catalytic reactions in water, allow recyclability of the catalytic solutions and make it possible to isolate products using column-free techniques that involve lesser usage of hazardous organic solvents. In this review, we therefore critically analyse such catalytic processes providing examples that do follow the above-mentioned parameter.
Collapse
Affiliation(s)
- Manisha A Patel
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai, 400019, India
| | - Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai, 400019, India
| |
Collapse
|
2
|
Parte LG, Fernández S, Sandonís E, Guerra J, López E. Transition-Metal-Catalyzed Transformations for the Synthesis of Marine Drugs. Mar Drugs 2024; 22:253. [PMID: 38921564 PMCID: PMC11204618 DOI: 10.3390/md22060253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/27/2024] Open
Abstract
Transition metal catalysis has contributed to the discovery of novel methodologies and the preparation of natural products, as well as new chances to increase the chemical space in drug discovery programs. In the case of marine drugs, this strategy has been used to achieve selective, sustainable and efficient transformations, which cannot be obtained otherwise. In this perspective, we aim to showcase how a variety of transition metals have provided fruitful couplings in a wide variety of marine drug-like scaffolds over the past few years, by accelerating the production of these valuable molecules.
Collapse
Affiliation(s)
- Lucía G. Parte
- Department of Organic Chemistry, Science Faculty, University of Valladolid (UVa), Paseo de Belén 7, 47011 Valladolid, Spain; (L.G.P.); (E.S.)
| | - Sergio Fernández
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London (QMUL), Mile End Road, London E1 4NS, UK;
| | - Eva Sandonís
- Department of Organic Chemistry, Science Faculty, University of Valladolid (UVa), Paseo de Belén 7, 47011 Valladolid, Spain; (L.G.P.); (E.S.)
| | - Javier Guerra
- Department of Organic Chemistry, Science Faculty, University of Valladolid (UVa), Paseo de Belén 7, 47011 Valladolid, Spain; (L.G.P.); (E.S.)
| | - Enol López
- Department of Organic Chemistry, ITAP, School of Engineering (EII), University of Valladolid (UVa), Dr Mergelina, 47002 Valladolid, Spain
| |
Collapse
|
3
|
Rezaei A, Zheng H, Majidian S, Samadi S, Ramazani A. Chiral Pseudohomogeneous Catalyst Based on Amphiphilic Carbon Quantum Dots for the Enantioselective Kharasch-Sosnovsky Reaction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54373-54385. [PMID: 37963325 DOI: 10.1021/acsami.3c10756] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The term "chiral pseudohomogeneous catalyst (PHC)" denotes a novel concept that characterizes subnanometric particles exhibiting atomic-level chirality. The PHC based on chiral amphiphilic carbon quantum dots possesses distinctive features that combine the strengths of both homogeneous and heterogeneous catalysts, thereby heralding a significant breakthrough in the fields of asymmetric synthesis and medicinal chemistry. To the best of our knowledge, this is the first and the only reported research of a chiral PHC that demonstrates exceptional performance in controlling the enantioselectivity of the Kharasch-Sosnovsky reaction, yielding the corresponding products in high conversion (95%) with a moderate enantiomeric excess (75%). Notably, the chiral information on l-tryptophan can be effectively transferred from the outer shell of the nanosized catalyst, thereby inducing enantioselectivity in C-H activation and subsequent C-O forming events. Additionally, we have investigated the impact of various factors on the allylic oxidation reaction, including the amount, diversity, and hydrophilic/hydrophobic nature of the catalyst, as well as the influence of the solvent, Cu salts, temperature, and the type of alkene and perester, in order to comprehensively explore the reaction conditions. Furthermore, the catalyst can be readily recycled from the reaction medium, making this PHC a promising innovation that can significantly impact practical applications. In summary, this breakthrough can be aptly described as a "Golden Gate" due to its unparalleled potential to open up novel avenues for research and innovation.
Collapse
Affiliation(s)
- Aram Rezaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
| | - Huajun Zheng
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou 310032, China
| | - Shiva Majidian
- Laboratory of Asymmetric Synthesis, Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj 66177-15175, Iran
| | - Saadi Samadi
- Laboratory of Asymmetric Synthesis, Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj 66177-15175, Iran
| | - Ali Ramazani
- Department of Chemistry, University of Zanjan, Zanjan 45371-38791, Iran
| |
Collapse
|
4
|
Somsri S, Suwankaisorn B, Yomthong K, Srisuwanno W, Klinyod S, Kuhn A, Wattanakit C. Highly Enantioselective Synthesis of Pharmaceuticals at Chiral-Encoded Metal Surfaces. Chemistry 2023; 29:e202302054. [PMID: 37555292 DOI: 10.1002/chem.202302054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/10/2023]
Abstract
Enantioselective catalysis is of crucial importance in modern chemistry and pharmaceutical science. Although various concepts have been used for the development of enantioselective catalysts to obtain highly pure chiral compounds, most of them are based on homogeneous catalytic systems. Recently, we successfully developed nanostructured metal layers imprinted with chiral information, which were applied as electrocatalysts for the enantioselective synthesis of chiral model compounds. However, so far such materials have not been employed as heterogeneous catalysts for the enantioselective synthesis of real pharmaceutical products. In this contribution, we report the asymmetric synthesis of chiral pharmaceuticals (CPs) with chiral imprinted Pt-Ir surfaces as a simple hydrogenation catalyst. By fine-tuning the experimental parameters, a very high enantioselectivity (up to 95 % enantiomeric excess) with good catalyst stability can be achieved. The designed materials were also successfully used as catalytically active stationary phases for the continuous asymmetric flow synthesis of pharmaceutical compounds. This illustrates the possibility of producing real chiral pharmaceuticals at such nanostructured metal surfaces for the first time.
Collapse
Affiliation(s)
- Supattra Somsri
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Banyong Suwankaisorn
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 16 Avenue Pey Berland, 33607, Pessac, France
| | - Krissanapat Yomthong
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Wanmai Srisuwanno
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 16 Avenue Pey Berland, 33607, Pessac, France
| | - Sorasak Klinyod
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Alexander Kuhn
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 16 Avenue Pey Berland, 33607, Pessac, France
| | - Chularat Wattanakit
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| |
Collapse
|
5
|
Schnierle M, Klostermann S, Kaya E, Li Z, Dittmann D, Rieg C, Estes DP, Kästner J, Ringenberg MR, Dyballa M. How Solid Surfaces Control Stability and Interactions of Supported Cationic Cu I(dppf) Complexes─A Solid-State NMR Study. Inorg Chem 2023; 62:7283-7295. [PMID: 37133820 DOI: 10.1021/acs.inorgchem.3c00351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Organometallic complexes are frequently deposited on solid surfaces, but little is known about how the resulting complex-solid interactions alter their properties. Here, a series of complexes of the type Cu(dppf)(Lx)+ (dppf = 1,1'-bis(diphenylphosphino)ferrocene, Lx = mono- and bidentate ligands) were synthesized, physisorbed, ion-exchanged, or covalently immobilized on solid surfaces and investigated by 31P MAS NMR spectroscopy. Complexes adsorbed on silica interacted weakly and were stable, while adsorption on acidic γ-Al2O3 resulted in slow complex decomposition. Ion exchange into mesoporous Na-[Al]SBA-15 resulted in magnetic inequivalence of 31P nuclei verified by 31P-31P RFDR and 1H-31P FSLG HETCOR. DFT calculations verified that a MeCN ligand dissociates upon ion exchange. Covalent immobilization via organic linkers as well as ion exchange with bidentate ligands both lead to rigidly bound complexes that cause broad 31P CSA tensors. We thus demonstrate how the interactions between complexes and functional surfaces determine and alter the stability of complexes. The applied Cu(dppf)(Lx)+ complex family members are identified as suitable solid-state NMR probes for investigating the influence of support surfaces on deposited inorganic complexes.
Collapse
Affiliation(s)
- Marc Schnierle
- Institute of Inorganic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Sina Klostermann
- Institute of Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Elif Kaya
- Institute of Technical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Zheng Li
- Institute of Technical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Daniel Dittmann
- Institute of Technical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Carolin Rieg
- Institute of Technical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Deven P Estes
- Institute of Technical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Johannes Kästner
- Institute of Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Mark R Ringenberg
- Institute of Inorganic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Michael Dyballa
- Institute of Technical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
6
|
Duvauchelle V, Meffre P, Benfodda Z. Green methodologies for the synthesis of 2-aminothiophene. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:597-621. [PMID: 36060495 PMCID: PMC9421116 DOI: 10.1007/s10311-022-01482-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/29/2022] [Indexed: 05/16/2023]
Abstract
Pollution and the rising energy demand have prompted the design of new synthetic reactions that meet the principles of green chemistry. In particular, alternative synthesis of 2-aminothiophene have recently focused interest because 2-aminothiophene is a unique 5-membered S-heterocycle and a pharmacophore providing antiprotozoal, antiproliferative, antiviral, antibacterial or antifungal properties. Here, we review new synthetic routes to 2-aminothiophenes, including multicomponent reactions, homogeneously- or heterogeneously-catalyzed reactions, with focus on green pathways.
Collapse
Affiliation(s)
- Valentin Duvauchelle
- CHROME Laboratory, University of Nîmes, Rue du Dr. G. Salan, 30021 Nîmes Cedex 1, France
| | - Patrick Meffre
- CHROME Laboratory, University of Nîmes, Rue du Dr. G. Salan, 30021 Nîmes Cedex 1, France
| | - Zohra Benfodda
- CHROME Laboratory, University of Nîmes, Rue du Dr. G. Salan, 30021 Nîmes Cedex 1, France
| |
Collapse
|
7
|
Yadav D, Singh RK, Misra S, Singh AK. Ancillary Ligand Effects and Microwave‐Assisted Enhancement on the Catalytic Performance of Cationic Ruthenium (II)‐CNC Pincer Complexes for Acceptorless Alcohol Dehydrogenation. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dibya Yadav
- Department of Chemistry Indian Institute of Technology Indore Indore India
| | - Rahul Kumar Singh
- Department of Chemistry Indian Institute of Technology Indore Indore India
| | - Shilpi Misra
- Department of Chemistry Indian Institute of Technology Indore Indore India
| | - Amrendra K. Singh
- Department of Chemistry Indian Institute of Technology Indore Indore India
| |
Collapse
|
8
|
Khalili D, Roosta M, Khalafi-Nezhad A, Ebrahimi E. From methylarenes to Esters: Efficient oxidative Csp3-H activation promoted by CuO decorated magnetic reduced graphene oxide. NEW J CHEM 2022. [DOI: 10.1039/d2nj00728b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnetic reduced graphene oxide supported CuO (rGO/Fe3O4-CuO) as the heterogeneous catalyst in cross dehydrogenative coupling (CDC) reactions has been demonstrated for the synthesis of esters using methyl aromatics, aldehydes/benzyl alcohols...
Collapse
|
9
|
Gao X, Yu XY, Chang CR. Perceptions on the Treatment of Apparent Isotope Effects during the Analyses of Reaction Rate and Mechanism. Phys Chem Chem Phys 2022; 24:15182-15194. [DOI: 10.1039/d2cp00825d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Isotope substitution, a compelling tool of physical chemistry, has been broadly applied in the research field of heterogeneous catalysis. In general, upon the differences in mass-related atomic vibrational frequencies and...
Collapse
|
10
|
Shet H, Parmar U, Bhilare S, Kapdi AR. A comprehensive review of caged phosphines: synthesis, catalytic applications, and future perspectives. Org Chem Front 2021. [DOI: 10.1039/d0qo01194k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Caged phosphines are versatile ligands due to their rigid backbones, exhibiting a range of catalytic activities, as depicted through the given pictorial representation.
Collapse
Affiliation(s)
- Harshita Shet
- Department of Chemistry
- Institute of Chemical Technology
- Mumbai 400019
- India
- Institute of Chemical Technology-Indian Oil Odisha Campus
| | | | - Shatrughn Bhilare
- Department of Chemistry
- Institute of Chemical Technology
- Mumbai 400019
- India
| | - Anant R. Kapdi
- Department of Chemistry
- Institute of Chemical Technology
- Mumbai 400019
- India
| |
Collapse
|
11
|
Heravi MM, Heidari B, Zadsirjan V, Mohammadi L. Applications of Cu(0) encapsulated nanocatalysts as superior catalytic systems in Cu-catalyzed organic transformations. RSC Adv 2020; 10:24893-24940. [PMID: 35517449 PMCID: PMC9055281 DOI: 10.1039/d0ra02341h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/10/2020] [Indexed: 11/21/2022] Open
Abstract
Recently, Cu nanoparticles (NPs) encapsulated into various materials as supports (e.g., zeolite, silica) have attracted much devotion due to their unique catalytic properties such as high catalytic activity, intensive reactivity and selectivity through highly protective properties. Nowadays, the superior catalytic activity of Cu-NPs, encapsulated onto zeolite, silica and different porous systems, is extensively investigated and now well-established. As a matter of fact, Cu-NPs are protected from deactivation by this kind of encapsulation. Thus, their exclusion proceeds smoothly, and their recyclability is significantly increased. Cu-NPs have been used as potential heterogeneous catalysts in different chemical transformations. In this review, we try to show the preparation and applications of Cu(0) encapsulated nanocatalysts in zeolite and silica as superior catalytic systems in Cu-catalyzed organic transformations. In addition, the catalytic activity of these encapsulated Cu-NPs in different important organic transformations (such as hydrogenation, oxidation and carbon-carbon bond formations) are compared with those of a variety of organic, inorganic and hybrid porous bearing a traded metal ion. Moreover, the results from the TGA/DTA analysis and optical properties of Cu-complexes are demonstrated. The inherited characteristic merits of the encapsulated Cu-NPs onto zeolite and silica, such as their low leaching, catalytic activity, reusability economic feasibility and originality are critically considered.
Collapse
Affiliation(s)
- Majid M Heravi
- Department of Chemistry, School of Science, Alzahra University P. O. Box 1993891176 Vanak Tehran Iran +98 21 88041344 +98 21 88044051
| | - Bahareh Heidari
- Department of Chemistry, School of Science, Alzahra University P. O. Box 1993891176 Vanak Tehran Iran +98 21 88041344 +98 21 88044051
| | - Vahideh Zadsirjan
- Department of Chemistry, School of Science, Alzahra University P. O. Box 1993891176 Vanak Tehran Iran +98 21 88041344 +98 21 88044051
| | - Leila Mohammadi
- Department of Chemistry, School of Science, Alzahra University P. O. Box 1993891176 Vanak Tehran Iran +98 21 88041344 +98 21 88044051
| |
Collapse
|
12
|
Bhujabal YB, Vadagaonkar KS, Kapdi AR. Pd/PTABS: Catalyst for Efficient C−H (Hetero)Arylation of 1,3,4-Oxadiazoles Using Bromo(Hetero)Arenes. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201800713] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuvraj B. Bhujabal
- Department of Chemistry; Institute of Chemical Technology Matunga; Mumbai- 400019 India
| | | | - Anant R. Kapdi
- Department of Chemistry; Institute of Chemical Technology Matunga; Mumbai- 400019 India
| |
Collapse
|