1
|
Oken AC, Ditter IA, Lisi NE, Krishnamurthy I, Godsey MH, Mansoor SE. P2X 7 receptors exhibit at least three modes of allosteric antagonism. SCIENCE ADVANCES 2024; 10:eado5084. [PMID: 39365862 PMCID: PMC11451537 DOI: 10.1126/sciadv.ado5084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/28/2024] [Indexed: 10/06/2024]
Abstract
P2X receptors are trimeric ion channels activated by adenosine triphosphate (ATP) that contribute to pathophysiological processes ranging from asthma to neuropathic pain and neurodegeneration. A number of small-molecule antagonists have been identified for these important pharmaceutical targets. However, the molecular pharmacology of P2X receptors is poorly understood because of the chemically disparate nature of antagonists and their differential actions on the seven constituent subtypes. Here, we report high-resolution cryo-electron microscopy structures of the homomeric rat P2X7 receptor bound to five previously known small-molecule allosteric antagonists and a sixth antagonist that we identify. Our structural, biophysical, and electrophysiological data define the molecular determinants of allosteric antagonism in this pharmacologically relevant receptor, revealing three distinct classes of antagonists that we call shallow, deep, and starfish. Starfish binders, exemplified by the previously unidentified antagonist methyl blue, represent a unique class of inhibitors with distinct functional properties that could be exploited to develop potent P2X7 ligands with substantial clinical impact.
Collapse
Affiliation(s)
- Adam C. Oken
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ismayn A. Ditter
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Nicolas E. Lisi
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ipsita Krishnamurthy
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Michael H. Godsey
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Steven E. Mansoor
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
- Division of Cardiovascular Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
2
|
Zheng P, He J, Fu Y, Yang Y, Li S, Duan B, Yang Y, Hu Y, Yang Z, Wang M, Liu Q, Zheng X, Hua L, Li W, Li D, Ding Y, Yang X, Bai H, Long Q, Huang W, Ma Y. Engineered Bacterial Biomimetic Vesicles Reprogram Tumor-Associated Macrophages and Remodel Tumor Microenvironment to Promote Innate and Adaptive Antitumor Immune Responses. ACS NANO 2024; 18:6863-6886. [PMID: 38386537 DOI: 10.1021/acsnano.3c06987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Tumor-associated macrophages (TAMs) are among the most abundant infiltrating leukocytes in the tumor microenvironment (TME). Reprogramming TAMs from protumor M2 to antitumor M1 phenotype is a promising strategy for remodeling the TME and promoting antitumor immunity; however, the development of an efficient strategy remains challenging. Here, a genetically modified bacterial biomimetic vesicle (BBV) with IFN-γ exposed on the surface in a nanoassembling membrane pore structure was constructed. The engineered IFN-γ BBV featured a nanoscale structure of protein and lipid vesicle, the existence of rich pattern-associated molecular patterns (PAMPs), and the costimulation of introduced IFN-γ molecules. In vitro, IFN-γ BBV reprogrammed M2 macrophages to M1, possibly through NF-κB and JAK-STAT signaling pathways, releasing nitric oxide (NO) and inflammatory cytokines IL-1β, IL-6, and TNF-α and increasing the expression of IL-12 and iNOS. In tumor-bearing mice, IFN-γ BBV demonstrated a targeted enrichment in tumors and successfully reprogrammed TAMs into the M1 phenotype; notably, the response of antigen-specific cytotoxic T lymphocyte (CTL) in TME was promoted while the immunosuppressive myeloid-derived suppressor cell (MDSC) was suppressed. The tumor growth was found to be significantly inhibited in both a TC-1 tumor and a CT26 tumor. It was indicated that the antitumor effects of IFN-γ BBV were macrophage-dependent. Further, the modulation of TME by IFN-γ BBV produced synergistic effects against tumor growth and metastasis with an immune checkpoint inhibitor in an orthotopic 4T1 breast cancer model which was insensitive to anti-PD-1 mAb alone. In conclusion, IFN-γ-modified BBV demonstrated a strong capability of efficiently targeting tumor and tuning a cold tumor hot through reprogramming TAMs, providing a potent approach for tumor immunotherapy.
Collapse
Affiliation(s)
- Peng Zheng
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Jinrong He
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Yuting Fu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Ying Yang
- Cell Biology & Molecular Biology Laboratory of Experimental Teaching Center, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, People's Republic of China
| | - Shuqin Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- Kunming Medical University, Kunming 650500, People's Republic of China
| | - Biao Duan
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- Kunming Medical University, Kunming 650500, People's Republic of China
| | - Ying Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
| | - Yongmao Hu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Zhongqian Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
| | - Mengzhen Wang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
| | - Qingwen Liu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- Kunming Medical University, Kunming 650500, People's Republic of China
| | - Xiao Zheng
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Liangqun Hua
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Weiran Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
| | - Duo Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Centers for Disease Control and Prevention, Kunming 530112, People's Republic of China
| | - Yiting Ding
- School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Xu Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Hongmei Bai
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Qiong Long
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Weiwei Huang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Yanbing Ma
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| |
Collapse
|
3
|
Wang HY, Li L, Nelson CS, Barfield R, Valencia S, Chan C, Muramatsu H, Lin PJC, Pardi N, An Z, Weissman D, Permar SR. Multivalent cytomegalovirus glycoprotein B nucleoside modified mRNA vaccines did not demonstrate a greater antibody breadth. NPJ Vaccines 2024; 9:38. [PMID: 38378950 PMCID: PMC10879498 DOI: 10.1038/s41541-024-00821-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
Human cytomegalovirus (HCMV) remains the most common congenital infection and infectious complication in immunocompromised patients. The most successful HCMV vaccine to date, an HCMV glycoprotein B (gB) subunit vaccine adjuvanted with MF59, achieved 50% efficacy against primary HCMV infection. A previous study demonstrated that gB/MF59 vaccinees were less frequently infected with HCMV gB genotype strains most similar to the vaccine strain than strains encoding genetically distinct gB genotypes, suggesting strain-specific immunity accounted for the limited efficacy. To determine whether vaccination with multiple HCMV gB genotypes could increase the breadth of anti-HCMV gB humoral and cellular responses, we immunized 18 female rabbits with monovalent (gB-1), bivalent (gB-1+gB-3), or pentavalent (gB-1+gB-2+gB-3+gB-4+gB-5) gB lipid nanoparticle-encapsulated nucleoside-modified RNA (mRNA-LNP) vaccines. The multivalent vaccine groups did not demonstrate a higher magnitude or breadth of the IgG response to the gB ectodomain or cell-associated gB compared to that of the monovalent vaccine. Also, the multivalent vaccines did not show an increase in the breadth of neutralization activity and antibody-dependent cellular phagocytosis against HCMV strains encoding distinct gB genotypes. Interestingly, peripheral blood mononuclear cell-derived gB-2-specific T-cell responses elicited by multivalent vaccines were of a higher magnitude compared to that of monovalent vaccinated animals against a vaccine-mismatched gB genotype at peak immunogenicity. Yet, no statistical differences were observed in T cell response against gB-3 and gB-5 variable regions among the three vaccine groups. Our data suggests that the inclusion of multivalent gB antigens is not an effective strategy to increase the breadth of anti-HCMV gB antibody and T cell responses. Understanding how to increase the HCMV vaccine protection breadth will be essential to improve the vaccine efficacy.
Collapse
Affiliation(s)
- Hsuan-Yuan Wang
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, 10065, USA
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, 27710, USA
| | - Leike Li
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Takeda Pharmaceutical, San Diego, CA, 92121, USA
| | - Cody S Nelson
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Richard Barfield
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, 27710, USA
- Center for Human Systems Immunology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Sarah Valencia
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, 27710, USA
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, 27710, USA
- Center for Human Systems Immunology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Hiromi Muramatsu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Paulo J C Lin
- Acuitas Therapeutics, Vancouver, BC, V6T 1Z3, Canada
| | - Norbert Pardi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Drew Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sallie R Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
4
|
Quigley NG, Richter F, Kossatz S, Notni J. Complexity of αvβ6-integrin targeting RGD peptide trimers: emergence of non-specific binding by synergistic interaction. RSC Med Chem 2023; 14:2564-2573. [PMID: 38099056 PMCID: PMC10718521 DOI: 10.1039/d3md00365e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/13/2023] [Indexed: 12/17/2023] Open
Abstract
Multimerization is an established strategy to design bioactive macromolecules with enhanced avidity, which has been widely employed to increase the target-specific binding and uptake of imaging probes and pharmaceuticals. However, the factors governing the general biodistribution of multimeric probes are less well understood but are nonetheless decisive for their clinical application. We found that regiospecific exchange of phenylalanine by tyrosine (chemically equivalent to addition of single oxygen atoms) can have an unexpected, dramatic impact on the in vivo behavior of gallium-68 labeled αvβ6-integrin binding peptides trimers. For example, introduction of one and two Tyr, equivalent to just 1 and 2 additional oxygens and molecular weight increases of 0.38% and 0.76% for our >4 kDa constructs, reduced non-specific liver uptake by 50% and 72%, respectively. The observed effect did not correlate to established polarity measures such as log D, and generally defies explanation by reductionist approaches. We conclude that multimers should be viewed not just as molecular combinations of peptides whose properties simply add up, but as whole entities with higher intrinsic complexity and thus a strong tendency to exhibit newly emerged properties that, on principle, cannot be predicted from the characteristics of the monomers used.
Collapse
Affiliation(s)
- Neil Gerard Quigley
- Institute of Pathology, School of Medicine, Technische Universität München Trogerstr. 18 D-81675 München Germany
| | - Frauke Richter
- Institute of Pathology, School of Medicine, Technische Universität München Trogerstr. 18 D-81675 München Germany
| | - Susanne Kossatz
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research, (TranslaTUM), School of Medicine, Technische Universität München Munich Germany
| | - Johannes Notni
- Institute of Pathology, School of Medicine, Technische Universität München Trogerstr. 18 D-81675 München Germany
- TRIMT GmbH Carl-Eschebach-Str. 7 D-01454 Radeberg Germany
| |
Collapse
|
5
|
Toubia I, Nguyen C, Diring S, Onofre M, Daurat M, Gauthier C, Gary-Bobo M, Kobeissi M, Odobel F. Development of targeted photodynamic therapy drugs by combining a zinc phthalocyanine sensitizer with TSPO or EGFR binding groups: the impact of the number of targeting agents on biological activity. Org Biomol Chem 2023; 21:6509-6523. [PMID: 37341568 DOI: 10.1039/d3ob00565h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Drug-targeted delivery has become a top priority in the world of medicine in order to develop more efficient therapeutic agents. This is important as a critical underlying problem in cancer therapy stems from the inability to deliver active therapeutic substances directly to tumor cells without causing collateral damage. In this work, zinc(II) phthalocyanine (ZnPc) was selected as a sensitizer and was linked to different targeting agents, which would be recognized by overexpressed proteins in cancer cells. As targeting agents, we first selected the two ligands (DAA1106, PK11195) of the translocator protein (TSPO) and then Erlotinib a binding group of the ATP domain of tyrosine kinase in epidermal growth factor (EGFR). ZnPc was connected via an ethylene glycol chain to either one (n = 1) or four (n = 4) targeting agents. The biological activity of these conjugates ZnPc(ligand)n was investigated on MDA-MB-231 breast human cancer cells and human hepatoma HepG2 cells, first in the dark (cytotoxicity) and then under irradiation (photodynamic therapy). The dark cytotoxicity was extremely low (IC50 ≥ 50 μM) for all of these compounds, which is a required criterion for further photodynamic application. After irradiation at 650 nm, only the conjugates bearing one targeting ligand such as ZnPc-[DAA1106]1, ZnPc-[PK11195]1, and ZnPc-[Erlo]1 showed photodynamic activity, while those linked to 4 targeting agents were inactive. Importantly, fluorescence imaging microscopy showed the colocalization of ZnPc-[DAA1106]1, ZnPc-[PK11195]1 and ZnPc-[erlo]1, at mitochondria, a result that justifies the observed photodynamic activity of these conjugates. This study first shows the impact of the number and the mode of organization of targeting agents on the ability of the sensitizer to cross the cell membrane. When zinc(II) phthalocyanine carries a single targeting agent, a significant photodynamic activity on MDA-MB-231 breast human cancer cells was measured and localization at the mitochondria was demonstrated by fluorescence imaging, thus proving the potential of the sensitizer linked to a targeting agent to improve selectivity. Another important conclusion from this study for the design of future effective PDT drugs using multivalence effects is to control the arrangement of the targeting agents in order to design molecules that will be able to pass the cell membrane barriers.
Collapse
Affiliation(s)
- Isabelle Toubia
- Nantes Université, CNRS, CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR 6230, 2, rue de la Houssinière - BP 92208, F-44000 NANTES, France.
- Laboratoire RammalRammal, Equipe de Synthèse Organique Appliquée SOA, Université Libanaise, Faculté des Sciences 5, Nabatieh, Lebanon.
| | | | - Stéphane Diring
- Nantes Université, CNRS, CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR 6230, 2, rue de la Houssinière - BP 92208, F-44000 NANTES, France.
| | - Mélanie Onofre
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Morgane Daurat
- NanoMedSyn, 15 avenue Charles Flahault, 34293 Montpellier Cedex 5, France
| | - Corentin Gauthier
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
- NanoMedSyn, 15 avenue Charles Flahault, 34293 Montpellier Cedex 5, France
| | | | - Marwan Kobeissi
- Laboratoire RammalRammal, Equipe de Synthèse Organique Appliquée SOA, Université Libanaise, Faculté des Sciences 5, Nabatieh, Lebanon.
| | - Fabrice Odobel
- Nantes Université, CNRS, CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR 6230, 2, rue de la Houssinière - BP 92208, F-44000 NANTES, France.
| |
Collapse
|
6
|
Johnson SN, Brucks SD, Apley KD, Farrell MP, Berkland CJ. Multivalent Scaffolds to Promote B cell Tolerance. Mol Pharm 2023; 20:3741-3756. [PMID: 37410969 DOI: 10.1021/acs.molpharmaceut.3c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Autoimmune diseases are characterized by aberrant immune responses toward self-antigens. Current treatments lack specificity, promoting adverse effects by broadly suppressing the immune system. Therapies that specifically target the immune cells responsible for disease are a compelling strategy to mitigate adverse effects. Multivalent formats that display numerous binding epitopes off a single scaffold may enable selective immunomodulation by eliciting signals through pathways unique to the targeted immune cells. However, the architecture of multivalent immunotherapies can vary widely, and there is limited clinical data with which to evaluate their efficacy. Here, we set forth to review the architectural properties and functional mechanisms afforded by multivalent ligands and evaluate four multivalent scaffolds that address autoimmunity by altering B cell signaling pathways. First, we address both synthetic and natural polymer backbones functionalized with a variety of small molecule, peptide, and protein ligands for probing the effects of valency and costimulation. Then, we review nanoparticles composed entirely from immune signals which have been shown to be efficacious. Lastly, we outline multivalent liposomal nanoparticles capable of displaying high numbers of protein antigens. Taken together, these examples highlight the versatility and desirability of multivalent ligands for immunomodulation and illuminate strengths and weaknesses of multivalent scaffolds for treating autoimmunity.
Collapse
Affiliation(s)
- Stephanie N Johnson
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Spencer D Brucks
- Department of Chemistry, Harvey Mudd College, Claremont, California 91711, United States
| | - Kyle D Apley
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Mark P Farrell
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Cory J Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
- Bioengineering Program, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
7
|
Prasad PK, Eizenshtadt N, Goliand I, Fellus-Alyagor L, Oren R, Golani O, Motiei L, Margulies D. Chemically programmable bacterial probes for the recognition of cell surface proteins. Mater Today Bio 2023; 20:100669. [PMID: 37334185 PMCID: PMC10275978 DOI: 10.1016/j.mtbio.2023.100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/01/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Common methods to label cell surface proteins (CSPs) involve the use of fluorescently modified antibodies (Abs) or small-molecule-based ligands. However, optimizing the labeling efficiency of such systems, for example, by modifying them with additional fluorophores or recognition elements, is challenging. Herein we show that effective labeling of CSPs overexpressed in cancer cells and tissues can be obtained with fluorescent probes based on chemically modified bacteria. The bacterial probes (B-probes) are generated by non-covalently linking a bacterial membrane protein to DNA duplexes appended with fluorophores and small-molecule binders of CSPs overexpressed in cancer cells. We show that B-probes are exceptionally simple to prepare and modify because they are generated from self-assembled and easily synthesized components, such as self-replicating bacterial scaffolds and DNA constructs that can be readily appended, at well-defined positions, with various types of dyes and CSP binders. This structural programmability enabled us to create B-probes that can label different types of cancer cells with distinct colors, as well as generate very bright B-probes in which the multiple dyes are spatially separated along the DNA scaffold to avoid self-quenching. This enhancement in the emission signal enabled us to label the cancer cells with greater sensitivity and follow the internalization of the B-probes into these cells. The potential to apply the design principles underlying B-probes in therapy or inhibitor screening is also discussed here.
Collapse
Affiliation(s)
- Pragati K. Prasad
- Department of Chemical and Structural Biology, Weizmann Institute of Science Rehovot, 7610001, Israel
| | - Noa Eizenshtadt
- Department of Chemical and Structural Biology, Weizmann Institute of Science Rehovot, 7610001, Israel
| | - Inna Goliand
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Liat Fellus-Alyagor
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Roni Oren
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ofra Golani
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Leila Motiei
- Department of Chemical and Structural Biology, Weizmann Institute of Science Rehovot, 7610001, Israel
| | - David Margulies
- Department of Chemical and Structural Biology, Weizmann Institute of Science Rehovot, 7610001, Israel
| |
Collapse
|
8
|
East AK, Lee MC, Jiang C, Sikander Q, Chan J. Biomimetic Approach to Promote Cellular Uptake and Enhance Photoacoustic Properties of Tumor-Seeking Dyes. J Am Chem Soc 2023; 145:7313-7322. [PMID: 36973171 PMCID: PMC10120057 DOI: 10.1021/jacs.2c13489] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The attachment of glucose to drugs and imaging agents enables cancer cell targeting via interactions with GLUT1 overexpressed on the cell surface. While an added benefit of this modification is the solubilizing effect of carbohydrates, in the context of imaging agents, aqueous solubility does not guarantee decreased π-stacking or aggregation. The resulting broadening of the absorbance spectrum is a detriment to photoacoustic (PA) imaging since the signal intensity, accuracy, and image quality all rely on reliable spectral unmixing. To address this major limitation and further enhance the tumor-targeting ability of imaging agents, we have taken a biomimetic approach to design a multivalent glucose moiety (mvGlu). We showcase the utility of this new group by developing aza-BODIPY-based contrast agents boasting a significant PA signal enhancement greater than 11-fold after spectral unmixing. Moreover, when applied to targeting cancer cells, effective staining could be achieved with ultra-low dye concentrations (50 nM) and compared to a non-targeted analogue, the signal intensity was >1000-fold higher. Lastly, we employed the mvGlu technology to develop a logic-gated acoustogenic probe to detect intratumoral copper (i.e., Cu(I)), which is an emerging cancer biomarker, in a murine model of breast cancer. This exciting application was not possible using other acoustogenic probes previously developed for copper sensing.
Collapse
Affiliation(s)
- Amanda K East
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Michael C Lee
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Chang Jiang
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Qasim Sikander
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
Dong N, Liu Z, He H, Lu Y, Qi J, Wu W. "Hook&Loop" multivalent interactions based on disk-shaped nanoparticles strengthen active targeting. J Control Release 2023; 354:279-293. [PMID: 36641117 DOI: 10.1016/j.jconrel.2023.01.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/28/2022] [Accepted: 01/08/2023] [Indexed: 01/14/2023]
Abstract
How to enhance active targeting efficiency remains a challenge. Multivalent interactions play a crucial role in improving the binding ability between ligands and receptors. It is hypothesized that nanoparticles bearing a flat conformation attain simultaneous formation of multiple ligand-receptor bindings, which could be vividly metaphorized by the "Hook&Loop" rationale. In this study, spherical, rod-shaped and disk-shaped folic acid-modified red blood cell membrane-coated biomimetic mesoporous silica nanoparticles (FRMSNs) were prepared to verify the shape-based multivalent interactions. The fundamental concepts of multivalent interactions have been proved by a series of both in vitro and in vivo evaluations. Physical characterization confirmed the morphology, shape and surface features of FRMSNs. Strengthened binding and internalization of disk-shaped FRMSNs by K562 cells stresses the merits of multivalent interactions. Whereas Bio-TEM visually demonstrates the proposed "plane" contact of disk-shaped particles with cells, quantification further confirmed strengthened "plane" binding affinity with folate binding proteins owing to multivalent interactions. In K562 xenograft mice, doxorubicin-loaded disk-shaped FRMSNs effectively slowed down chronic myeloid leukemia progression. It is concluded that disks favor multivalent interactions which leads to enhanced active targeting efficiency.
Collapse
Affiliation(s)
- Ni Dong
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhenyun Liu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Haisheng He
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Fudan Zhangjiang Institute, Shanghai 201203, China
| | - Jianping Qi
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China; Fudan Zhangjiang Institute, Shanghai 201203, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China; Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Fudan Zhangjiang Institute, Shanghai 201203, China.
| |
Collapse
|
10
|
Xu J, Xiang J, Chen J, Wan T, Deng H, Li D. High sensitivity detection of tumor cells in biological samples using a multivalent aptamer strand displacement strategy. Analyst 2022; 147:634-644. [PMID: 35040831 DOI: 10.1039/d1an01949j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Monitoring the cell surface-expressed nucleolin facilitates early cancer diagnosis. Herein, we developed a multivalent aptamer displacement strand duplex strategy on cell membranes using a multi-receptor co-recognition design for improving the sensitivity and specificity of cancer cell recognition with an ultra-low background. The AS1411 aptamer labeled with the FAM fluorophore can be quenched using a partial complementary sequence modified with a BHQ1 tag which is partially hybridized with the AS1411 aptamer to create a receptor-activating aptamer. The multi-AS1411 activable probe based on the strand displacement strategy was constructed using multiple copies of the structure-switching AS1411 aptamer (bearing a short poly-A tail) linked together using the poly-T long chain (as a scaffold) which was synthesized by Terminal Deoxynucleotidyl Transferase (TDT)-mediated extension. We demonstrated the promising efficacy and sensitivity of our method in recognizing tumor cells in both cell mixtures and clinical cytology specimens. Due to its simple and fast operation with excellent cell recognition sensitivity and accuracy, it is expected to achieve the detection of low abundance target cells. Our approach will have broad application in clinical rapid detection and personalized medicine.
Collapse
Affiliation(s)
- Jieru Xu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Jiahui Xiang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Jialing Chen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Tao Wan
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Hongli Deng
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Dairong Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
11
|
|
12
|
Matuszewska K, Ten Kortenaar S, Pereira M, Santry LA, Petrik D, Lo KM, Bridle BW, Wootton SK, Lawler J, Petrik J. Addition of an Fc-IgG induces receptor clustering and increases the in vitro efficacy and in vivo anti-tumor properties of the thrombospondin-1 type I repeats (3TSR) in a mouse model of advanced stage ovarian cancer. Gynecol Oncol 2021; 164:154-169. [PMID: 34799137 DOI: 10.1016/j.ygyno.2021.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Tumor vasculature is structurally abnormal, with anatomical deformities, reduced pericyte coverage and low tissue perfusion. As a result of this vascular dysfunction, tumors are often hypoxic, which is associated with an aggressive tumor phenotype, and reduced delivery of therapeutic compounds to the tumor. We have previously shown that a peptide containing the thrombospondin-1 type I repeats (3TSR) specifically targets tumor vessels and induces vascular normalization in a mouse model of epithelial ovarian cancer (EOC). However, due to its small size, 3TSR is rapidly cleared from circulation. We now introduce a novel construct with the 3TSR peptide fused to the C-terminus of each of the two heavy chains of the Fc region of human IgG1 (Fc3TSR). We hypothesize that Fc3TSR will have greater anti-tumor activity in vitro and in vivo compared to the native compound. METHODS Fc3TSR was evaluated in vitro using proliferation and apoptosis assays to investigate differences in efficacy compared to native 3TSR. In light of the multivalency of Fc3TSR, we also investigate whether it induces greater clustering of its functional receptor, CD36. We also compare the compounds in vivo using an orthotopic, syngeneic mouse model of advanced stage EOC. The impact of the two compounds on changes to tumor vasculature morphology was also investigated. RESULTS Fc3TSR significantly decreased the viability and proliferative potential of EOC cells and endothelial cells in vitro compared to native 3TSR. High-resolution imaging followed by image correlation spectroscopy demonstrated enhanced clustering of the CD36 receptor in cells treated with Fc3TSR. This was associated with enhanced downstream signaling and greater in vitro and in vivo cellular responses. Fc3TSR induced greater vascular normalization and disease regression compared to native 3TSR in an orthotopic, syngeneic mouse model of advanced stage ovarian cancer. CONCLUSION The development of Fc3TSR which is greater in size, stable in circulation and enhances receptor activation compared to 3TSR, facilitates its translational potential as a therapy in the treatment of metastatic advanced stage ovarian cancer.
Collapse
Affiliation(s)
- Kathy Matuszewska
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, United States of America
| | - Simone Ten Kortenaar
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, United States of America
| | - Madison Pereira
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, United States of America
| | - Lisa A Santry
- Department of Pathobiology, University of Guelph, Guelph, ON, United States of America
| | - Duncan Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, United States of America
| | - Kin-Ming Lo
- EMD Serono Research & Development Institute, Billerica, MA, United States of America
| | - Byram W Bridle
- Department of Pathobiology, University of Guelph, Guelph, ON, United States of America
| | - Sarah K Wootton
- Department of Pathobiology, University of Guelph, Guelph, ON, United States of America
| | - Jack Lawler
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Jim Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, United States of America.
| |
Collapse
|
13
|
Sikder A, Chakraborty S, Rajdev P, Dey P, Ghosh S. Molecular Recognition Driven Bioinspired Directional Supramolecular Assembly of Amphiphilic (Macro)molecules and Proteins. Acc Chem Res 2021; 54:2670-2682. [PMID: 34014638 DOI: 10.1021/acs.accounts.1c00195] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bioinspired self-assembly has been explored with diverse synthetic scaffolds, among which amphiphiles are perhaps the most extensively studied systems. Classical surfactants or amphiphilic block copolymers, depending on the hydrophobic-hydrophilic balance, produce distinct nanostructures, which hold promise for applications ranging from biology to materials sciences. Nevertheless, their immiscibility-driven aggregation does not provide the opportunity to precisely regulate the internal order, morphology, or functional group display, which is highly desirable, especially in the context of biological applications.A new class of amphiphiles have emerged in the recent past in which the hydrophilic segment(s) is appended with a hydrophobic supramolecular-structure-directing-unit (SSDU), consisting of a π-conjugated chromophore and a H-bonding group. Self-recognition of the SSDU by attractive directional interactions governs the supramolecular assembly, which is fundamentally different than the repulsive solvent-immiscibility driven aggregation of traditional amphiphiles. Such SSDU-appended hydrophilic polymers exhibit entropy-driven highly stable self-assembly producing distinct nanostructures depending on the H-bonding functional group. For example, polymers with the hydrazide-functionalized SSDU attached form a polymersome, while in a sharp contrast, the same polymers when connected to an amide containing SSDU produce a cylindrical micelle via a spherical-micelle intermediate. This relationship holds true for a series of SSDU-attached hydrophilic polymers irrespective of the hydrophobic/hydrophilic balance or chemical structure, indicating that the supramolecular-assembly is primarily controlled by the specific molecular-recognition motif of the SSDU, instead of the packing parameter-based norms. Beyond synthetic polymers, SSDU-attached proteins also exhibit similar molecular-recognition driven self-assembly as well as coassembly with SSDU-attached polymers or hydrophilic wedges, producing multi-stimuli-responsive nanostructures in which the protein gains remarkable protection from thermal denaturation or enzymatic hydrolysis and exhibits redox-responsive enzymatic activity.Furthermore, SSDU-derived bola-shape π-amphiphiles have been recognized as a useful scaffold for the synthesis of unsymmetric polymersomes, rarely reported in the literature. The building block consists of a hydrophobic naphthalene-diimide (NDI) π-system attached to a hydrophilic functional group (ionic or nonionic) and a nonionic wedge on its two opposite arms. Extended H-bonding among the hydrazide groups, placed only on one side of the central chromophore by design, ensures stacking of the NDIs with parallel orientation and induces a preferred direction of curvature so that the H-bonded chain and consequently the functional groups attached to the same side remain at the inner-wall of the supramolecular polymersome. Automatically, the functional groups, located on the other side, are displayed at the outer surface. This design works for different amphiphiles, which by virtue of efficient and predictable functional group display, strongly influences the multivalent binding with different biological targets resulting in efficient enzyme inhibition, glycocluster effect, or antibacterial activity, depending on the nature of the functional group. By taking advantage of the electron accepting nature of the NDI, electron rich pyrene-containing amphiphiles can be costacked in alternating sequence, producing temperature and redox-responsive supramolecular polymers with NDI/pyrene stoichiometry-dependent morphology, lower critical solution temperature (LCST), functional group display, and antibacterial activity.
Collapse
Affiliation(s)
- Amrita Sikder
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Saptarshi Chakraborty
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Priya Rajdev
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Pradip Dey
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
14
|
The Synthesis and Evaluation of Multivalent Glycopeptoids as Inhibitors of the Adhesion of Candida albicans. Pathogens 2021; 10:pathogens10050572. [PMID: 34066787 PMCID: PMC8151480 DOI: 10.3390/pathogens10050572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 01/12/2023] Open
Abstract
Multivalency is a strategy commonly used by medicinal carbohydrate chemists to increase the affinity of carbohydrate-based small molecules for their protein targets. Although this approach has been very successful in enhancing binding to isolated carbohydrate-binding proteins, anticipating the multivalent presentations that will improve biological activity in cellular assays remains challenging. In this work we investigate linear molecular scaffolds for the synthesis of a low valency presentation of a divalent galactoside 1, previously identified by us as an inhibitor of the adhesion of opportunistic fungal pathogen Candida albicans to buccal epithelial cells (BECs). Adhesion inhibition assays revealed that multivalent glycoconjugate 3 is more effective at blocking C. albicans adherence to BECs upon initial exposure to epithelial cells. Interestingly, 3 did not seem to have any effect when it was pre-incubated with yeast cells, in contrast to the original lead compound 1, which caused a 25% reduction of adhesion. In competition assays, where yeast cells and BECs were co-incubated, multivalent glycoconjugate 3 inhibited up to 49% C. albicans adherence in a dose-dependent manner. The combined effect of compound 1 towards both yeast cells and BECs allowed it to achieve over 60% inhibition of the adhesion of C. albicans to BECs in competition assays.
Collapse
|
15
|
Böhmer VI, Szymanski W, Feringa BL, Elsinga PH. Multivalent Probes in Molecular Imaging: Reality or Future? Trends Mol Med 2021; 27:379-393. [PMID: 33436332 DOI: 10.1016/j.molmed.2020.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/17/2020] [Accepted: 12/08/2020] [Indexed: 01/25/2023]
Abstract
The rapidly developing field of molecular medical imaging focuses on specific visualization of (patho)physiological processes through the application of imaging agents (IAs) in multiple clinical modalities. Although our understanding of the principles underlying efficient IAs design has increased tremendously, many IAs still show poor in vivo imaging performance because of low binding affinity and/or specificity. These limitations can be addressed by taking advantage of multivalency, in which multiple copies of a ligand are employed to strengthen the interaction. We critically address specific challenges associated with the application of multivalent compounds in molecular imaging, and we give directions for a stepwise approach to the design of multivalent imaging probes to improve their target binding and pharmacokinetics (PK) for improved diagnostic potential.
Collapse
Affiliation(s)
- Verena I Böhmer
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, The Netherlands; Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AF, Groningen, The Netherlands
| | - Wiktor Szymanski
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AF, Groningen, The Netherlands; Department of Radiology, Medical Imaging Center, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AF, Groningen, The Netherlands
| | - Philip H Elsinga
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, The Netherlands.
| |
Collapse
|
16
|
Distaffen HE, Jones CW, Abraham BL, Nilsson BL. Multivalent display of chemical signals on
self‐assembled
peptide scaffolds. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Idiago-López J, Moreno-Antolín E, de la Fuente JM, Fratila RM. Nanoparticles and bioorthogonal chemistry joining forces for improved biomedical applications. NANOSCALE ADVANCES 2021; 3:1261-1292. [PMID: 36132873 PMCID: PMC9419263 DOI: 10.1039/d0na00873g] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/21/2021] [Indexed: 05/08/2023]
Abstract
Bioorthogonal chemistry comprises chemical reactions that can take place inside complex biological environments, providing outstanding tools for the investigation and elucidation of biological processes. Its use in combination with nanotechnology can lead to further developments in diverse areas of biomedicine, such as molecular bioimaging, targeted delivery, in situ drug activation, study of cell-nanomaterial interactions, biosensing, etc. Here, we summarise the recent efforts to bring together the unique properties of nanoparticles and the remarkable features of bioorthogonal reactions to create a toolbox of new or improved biomedical applications. We show how, by joining forces, bioorthogonal chemistry and nanotechnology can overcome some of the key current limitations in the field of nanomedicine, providing better, faster and more sensitive nanoparticle-based bioimaging and biosensing techniques, as well as therapeutic nanoplatforms with superior efficacy.
Collapse
Affiliation(s)
- Javier Idiago-López
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza Zaragoza 50009 Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Eduardo Moreno-Antolín
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza Zaragoza 50009 Spain
| | - Jesús M de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza Zaragoza 50009 Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Raluca M Fratila
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza Zaragoza 50009 Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| |
Collapse
|
18
|
Abbas M, Ovais M, Chen C. Phage capsid nanoparticles as multivalent inhibitors of viral infections. Sci Bull (Beijing) 2020; 65:2050-2052. [PMID: 32953198 PMCID: PMC7490246 DOI: 10.1016/j.scib.2020.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Manzar Abbas
- Institute for Molecules and Materials, Radboud University, Nijmegen 6525 AJ, the Netherlands
| | - Muhammad Ovais
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China,GBA Research Innovation Institute for Nanotechnology, Guangzhou 510700, China,Corresponding author
| |
Collapse
|
19
|
Salta J, Arp FF, Kühne C, Reissig H. Multivalent 1,2,3‐Triazole‐Linked Carbohydrate Mimetics by Huisgen–Meldal‐Sharpless Cycloadditions of an Azidopyran. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Joana Salta
- Institut für Chemie und Biochemie Freie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Fabian F. Arp
- Institut für Chemie und Biochemie Freie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Christian Kühne
- Institut für Laboratoriumsmedizin Klinische Chemie und Pathobiochemie Charité‐Universitätsmedizin Berlin Augustenburger Platz 1 13353 Berlin Germany
| | - Hans‐Ulrich Reissig
- Institut für Chemie und Biochemie Freie Universität Berlin Takustrasse 3 14195 Berlin Germany
| |
Collapse
|
20
|
Pursuwani BH, Bhatt BS, Vaidya FU, Pathak C, Patel MN. Synthesis, Characterization, and Biological Evaluation of Osmium(IV) Pyrazole Carbothioamide Complexes. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1852581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Bharat H. Pursuwani
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Bhupesh S. Bhatt
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Foram U. Vaidya
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Chandramani Pathak
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Mohan N. Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| |
Collapse
|
21
|
Lee C, Choi M, MacKay JA. Live long and active: Polypeptide-mediated assembly of antibody variable fragments. Adv Drug Deliv Rev 2020; 167:1-18. [PMID: 33129938 DOI: 10.1016/j.addr.2020.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022]
Abstract
Antibodies possess multiple biologically relevant features that have been engineered into new therapeutic formats. Two examples include the adaptable specificity of their variable (Fv) region and the extension of plasma circulation times through their crystallizable (Fc) region. Since the invention of the single chain variable fragment (scFv) in 1988, antibody variable regions have been re-engineered into a wide variety of multifunctional nanostructures. Among these strategies, peptide-mediated self-assembly of variable regions through heterologous expression has become a powerful method to produce homogenous, functional biomaterials. This manuscript reviews recent reports of antibody fragments assembled through fusion with peptides and proteins, including elastin-like polypeptides (ELPs), collagen-like polypeptides (CLPs), albumin, transmembrane proteins, leucine zippers, silk protein, and viruses. This review further discusses the current clinical status of engineered antibody fragments and challenges to overcome.
Collapse
Affiliation(s)
- Changrim Lee
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Minchang Choi
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA; Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, United States.
| |
Collapse
|
22
|
Rütter M, Milošević N, David A. Say no to drugs: Bioactive macromolecular therapeutics without conventional drugs. J Control Release 2020; 330:1191-1207. [PMID: 33207257 DOI: 10.1016/j.jconrel.2020.11.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022]
Abstract
The vast majority of nanomedicines (NM) investigated today consists of a macromolecular carrier and a drug payload (conjugated or encapsulated), with a purpose of preferential delivery of the drug to the desired site of action, either through passive accumulation, or by active targeting via ligand-receptor interaction. Several drug delivery systems (DDS) have already been approved for clinical use. However, recent reports are corroborating the notion that NM do not necessarily need to include a drug payload, but can exert biological effects through specific binding/blocking of important target proteins at the site of action. The seminal work of Kopeček et al. on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers containing biorecognition motifs (peptides or oligonucleotides) for crosslinking cell surface non-internalizing receptors of malignant cells and inducing their apoptosis, without containing any low molecular weight drug, led to the definition of a special group of NM, termed Drug-Free Macromolecular Therapeutics (DFMT). Systems utilizing this approach are typically designed to employ pendant targeting-ligands on the same macromolecule to facilitate multivalent interactions with receptors. The lack of conventional small molecule drugs reduces toxicity and adverse effects at off-target sites. In this review, we describe different types of DFMT that possess biological activity without attached low molecular weight drugs. We classified the relevant research into several groups by their mechanisms of action, and compare the advantages and disadvantages of these different approaches. We show that identification of target sites, specificity of attached targeting ligands, binding affinity and the synthesis of carriers of defined size and ligand spacing are crucial aspects of DFMT development. We further discuss how knowledge in the field of NM accumulated in the past few decades can help in the design of a successful DFMT to speed up the translation into clinical practice.
Collapse
Affiliation(s)
- Marie Rütter
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Nenad Milošević
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Ayelet David
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| |
Collapse
|
23
|
Cagnoni AJ, Primo ED, Klinke S, Cano ME, Giordano W, Mariño KV, Kovensky J, Goldbaum FA, Uhrig ML, Otero LH. Crystal structures of peanut lectin in the presence of synthetic β-N- and β-S-galactosides disclose evidence for the recognition of different glycomimetic ligands. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2020; 76:1080-1091. [PMID: 33135679 DOI: 10.1107/s2059798320012371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/08/2020] [Indexed: 11/11/2022]
Abstract
Carbohydrate-lectin interactions are involved in important cellular recognition processes, including viral and bacterial infections, inflammation and tumor metastasis. Hence, structural studies of lectin-synthetic glycan complexes are essential for understanding lectin-recognition processes and for the further design of promising chemotherapeutics that interfere with sugar-lectin interactions. Plant lectins are excellent models for the study of the molecular-recognition process. Among them, peanut lectin (PNA) is highly relevant in the field of glycobiology because of its specificity for β-galactosides, showing high affinity towards the Thomsen-Friedenreich antigen, a well known tumor-associated carbohydrate antigen. Given this specificity, PNA is one of the most frequently used molecular probes for the recognition of tumor cell-surface O-glycans. Thus, it has been extensively used in glycobiology for inhibition studies with a variety of β-galactoside and β-lactoside ligands. Here, crystal structures of PNA are reported in complex with six novel synthetic hydrolytically stable β-N- and β-S-galactosides. These complexes disclosed key molecular-binding interactions of the different sugars with PNA at the atomic level, revealing the roles of specific water molecules in protein-ligand recognition. Furthermore, binding-affinity studies by isothermal titration calorimetry showed dissociation-constant values in the micromolar range, as well as a positive multivalency effect in terms of affinity in the case of the divalent compounds. Taken together, this work provides a qualitative structural rationale for the upcoming synthesis of optimized glycoclusters designed for the study of lectin-mediated biological processes. The understanding of the recognition of β-N- and β-S-galactosides by PNA represents a benchmark in protein-carbohydrate interactions since they are novel synthetic ligands that do not belong to the family of O-linked glycosides.
Collapse
Affiliation(s)
- Alejandro J Cagnoni
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental, IBYME-CONICET, Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| | - Emiliano D Primo
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, INBIAS-CONICET, Ruta Nacional 36 Km 601, 5800 Río Cuarto, Córdoba, Argentina
| | - Sebastián Klinke
- Fundación Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | - María E Cano
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EHA Buenos Aires, Argentina
| | - Walter Giordano
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, INBIAS-CONICET, Ruta Nacional 36 Km 601, 5800 Río Cuarto, Córdoba, Argentina
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental, IBYME-CONICET, Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| | - José Kovensky
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources (LG2A)-CNRS UMR 7378, Université de Picardie Jules Verne, 33 Rue Saint Leu, 80039 Amiens CEDEX, France
| | - Fernando A Goldbaum
- Fundación Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | - María Laura Uhrig
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EHA Buenos Aires, Argentina
| | - Lisandro H Otero
- Fundación Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| |
Collapse
|
24
|
Pina A, Kadri M, Arosio D, Dal Corso A, Coll JL, Gennari C, Boturyn D. Multimeric Presentation of RGD Peptidomimetics Enhances Integrin Binding and Tumor Cell Uptake. Chemistry 2020; 26:7492-7496. [PMID: 32227540 DOI: 10.1002/chem.202001115] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/25/2020] [Indexed: 12/13/2022]
Abstract
The use of multimeric ligands is considered as a promising strategy to improve tumor targeting for diagnosis and therapy. Herein, tetrameric RGD (Arg-Gly-Asp) peptidomimetics were designed to target αv β3 integrin-expressing tumor cells. These compounds were prepared by an oxime chemoselective assembly of cyclo(DKP-RGD) ligands and a cyclodecapeptide scaffold, which allows a tetrameric presentation. The resulting tetrameric RGD peptidomimetics were shown to improve αv β3 integrin binding compared with the monomeric form. Interestingly, these compounds were also able to enhance tumor cell endocytosis in the same way as tetrameric RGD peptides. Altogether, the results show the potential of the tetrameric cyclo(DKP-RGD) ligands for in vivo imaging and drug delivery.
Collapse
Affiliation(s)
- Arianna Pina
- Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi 19, 20133, Milan, Italy
| | - Malika Kadri
- Institute for Advanced Biosciences, University Grenoble Alpes, INSERM, CNRS, Site Santé, Allée des Alpes, 38700, La Tronche, France
| | - Daniela Arosio
- CNR, Istituto di Scienze e Tecnologie Chimiche (SCITEC) "Giulio Natta", Via C. Golgi, 19, 20133, Milan, Italy
| | - Alberto Dal Corso
- Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi 19, 20133, Milan, Italy
| | - Jean-Luc Coll
- Institute for Advanced Biosciences, University Grenoble Alpes, INSERM, CNRS, Site Santé, Allée des Alpes, 38700, La Tronche, France
| | - Cesare Gennari
- Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi 19, 20133, Milan, Italy
| | - Didier Boturyn
- Department of Molecular Chemistry, University Grenoble Alpes, CNRS, 570, rue de la chimie, CS 40700, 38041, GRENOBLE Cedex 9, France
| |
Collapse
|
25
|
Coban MA, Fraga S, Caulfield TR. Structural And Computational Perspectives of Selectively Targeting Mutant Proteins. Curr Drug Discov Technol 2020; 18:365-378. [PMID: 32160847 DOI: 10.2174/1570163817666200311114819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 11/22/2022]
Abstract
Diseases are often caused by mutant proteins. Many drugs have limited effectiveness and/or toxic side effects because of a failure to selectively target the disease-causing mutant variant, rather than the functional wild type protein. Otherwise, the drugs may even target different proteins with similar structural features. Designing drugs that successfully target mutant proteins selectively represents a major challenge. Decades of cancer research have led to an abundance of potential therapeutic targets, often touted to be "master regulators". For many of these proteins, there are no FDA-approved drugs available; for others, off-target effects result in dose-limiting toxicity. Cancer-related proteins are an excellent medium to carry the story of mutant-specific targeting, as the disease is both initiated and sustained by mutant proteins; furthermore, current chemotherapies generally fail at adequate selective distinction. This review discusses some of the challenges associated with selective targeting from a structural biology perspective, as well as some of the developments in algorithm approach and computational workflow that can be applied to address those issues. One of the most widely researched proteins in cancer biology is p53, a tumor suppressor. Here, p53 is discussed as a specific example of a challenging target, with contemporary drugs and methodologies used as examples of burgeoning successes. The oncogene KRAS, which has been described as "undruggable", is another extensively investigated protein in cancer biology. This review also examines KRAS to exemplify progress made towards selective targeting of diseasecausing mutant proteins. Finally, possible future directions relevant to the topic are discussed.
Collapse
Affiliation(s)
- Mathew A Coban
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, United States
| | - Sarah Fraga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, United States
| | - Thomas R Caulfield
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, United States
| |
Collapse
|
26
|
Biomaterials for Immunoengineering. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
González-Cuesta M, Goyard D, Nanba E, Higaki K, García Fernández JM, Renaudet O, Ortiz Mellet C. Multivalent glycoligands with lectin/enzyme dual specificity: self-deliverable glycosidase regulators. Chem Commun (Camb) 2019; 55:12845-12848. [PMID: 31596280 DOI: 10.1039/c9cc06376e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multivalent mannosides with inherent macrophage recognition abilities, built on β-cyclodextrin, RAFT cyclopeptide or peptide dendrimer cores, trigger selective inhibition of lysosomal β-glucocerebrosidase or α-mannosidase depending on valency and topology, offering new opportunities in multitargeted drug design.
Collapse
Affiliation(s)
- Manuel González-Cuesta
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Seville, Spain.
| | - David Goyard
- Université Grenoble Alpes, CNRS, DCM UMR 5250, 3800 Grenoble, France.
| | - Eiji Nanba
- Organization for Research Initiative and Promotion, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Katsumi Higaki
- Organization for Research Initiative and Promotion, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Avda. Américo Vespucio 49, Isla de la Cartuja, 41092 Sevilla, Spain.
| | - Olivier Renaudet
- Université Grenoble Alpes, CNRS, DCM UMR 5250, 3800 Grenoble, France. and Institut Universitaire de France, 103 Boulevard Saint-Michel, 75005 Paris, France
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Seville, Spain.
| |
Collapse
|
28
|
Goyard D, Thomas B, Gillon E, Imberty A, Renaudet O. Heteroglycoclusters With Dual Nanomolar Affinities for the Lectins LecA and LecB From Pseudomonas aeruginosa. Front Chem 2019; 7:666. [PMID: 31632954 PMCID: PMC6783499 DOI: 10.3389/fchem.2019.00666] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/18/2019] [Indexed: 12/25/2022] Open
Abstract
Multivalent structures displaying different instead of similar sugar units, namely heteroglycoclusters (hGCs), are stimulating the efforts of glycochemists for developing compounds with new biological properties. Here we report a four-step strategy to synthesize hexadecavalent hGCs displaying eight copies of αFuc and βGal. These compounds were tested for the binding to lectins LecA and LecB from Pseudomonas aeruginosa. While parent fucosylated (19) and galactosylated (20) homoclusters present nanomolar affinity with LecB and LecA, respectively, we observed that hGCs combining these sugars (11 and 13) maintain their binding potency with both lectins despite the presence of an unspecific sugar. The added multivalency is therefore not a barrier for efficient recognition by bacterial receptors and it opens the route for adding different sugars that can be selected for their immunomodulatory properties.
Collapse
Affiliation(s)
- David Goyard
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, Grenoble, France
| | | | - Emilie Gillon
- Univ. Grenoble Alpes, CNRS, CERMAV, Grenoble, France
| | - Anne Imberty
- Univ. Grenoble Alpes, CNRS, CERMAV, Grenoble, France
| | | |
Collapse
|
29
|
Maniaci C, Ciulli A. Bifunctional chemical probes inducing protein-protein interactions. Curr Opin Chem Biol 2019; 52:145-156. [PMID: 31419624 DOI: 10.1016/j.cbpa.2019.07.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/23/2019] [Accepted: 07/08/2019] [Indexed: 12/22/2022]
Abstract
Inducing biomolecular interactions with synthetic molecules to impact biological function is a concept of enormous appeal. Recent years have seen a resurgence of interest in designing bispecific molecules that serve as bridging agents to bring proteins together. Pioneering structural and biophysical investigation of ternary complexes formed by mono-functional and bifunctional ligands highlights that proximity-induced stabilization or de novo formation of protein-protein interactions is a common feature of their molecular recognition. In this review, we illustrate these concepts and advances with representative case studies, and highlight progress over the past three years, with particular focus on recruitment to E3 ubiquitin ligases by 'molecular glues' and chimeric dimerizers (PROTACs) for targeted protein degradation. This approach promises to significantly expand the range of tractable targets for chemical biology and therapeutic intervention.
Collapse
Affiliation(s)
- Chiara Maniaci
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, DD1 5EH, Dundee, Scotland, UK
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, DD1 5EH, Dundee, Scotland, UK.
| |
Collapse
|