1
|
Cheng CC, Tsai RF, Lin CK, Tan KT, Kalendra V, Simenas M, Lin CW, Chiang YW. In-Cell DEER Spectroscopy of Nanodisc-Delivered Membrane Proteins in Living Cell Membranes. JACS AU 2024; 4:3766-3770. [PMID: 39483229 PMCID: PMC11522923 DOI: 10.1021/jacsau.4c00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 11/03/2024]
Abstract
Membrane proteins are integral to numerous cellular processes, yet their conformational dynamics in native environments remains difficult to study. This study introduces a nanodelivery method using nanodiscs to transport spin-labeled membrane proteins into the membranes of living cells, enabling direct in-cell double electron-electron resonance (DEER) spectroscopy measurements. We investigated the membrane protein BsYetJ, incorporating spin labels at key positions to monitor conformational changes. Our findings demonstrate successful delivery and high-quality DEER data for BsYetJ in both Gram-negative E. coli and Gram-positive B. subtilis membranes. The delivered BsYetJ retains its ability to transport calcium ions. DEER analysis reveals distinct conformational states of BsYetJ in different membrane environments, highlighting the influence of lipid composition on the protein structure. This nanodelivery method overcomes traditional limitations, enabling the study of membrane proteins in more physiologically relevant conditions.
Collapse
Affiliation(s)
- Chu-Chun Cheng
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Ruei-Fong Tsai
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Che-Kai Lin
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Kui-Thong Tan
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Vidmantas Kalendra
- Faculty
of Physics, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Mantas Simenas
- Faculty
of Physics, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Chun-Wei Lin
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Yun-Wei Chiang
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| |
Collapse
|
2
|
Kao TY, Chiang YW. DEERefiner-assisted structural refinement using pulsed dipolar spectroscopy: a study on multidrug transporter LmrP. Phys Chem Chem Phys 2023; 25:24508-24517. [PMID: 37656008 DOI: 10.1039/d3cp02569a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Pulsed dipolar spectroscopy, such as double electron-electron resonance (DEER), has been underutilized in protein structure determination, despite its ability to provide valuable spatial information. In this study, we present DEERefiner, a user-friendly MATLAB-based GUI program that enables the modeling of protein structures by combining an initial structure and DEER distance restraints. We illustrate the effectiveness of DEERefiner by successfully modeling the ligand-dependent conformational changes of the proton-drug antiporter LmrP to an extracellular-open-like conformation with an impressive precision of 0.76 Å. Additionally, DEERefiner was able to uncover a previously hypothesized but experimentally unresolved proton-dependent conformation of LmrP, characterized as an extracellular-closed/partially intracellular-open conformation, with a precision of 1.16 Å. Our work not only highlights the ability of DEER spectroscopy to model protein structures but also reveals the potential of DEERefiner to advance the field by providing an accessible and applicable tool for precise protein structure modeling, thereby paving the way for deeper insights into protein function.
Collapse
Affiliation(s)
- Te-Yu Kao
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan.
| | - Yun-Wei Chiang
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan.
| |
Collapse
|
3
|
Wang DTW, Tang TYC, Kuo CT, Yu YT, Chen EHL, Lee MT, Tsai RF, Chen HY, Chiang YW, Chen RPY. Cholesterol twists the transmembrane Di-Gly region of amyloid-precursor protein. PNAS NEXUS 2023; 2:pgad162. [PMID: 37265546 PMCID: PMC10230161 DOI: 10.1093/pnasnexus/pgad162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/08/2023] [Indexed: 06/03/2023]
Abstract
Nearly 95% of Alzheimer's disease (AD) occurs sporadically without genetic linkage. Aging, hypertension, high cholesterol content, and diabetes are known nongenomic risk factors of AD. Aggregation of Aβ peptides is an initial event of AD pathogenesis. Aβ peptides are catabolic products of a type I membrane protein called amyloid precursor protein (APP). Aβ40 is the major product, whereas the 2-residue-longer version, Aβ42, induces amyloid plaque formation in the AD brain. Since cholesterol content is one risk factor for sporadic AD, we aimed to explore whether cholesterol in the membrane affects the structure of the APP transmembrane region, thereby modulating the γ-secretase cutting behavior. Here, we synthesized several peptides containing the APP transmembrane region (sequence 693-726, corresponding to the Aβ22-55 sequence) with one or two Cys mutations for spin labeling. We performed three electron spin resonance experiments to examine the structural changes of the peptides in liposomes composed of dioleoyl phosphatidylcholine and different cholesterol content. Our results show that cholesterol increases membrane thickness by 10% and peptide length accordingly. We identified that the di-glycine region of Aβ36-40 (sequence VGGVV) exhibits the most profound change in response to cholesterol compared with other segments, explaining how the presence of cholesterol affects the γ-secretase cutting site. This study provides spectroscopic evidence showing how cholesterol modulates the structure of the APP transmembrane region in a lipid bilayer.
Collapse
Affiliation(s)
- David Tzu-Wei Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Tiffany Y C Tang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Chun-Ting Kuo
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Yun-Ting Yu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Eric H L Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Tao Lee
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
- Department of Physics, National Central University, Zhongli 320317, Taiwan
| | - Ruei-Fong Tsai
- Department of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Hung-Ying Chen
- Department of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
| | | | | |
Collapse
|
4
|
Chu BK, Tsai R, Hung C, Kuo Y, Chen EH, Chiang Y, Chan SI, Chen RP. Location of the cross-β structure in prion fibrils: A search by seeding and electron spin resonance spectroscopy. Protein Sci 2022; 31:e4326. [PMID: 35634767 PMCID: PMC9112485 DOI: 10.1002/pro.4326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 12/19/2022]
Abstract
Prion diseases are transmissible fatal neurodegenerative disorders spreading between humans and other mammals. The pathogenic agent, prion, is a protease-resistant, β-sheet-rich protein aggregate, converted from a membrane protein called PrPC . PrPSc is the misfolded form of PrPC and undergoes self-propagation to form the infectious amyloids. Since the key hallmark of prion disease is amyloid formation, identifying and studying which segments are involved in the amyloid core can provide molecular details about prion diseases. It has been known that the prion protein could also form non-infectious fibrils in the presence of denaturants. In this study, we employed a combination of site-directed nitroxide spin-labeling, fibril seeding, and electron spin resonance (ESR) spectroscopy to identify the structure of the in vitro-prepared full-length mouse prion fibrils. It is shown that in the in vitro amyloidogenesis, the formation of the amyloid core is linked to an α-to-β structural transformation involving the segment 160-224, which contains strand 2, helix 2, and helix 3. This method is particularly suitable for examining the hetero-seeded amyloid fibril structure, as the unlabeled seeds are invisible by ESR spectroscopy. It can be applied to study the structures of different strains of infectious prions or other amyloid fibrils in the future.
Collapse
Affiliation(s)
- Brett K.‐Y. Chu
- Institute of Biological ChemistryAcademia SinicaTaipeiTaiwan
- Department of ChemistryNational Taiwan UniversityTaipeiTaiwan
| | - Ruei‐Fong Tsai
- Department of ChemistryNational Tsing Hua UniversityHsinchuTaiwan
| | - Chien‐Lun Hung
- Department of ChemistryNational Tsing Hua UniversityHsinchuTaiwan
| | - Yun‐Hsuan Kuo
- Department of ChemistryNational Tsing Hua UniversityHsinchuTaiwan
| | - Eric H.‐L. Chen
- Institute of Biological ChemistryAcademia SinicaTaipeiTaiwan
| | - Yun‐Wei Chiang
- Department of ChemistryNational Tsing Hua UniversityHsinchuTaiwan
| | - Sunney I. Chan
- Department of ChemistryNational Taiwan UniversityTaipeiTaiwan
- Institute of ChemistryAcademia SinicaTaipeiTaiwan
| | - Rita P.‐Y. Chen
- Institute of Biological ChemistryAcademia SinicaTaipeiTaiwan
- Institute of Biochemical SciencesNational Taiwan UniversityTaipeiTaiwan
- Neuroscience Program of Academia SinicaAcademia SinicaTaipeiTaiwan
| |
Collapse
|
5
|
Kao TY, Hung CL, Lan YJ, Lee SW, Chiang YW. Simple Cryoprotectant-Free Method to Advance Pulsed Dipolar ESR Spectroscopy for Capturing Protein Conformational Ensembles. J Phys Chem B 2022; 126:423-429. [PMID: 35005966 DOI: 10.1021/acs.jpcb.1c08190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Double electron-electron resonance (DEER) is a powerful technique for studying protein conformations. To preserve the room-temperature ensemble, proteins are usually shock-frozen in liquid nitrogen prior to DEER measurements. The use of cryoprotectant additives is, therefore, necessary to ensure the formation of a vitrified state. Here, we present a simple modification of the freezing process using a flexible fused silica microcapillary, which increases the freezing rates and thus enables DEER measurement without the use of cryoprotectants. The Bid protein, which is highly sensitive to cryoprotectant additives, is used as a model. We show that DEER with the simple modification can successfully reveal the cold denaturation of Bid, which was not possible with the conventional DEER preparations. The DEER result reveals the nature of Bid folding. Our method advances DEER for capturing the chemically and thermally induced conformational changes of a protein in a cryoprotectant-free medium.
Collapse
Affiliation(s)
- Te-Yu Kao
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Chien-Lun Hung
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Yu-Jing Lan
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Su Wei Lee
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| |
Collapse
|
6
|
Huang CT, Lai YC, Chen SY, Ho MR, Chiang YW, Hsu ST. Structural polymorphism and substrate promiscuity of a ribosome-associated molecular chaperone. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:375-386. [PMID: 37904759 PMCID: PMC10539794 DOI: 10.5194/mr-2-375-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/02/2021] [Indexed: 11/01/2023]
Abstract
Trigger factor (TF) is a highly conserved multi-domain molecular chaperone that exerts its chaperone activity at the ribosomal tunnel exit from which newly synthesized nascent chains emerge. TF also displays promiscuous substrate binding for a large number of cytosolic proteins independent of ribosome binding. We asked how TF recognizes a variety of substrates while existing in a monomer-dimer equilibrium. Paramagnetic nuclear magnetic resonance (NMR) and electron spin resonance (ESR) spectroscopy were used to show that dimeric TF displays a high degree of structural polymorphism in solution. A series of peptides has been generated to quantify their TF binding affinities in relation with their sequence compositions. The results confirmed a previous predication that TF preferentially binds to peptide fragments that are rich in aromatic and positively charged amino acids. NMR paramagnetic relaxation enhancement analysis showed that TF utilizes multiple binding sites, located in the chaperone domain and part of the prolyl trans-cis isomerization domain, to interact with these peptides. Dimerization of TF effectively sequesters most of the substrate binding sites, which are expected to become accessible upon binding to the ribosome as a monomer. As TF lacks ATPase activity, which is commonly used to trigger conformational changes within molecular chaperones in action, the ribosome-binding-associated disassembly and conformational rearrangements may be the underlying regulatory mechanism of its chaperone activity.
Collapse
Affiliation(s)
- Chih-Ting Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Yei-Chen Lai
- Department of Chemistry, National Tsing Hua University, Hsichu 30013, Taiwan
| | - Szu-Yun Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Meng-Ru Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry, National Tsing Hua University, Hsichu 30013, Taiwan
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
7
|
Hung CL, Chang HH, Lee SW, Chiang YW. Stepwise activation of the pro-apoptotic protein Bid at mitochondrial membranes. Cell Death Differ 2021; 28:1910-1925. [PMID: 33462413 PMCID: PMC8184993 DOI: 10.1038/s41418-020-00716-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 12/01/2020] [Accepted: 12/16/2020] [Indexed: 01/30/2023] Open
Abstract
Caspase-8-cleaved Bid (cBid) associates with mitochondria and promotes the activation of BAX, leading to mitochondria outer membrane permeabilization (MOMP) and apoptosis. However, current structural models of cBid are largely based on studies using membrane vesicles and detergent micelles. Here we employ spin-label ESR and site-directed PEGylation methods to identify conformations of cBid at real mitochondrial membranes, revealing stepwise mechanisms in the activation process. Upon the binding of cBid to mitochondria, its structure is reorganized to expose the BH3 domain while leaving the structural integrity only slightly altered. The mitochondria-bound cBid is in association with Mtch2 and it remains in the primed state until interacting with BAX. The interaction subsequently triggers the fragmentation of cBid, causes large conformational changes, and promotes BAX-mediated MOMP. Our results reveal structural differences of cBid between mitochondria and other lipid-like environments and, moreover, highlight the role of the membrane binding in modifying cBid structure and assisting the inactive-to-active transition in function.
Collapse
Affiliation(s)
- Chien-Lun Hung
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsin-Ho Chang
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Su Wei Lee
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
8
|
Dissecting the Conformational Dynamics of the Bile Acid Transporter Homologue ASBT NM. J Mol Biol 2021; 433:166764. [PMID: 33359100 DOI: 10.1016/j.jmb.2020.166764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 11/21/2022]
Abstract
Apical sodium-dependent bile acid transporter (ASBT) catalyses uphill transport of bile acids using the electrochemical gradient of Na+ as the driving force. The crystal structures of two bacterial homologues ASBTNM and ASBTYf have previously been determined, with the former showing an inward-facing conformation, and the latter adopting an outward-facing conformation accomplished by the substitution of the critical Na+-binding residue glutamate-254 with an alanine residue. While the two crystal structures suggested an elevator-like movement to afford alternating access to the substrate binding site, the mechanistic role of Na+ and substrate in the conformational isomerization remains unclear. In this study, we utilized site-directed alkylation monitored by in-gel fluorescence (SDAF) to probe the solvent accessibility of the residues lining the substrate permeation pathway of ASBTNM under different Na+ and substrate conditions, and interpreted the conformational states inferred from the crystal structures. Unexpectedly, the crosslinking experiments demonstrated that ASBTNM is a monomer protein, unlike the other elevator-type transporters, usually forming a homodimer or a homotrimer. The conformational dynamics observed by the biochemical experiments were further validated using DEER measuring the distance between the spin-labelled pairs. Our results revealed that Na+ ions shift the conformational equilibrium of ASBTNM toward the inward-facing state thereby facilitating cytoplasmic uptake of substrate. The current findings provide a novel perspective on the conformational equilibrium of secondary active transporters.
Collapse
|
9
|
Structure and regulation of the BsYetJ calcium channel in lipid nanodiscs. Proc Natl Acad Sci U S A 2020; 117:30126-30134. [PMID: 33208533 DOI: 10.1073/pnas.2014094117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BsYetJ is a bacterial homolog of transmembrane BAX inhibitor-1 motif-containing 6 (TMBIM6) membrane protein that plays a key role in the control of calcium homeostasis. However, the BsYetJ (or TMBIM6) structure embedded in a lipid bilayer is uncharacterized, let alone the molecular mechanism of the calcium transport activity. Herein, we report structures of BsYetJ in lipid nanodiscs identified by double electron-electron resonance spectroscopy. Our results reveal that BsYetJ in lipid nanodiscs is structurally different from those crystallized in detergents. We show that BsYetJ conformation is pH-sensitive in apo state (lacking calcium), whereas in a calcium-containing solution it is stuck in an intermediate, inert to pH changes. Only when the transmembrane calcium gradient is established can the calcium-release activity of holo-BsYetJ occur and be mediated by pH-dependent conformational changes, suggesting a dual gating mechanism. Conformational substates involved in the process and a key residue D171 relevant to the gating of calcium are identified. Our study suggests that BsYetJ/TMBIM6 is a pH-dependent, voltage-gated calcium channel.
Collapse
|
10
|
Lan YJ, Yeh PS, Kao TY, Lo YC, Sue SC, Chen YW, Hwang DW, Chiang YW. Anti-apoptotic BCL-2 regulation by changes in dynamics of its long unstructured loop. Commun Biol 2020; 3:668. [PMID: 33184407 PMCID: PMC7665024 DOI: 10.1038/s42003-020-01390-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
BCL-2, a key protein in inhibiting apoptosis, has a 65-residue-long highly flexible loop domain (FLD) located on the opposite side of its ligand-binding groove. In vivo phosphorylation of the FLD enhances the affinity of BCL-2 for pro-apoptotic ligands, and consequently anti-apoptotic activity. However, it remains unknown as to how the faraway, unstructured FLD modulates the affinity. Here we investigate the protein-ligand interactions by fluorescence techniques and monitor protein dynamics by DEER and NMR spectroscopy tools. We show that phosphomimetic mutations on the FLD lead to a reduction in structural flexibility, hence promoting ligand access to the groove. The bound pro-apoptotic ligands can be displaced by the BCL-2-selective inhibitor ABT-199 efficiently, and thus released to trigger apoptosis. We show that changes in structural flexibility on an unstructured loop can activate an allosteric protein that is otherwise structurally inactive.
Collapse
Affiliation(s)
- Yu-Jing Lan
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Pei-Shan Yeh
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Te-Yu Kao
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Yuan-Chao Lo
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Shih-Che Sue
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Wen Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Dennis W Hwang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Yun-Wei Chiang
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
11
|
Tsai RF, Lin NC, Kao TY, Kuo YH, Lo FC, Liaw WF, Chiang YW. Nitrosylation of the Diiron Core Mediated by the N Domain of YtfE. J Phys Chem Lett 2020; 11:8538-8542. [PMID: 32940468 DOI: 10.1021/acs.jpclett.0c02200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The YtfE protein catalyzes the reduction of NO to N2O, protecting iron-sulfur clusters from nitrosylation. The structure of YtfE has a two-domain architecture, with a diiron-containing C-terminal domain linked to an N-terminal domain, in which the function of the latter is enigmatic. Here, by using electron spin resonance (ESR) spectroscopy, we show that YtfE exists in two conformational states, one of which has not been reported. Under high osmotic stress, YtfE adopts a homogeneous conformation (C state) similar to the known crystal structure. In a regular buffer, the N-terminal domain switches between the C state and a previously unidentified conformation (C' state), the latter of which has more space at the domain interface to allow the trafficking of NO molecules and thus is proposed to be a functionally active state. The conformational switch between the C and C' states is pivotal for facilitating NO access to the diiron core.
Collapse
Affiliation(s)
- Ruei-Fong Tsai
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Nien-Chen Lin
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Te-Yu Kao
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Yun-Hsuan Kuo
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Feng-Chun Lo
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Wen-Feng Liaw
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|