Xue W, Jiang Z, Wang Y, Zhang H. Combining bioinspired nanochannels with ferrocene doped MoS
2 nanoplates: Application to ratiometric electrochemical detection of let-7a.
Anal Chim Acta 2023;
1239:340690. [PMID:
36628709 DOI:
10.1016/j.aca.2022.340690]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/10/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Sensitive and accurate detection of tumor suppressor genes is vastly important to the related therapeutic research. Herein, a ratiometric electrochemical method for let-7a detection was established by integrating a ferrocene (Fc) doped MoS2 nanoplates modified electrode into the nanochannels-based biosensing platform. The ratiometric signal was developed by the redox current of methylene blue (MB) which reflects the target recognition occurred into the nanochannels and the redox current of Fc which corrects the slight signal deviation caused by some analyte-independent factors. And thus, the ratio of peak current of MB and Fc (IMB/IFc) measured at differential pulse voltammogram varied precisely with the increment of the concentration of let-7a incubated in the bioinspired nanochannels. The strategy of spherical DNAzyme induced deposition in nanochannels was utilized to further amplify the signal. Under optimal conditions, a wide linear dynamic range of 50 aM to 10 pM spanning five orders of magnitude was obtained. The developed electrochemical method, with attomole level of detection limit, was successfully applied to the determination of let-7a in human serum and tumor cells. The study not only offers a new route for reliable nucleic acid detection, but also provides an excellent opportunity to extend the application of the two-dimensional transition-metal dichalcogenides.
Collapse