1
|
Ghosh I, Islam ASM, Pramanik S, Ghosh P. A Potent Bis-Heteroleptic Ruthenium(II) Complex-Based Chalcogen Bonding Receptor for Selective Sensing of Phosphates. Inorg Chem 2025. [PMID: 39847689 DOI: 10.1021/acs.inorgchem.4c04292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
The incorporation of a selenoimidazolium-based chalcogen bond (ChB) donor into a bis-heteroleptic Ru(II) complex (Ru-Se) has been designed for the first time to explore its anion-sensing properties and understand its selectivity to specific classes of anions. Photophysical studies demonstrate the receptor's selectivity toward phosphates, while 1H NMR displays its ability to recognize both I- and H2PO4- among the different halides and oxoanions through ChB interaction in CH3CN and dimethyl sulfoxide-d6 solvents, respectively. Additionally, microscopic studies such as DLS and TEM reveal that the selective turn-on sensing of H2PO4- and HP2O73- compared to I- is driven by supramolecular aggregation behavior. Hence, the successful fabrication of a selenium ChB-based Ru(II) complex makes it a promising candidate for anion monitoring in supramolecular chemistry.
Collapse
Affiliation(s)
- Iti Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Abu S M Islam
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Sourav Pramanik
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
2
|
Islam AS, Pramanik S, Mondal S, Ghosh R, Ghosh P. Selective recognition and extraction of iodide from pure water by a tripodal selenoimidazol(ium)-based chalcogen bonding receptor. iScience 2024; 27:108917. [PMID: 38327780 PMCID: PMC10847689 DOI: 10.1016/j.isci.2024.108917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/20/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024] Open
Abstract
A selenium-based tripodal chalcogen bond (ChB) donor TPI-3Se is demonstrated for the recognition and extraction of I- from 100% water medium. NMR and ITC studies with the halides reveal that the ChB donor selectively binds with the large, weakly hydrated I-. Interestingly, I- crystallizes out selectively in the presence of other halides supporting the superiority of the selective recognition of I-. The X-ray structure of the ChB-iodide complex manifests both the μ1 and μ2 coordinated interactions, which is rare in the C-Se···I chalcogen bonding. Furthermore, to validate the selective I- binding potency of TPI-3Se in pure water, comparisons are made with its hydrogen and halogen bond donor analogs. The computational analysis also provides the mode of I- recognition by TPI-3Se. Importantly, this receptor is capable of extracting I- from pure water through selenium sigma-hole and I- interaction with a high degree of efficiency (∼70%).
Collapse
Affiliation(s)
- Abu S.M. Islam
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Sourav Pramanik
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Sahidul Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Rajib Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
3
|
Rani P, Kiran, Priyanka, Sindhu J, Kumar S. 5-Hydroxydibenzo [a,i]phenazine-8,13-dione: A selective and sensitive colorimetric and fluorescent ‘turn-off’ sensor for iodide ion. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Baykov S, Tarasenko M, Kotlyarova V, Shetnev A, Zelenkov LE, Boyarskaya IA, Boyarskiy VP. 2‐(1,2,4‐Oxadiazol‐5‐yl)aniline as a New Scaffold for Blue Luminescent Materials. ChemistrySelect 2022. [DOI: 10.1002/slct.202201201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sergey Baykov
- Institute of Chemistry Saint Petersburg State University Universitetskaya Nab. 7/9 199034 Saint Petersburg Russian Federation
- Research School of Chemistry and Applied Biomedical Sciences Tomsk Polytechnic University 634034 Tomsk Russian Federation
| | - Marina Tarasenko
- Pharmaceutical Technology Transfer Center Yaroslavl State Pedagogical University named after K.D. Ushinsky 108 Respublikanskaya St. 150000 Yaroslavl Russian Federation
| | - Valentina Kotlyarova
- Pharmaceutical Technology Transfer Center Yaroslavl State Pedagogical University named after K.D. Ushinsky 108 Respublikanskaya St. 150000 Yaroslavl Russian Federation
| | - Anton Shetnev
- Pharmaceutical Technology Transfer Center Yaroslavl State Pedagogical University named after K.D. Ushinsky 108 Respublikanskaya St. 150000 Yaroslavl Russian Federation
| | - Lev E. Zelenkov
- Institute of Chemistry Saint Petersburg State University Universitetskaya Nab. 7/9 199034 Saint Petersburg Russian Federation
- ITMO University 191002 Saint Petersburg Russian Federation
| | - Irina A. Boyarskaya
- Institute of Chemistry Saint Petersburg State University Universitetskaya Nab. 7/9 199034 Saint Petersburg Russian Federation
| | - Vadim P. Boyarskiy
- Institute of Chemistry Saint Petersburg State University Universitetskaya Nab. 7/9 199034 Saint Petersburg Russian Federation
| |
Collapse
|
5
|
Mansha M, Akram Khan S, Aziz MA, Zeeshan Khan A, Ali S, Khan M. Optical Chemical Sensing of Iodide Ions: A Comprehensive Review for the Synthetic Strategies of Iodide Sensing Probes, Challenges, and Future Aspects. CHEM REC 2022; 22:e202200059. [PMID: 35581148 DOI: 10.1002/tcr.202200059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Indexed: 12/11/2022]
Abstract
Among several anions, iodide (I- ) ions play a crucial role in human biological activities. In it's molecular form (I2 ), iodine is utilized for several industrial applications such as syntheses of medicines, fabric dyes, food additives, solar cell electrolytes, catalysts, and agrochemicals. The excess or deficiency of I- ions in the human body and environmental samples have certain consequences. Therefore, the selective and sensitive detection of I- ions in the human body and environment is vital for monitoring their overall profile. Amongst various analytical techniques for the estimation of I- ions, optical-chemical sensing possesses the merits of high sensitivity, selectivity, and utilizing the least amount of sensing materials. The distinctive aims of this manuscript are (i) To comprehensively review the development of optical chemical sensors (fluorescent & colorimetric) reported between 2001-2021 using organic fluorescent molecules, supramolecular materials, conjugated polymers, and metal-organic frameworks (MOFs). (ii) To illustrate the design and synthetic strategies to create specific binding and high affinity of I- ions which could help minimize negative consequences associated with its large size and high polarizability. (iii) The challenges associated with sensitivity and selectivity of I- ions in aqueous and real samples. The probable future aspects concerning the optical chemical detection of I- ions have also been discussed in detail.
Collapse
Affiliation(s)
- Muhammad Mansha
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
| | - Safyan Akram Khan
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
| | - Abdul Zeeshan Khan
- Department of Chemistry, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
| | - Shahid Ali
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
| | - Majad Khan
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia.,Department of Chemistry, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
| |
Collapse
|
6
|
Wang K, Geng C, Wang F, Zhao Y, Ru Z. Urea-doped carbon dots as fluorescent switches for the selective detection of iodide ions and their mechanistic study. RSC Adv 2021; 11:27645-27652. [PMID: 35480658 PMCID: PMC9037827 DOI: 10.1039/d1ra04558j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/30/2021] [Indexed: 12/19/2022] Open
Abstract
A facile and green strategy for the fabrication of fluorescent urea-doped carbon dots (N-CDs) has been explored. Significantly, the fluorescent N-CDs could recognize iodide ions (I-) with high selectivity, and their photoluminescence could be efficiently quenched by the addition of I-. The sensitivity analysis for I- indicated a linear relationship in the range from 12.5 to 587 μM with the detection limit as low as 0.47 μM. Furthermore, the I- induced fluorescence (FL) quenching mechanism was investigated employing a combination of techniques, including UV-vis/fluorescence spectroscopy, Density Functional Theory (DFT) calculation, TEM and time-resolved fluorescence decay measurements. The DFT calculation results demonstrated that the amino- and amide groups of N-CDs play a significant role in iodide recognition through the formation of multiple N-H⋯I-, C-H⋯I- and C([double bond, length as m-dash]O)N-H⋯I- interactions with I-. The TEM experiment confirmed the aggregation process when I- was added to the N-CDs solution. Moreover, the radiative decay rate of N-CDs, which was first measured and reported the kinetic behaviors of the FL-quenching process, decreased from 3.30 × 107 s-1 to 1.95 × 107 s-1 after the coordination with I- ions. The reduced lifetime demonstrated that the excited energy dissipation led to a dynamic quenching process. Therefore, such carbon materials can function as effective fluorescent switches for the selective detection of I- ions.
Collapse
Affiliation(s)
- Kai Wang
- School of Chemical and Environmental Engineering, Anyang Institute of Technology Anyang 455000 China
| | - Cuihuan Geng
- School of Chemical and Environmental Engineering, Anyang Institute of Technology Anyang 455000 China
| | - Fang Wang
- School of Chemical and Environmental Engineering, Anyang Institute of Technology Anyang 455000 China
| | - Yajun Zhao
- Teaching and Research Office of Neihuang Country Anyang 456300 China
| | - Zongling Ru
- School of Materials Science and Engineering, Anyang Institute of Technology Anyang 455000 China
| |
Collapse
|
7
|
Panja S, Kumar A, Misra N, Ghosh S, Raza R, Ghosh K. Naphthalene‐Coupled Pyridinium Urea Salt in Fluorometric Sensing of Iodide. ChemistrySelect 2021. [DOI: 10.1002/slct.202100373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Santanu Panja
- Department of Chemistry University of Kalyani Kalyani 741235 India
- School of Chemistry University of Glasgow Glasgow UK G12 8QQ
| | - Abhishek Kumar
- Department of Physics University of Lucknow Lucknow 226007 India
| | - Neeraj Misra
- Department of Physics University of Lucknow Lucknow 226007 India
| | - Subhasis Ghosh
- Department of Chemistry University of Kalyani Kalyani 741235 India
| | - Rameez Raza
- Department of Chemistry University of Kalyani Kalyani 741235 India
| | - Kumaresh Ghosh
- Department of Chemistry University of Kalyani Kalyani 741235 India
| |
Collapse
|
8
|
Abstract
![]()
Following the advancements
and diversification in synthetic strategies
for porous covalent materials in the literature, the materials science
community started to investigate the performance of covalent organic
polymers (COPs) and covalent organic frameworks (COFs) in applications
that require large surface areas for interaction with other molecules,
chemical stability, and insolubility. Sensorics is an area where COPs
and COFs have demonstrated immense potential and achieved high levels
of sensitivity and selectivity on account of their tunable structures.
In this review, we focus on those covalent polymeric systems that
use fluorescence spectroscopy as a method of detection. After briefly
reviewing the physical basis of fluorescence-based sensors, we delve
into various kinds of analytes that have been explored with COPs and
COFs, namely, heavy metal ions, explosives, biological molecules,
amines, pH, volatile organic compounds and solvents, iodine, enantiomers,
gases, and anions. Throughout this work, we discuss the mechanisms
involved in each sensing application and aim to quantify the potency
of the discussed sensors by providing limits of detection and quenching
constants when available. This review concludes with a summary of
the surveyed literature and raises a few concerns that should be addressed
in the future development of COP and COF fluorescence-based sensors.
Collapse
Affiliation(s)
- Tina Skorjanc
- Materials Research Laboratory, University of Nova Gorica, Vipavska 11c, 5270 Ajdovscina, Slovenia
| | - Dinesh Shetty
- Department of Chemistry & Center for Catalysis and Separations (CeCaS), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Matjaz Valant
- Materials Research Laboratory, University of Nova Gorica, Vipavska 11c, 5270 Ajdovscina, Slovenia
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
9
|
Rosales-Vázquez LD, Dorazco-González A, Sánchez-Mendieta V. Efficient chemosensors for toxic pollutants based on photoluminescent Zn(ii) and Cd(ii) metal-organic networks. Dalton Trans 2021; 50:4470-4485. [PMID: 33877166 DOI: 10.1039/d0dt04403b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Optical sensors with high sensitivity and selectivity, as important analytical tools for chemical and environmental research, can be realized by straightforward synthesis of luminescent one-, two- and three-dimensional Zn(ii) and Cd(ii) crystalline coordination arrays (CPs and MOFs). In these materials with emission centers typically based on charge transfer and intraligand emissions, the quantitative detection of specific analytes, as pesticides or anions, is probed by monitoring real-time changes in their photoluminescence and color emission properties. Pesticides/herbicides have extensive uses in agriculture and household applications. Also, a large amount of metal salts of cyanide is widely used in several industrial processes such as mining and plastic manufacturing. Acute or chronic exposure to these compounds can produce high levels of toxicity in humans, animals and plants. Due to environmental concerns associated with the accumulation of these noxious species in food products and water supplies, there is an urgent and growing need to develop direct, fast, accurate and low-cost sensing methodologies. In this critical frontier, we discuss the effective strategies, chemical stability, luminescence properties, sensitivity and selectivity of recently developed hybrid Zn(ii)/Cd(ii)-organic materials with analytical applications in the direct sensing of pesticides, herbicides and cyanide ions in the aqueous phase and organic solvents.
Collapse
Affiliation(s)
- Luis D Rosales-Vázquez
- Instituto de Química, Universidad Nacional Autónoma de México. Circuito Exterior, Ciudad Universitaria, Ciudad de Mexico, 04510, Mexico.
| | | | | |
Collapse
|