1
|
Maimaiti M, Yan Y, Wu J, Han T, Xie J, Zhang M. 3Pb 8O 7I 2·2CsI: the salt-inclusion strategy enriches the structural chemistry in lead oxyhalides. Dalton Trans 2025; 54:1370-1376. [PMID: 39803861 DOI: 10.1039/d4dt03212h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The design and synthesis of new mid-infrared functional crystals with novel structures and excellent properties is a hot topic in the materials science research field. Different from the traditional mid-far infrared crystal systems, such as chalcogenides and phosphides, a recently developed heavy metal oxyhalide, with a wide bandgap and transmittance range, is a very promising mid-infrared crystal material research system. Herein, the first case of a salt-inclusion compound in lead oxyhalides, Cs2Pb24O21I8 (3Pb8O7I2·2CsI), has been synthesized by a high-temperature solution method. Cs2Pb24O21I8 features a "rod-like chain" structure constructed from [Pb8O7]2+composed of [OPb4] tetrahedra, [OPb3] pyramids, and 1∞[CsI4] chains inserted in the tunnel. The results show that the salt-inclusion strategy significantly enriches the structural diversity of lead oxyhalides and provides a new research idea for exploring new infrared functional materials.
Collapse
Affiliation(s)
- Mayinuer Maimaiti
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China
| | - Yuchen Yan
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China
| | - Jinche Wu
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China
| | - Tingwen Han
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China
| | - Jing Xie
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| | - Min Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China
| |
Collapse
|
2
|
Jiao Z, Quah J, Syed TH, Wei W, Zhang B, Wang F, Wang J. Synthesis, crystal and electronic structures, linear and nonlinear optical properties, and photocurrent response of oxyhalides CeHaVIO 4 (Ha = Cl, Br; VI = Mo, W). Dalton Trans 2024; 53:2029-2038. [PMID: 38179796 DOI: 10.1039/d3dt03640e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Four heteroanionic oxyhalides, CeClMoO4, CeBrMoO4, CeClWO4, and CeBrWO4, have been studied as multifunctional materials, which show a combination of good second harmonic generation (SHG) response and photocurrent signals. Millimeter-sized CeHaVIO4 (Ha = Cl, Br; VI = Mo, W) crystals were grown by halide salt flux. The crystal structure of CeHaVIO4 crystals was accurately determined by single-crystal X-ray diffraction. CeClMoO4, CeBrMoO4, and CeBrWO4 are isostructural to each other, and crystallize in the acentric LaBrMoO4 structure type. CeClWO4 crystallizes in a new structure type with unit cell parameters of a = 19.6059(2) Å, b = 5.89450(10) Å, c = 7.80090(10) Å, and β = 101.4746(8)°. The bandgaps of CeHaVIO4 fall into the range of 2.8(1)-3.1(1) eV, which are much smaller than those of isotypic LaHaVIO4 (Ha = Cl, Br; VI = Mo, W) in the range of 3.9(1)-4.3(1) eV. The narrowing of bandgaps in CeHaVIO4 originates from the presence of partially filled 4f orbitals of cerium atoms, which was confirmed by density functional theory (DFT) calculations. The moderate bandgaps make CeHaVIO4 suitable for infrared nonlinear optical (IR NLO) applications. CeBrMoO4 and CeBrWO4 exhibit moderate SHG responses of 0.58× AGS and 0.46× AGS, respectively, and are both type-I phase-matching materials. Moderate SHG response, easy growth of crystals, high ambient stability, and type-I phase-matching behavior make CeBrMoO4 and CeBrWO4 great materials for IR NLO applications. CeHaVIO4 films also exhibited good photocurrent response upon light radiation. This work demonstrates the rich structural chemistry of the REHaVIO4 (RE = Y, La-Lu; Ha = Cl, Br; VI = Mo, W) family and the potential presence of more multifunctional materials.
Collapse
Affiliation(s)
- Zixian Jiao
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, USA.
| | - Jasmine Quah
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, USA.
| | - Tajamul Hussain Syed
- Department of Mechanical Engineering, Wichita State University, Wichita, Kansas 67260, USA
| | - Wei Wei
- Department of Mechanical Engineering, Wichita State University, Wichita, Kansas 67260, USA
| | - Bingbing Zhang
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China
| | - Fei Wang
- Department of Chemistry and Biochemistry, Missouri State University, Springfield, Missouri, 65897, USA.
| | - Jian Wang
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, USA.
| |
Collapse
|
3
|
Wang L, Bai C, Kong Y, Iqbal M, Chu Y, Li J. Synthesis, structure and characterization of Cd 2TeO 3Cl 2 with unprecedented [Cd 2O 6Cl 4] octahedral dimers. Dalton Trans 2023; 52:16297-16302. [PMID: 37855272 DOI: 10.1039/d3dt02515b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
A new mixed anionic compound Cd2TeO3Cl2 with unprecedented [Cd2O6Cl4] octahedral dimers has been synthesized, and millimeter-scale single crystals of Cd2TeO3Cl2 have been grown by the vertical Bridgman method with CdCl2 as the flux. Cd2TeO3Cl2 crystallizes in the centrosymmetric P1̄ (no. 2) space group, and shows a mixed cationic layer structure constituted by distorted [TeO3] motifs, mixed anionic [Cd2O6Cl4] chains, and [Cd2O6Cl4] octahedral dimers. Experimental and theoretical results show that Cd2TeO3Cl2 is a direct band gap compound with an experimental band gap of ∼4.25 eV. Meanwhile, the compound has good optical transmittance in the 3-5 μm atmospheric window. The results indicate that Cd2TeO3Cl2 could be used as a promising mid-IR window material, and could enrich the chemical and structural diversity of oxides.
Collapse
Affiliation(s)
- Linan Wang
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Bai
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Urumqi 830011, China.
| | - Yingying Kong
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Urumqi 830011, China.
| | - Maqsood Iqbal
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Chu
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junjie Li
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Chu Y, Wang H, Abutukadi T, Li Z, Mutailipu M, Su X, Yang Z, Li J, Pan S. Zn 2 HgP 2 S 8 : A Wide Bandgap Hg-Based Infrared Nonlinear Optical Material with Large Second-Harmonic Generation Response. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2305074. [PMID: 37475504 DOI: 10.1002/smll.202305074] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/06/2023] [Indexed: 07/22/2023]
Abstract
Hg-based chalcogenides, as good candidates for the exploration of high-performance infrared (IR) nonlinear optical (NLO) materials, usually exhibit strong NLO effects, but narrow bandgaps. Herein, an unprecedented wide bandgap Hg-based IR NLO material Zn2 HgP2 S8 (ZHPS) with diamond-like structure is rationally designed and fabricated by a tetrahedron re-organization strategy with the aid of structure and property predictions. ZHPS exhibits a wide bandgap of 3.37 eV, which is the largest one among the reported Hg-based chalcogenide IR NLO materials and first breaks the 3.0 eV bandgap "wall" in this system, resulting in a high laser-induced damage threshold (LIDT) of ≈2.2 × AgGaS2 (AGS). Meanwhile, it shows a large NLO response (1.1 × AGS), achieving a good balance between bandgap (≥3.0 eV) and NLO effect (≥1 × AGS) for an excellent IR NLO material. DFT calculations uncover that, compared to normal [HgS4 ]n , highly distorted [HgS4 ]d tetrahedral units are conducive to generating wide bandgap, and the wide bandgap in ZHPS can be attributed to the strong s-p hybridization between Hg─S bonding in distorted [HgS4 ]d , which gives some insights into the design of Hg-based chalcogenides with excellent properties based on distorted [HgS4 ]d tetrahedra.
Collapse
Affiliation(s)
- Yu Chu
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongshan Wang
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tudi Abutukadi
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi Li
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Miriding Mutailipu
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Su
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, 40-1 South Beijing Road, Urumqi, 830011, China
| | - Zhihua Yang
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junjie Li
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shilie Pan
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Chen K, Lin C, Chen J, Yang G, Tian H, Luo M, Yan T, Hu Z, Wang J, Wu Y, Ye N, Peng G. Intense d-p Hybridization in Nb 3 O 15 Tripolymer Induced the Largest Second Harmonic Generation Response and Birefringence in Germanates. Angew Chem Int Ed Engl 2023; 62:e202217039. [PMID: 36601969 DOI: 10.1002/anie.202217039] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
We herein report two asymmetric germanate crystals, KNbGe3 O9 and K3 Nb3 Ge2 O13 , with different structures and optical properties derived from divergent polymerized forms of GeO4 and NbO6 groups. Remarkably, K3 Nb3 Ge2 O13 achieved a rare combination of the strongest second harmonic generation (SHG) response of 17.5×KDP @ 1064 nm and the largest birefringence of 0.196 @ 546 nm in germanates. It features unique [Nb3 O12 ]∞ tubular chains constructed by circular Nb3 O15 tripolymers. Theoretical calculations reveal that the d-p interactions in the Nb3 O15 group are responsible for outstanding optical properties. This work emphasizes the significance of the polymerizable functional units in obtaining high-performance nonlinear optical (NLO) crystals.
Collapse
Affiliation(s)
- Kaichuang Chen
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Chensheng Lin
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Jindong Chen
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, 300384, Tianjin, China
| | - Guangsai Yang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, 300384, Tianjin, China
| | - Haotian Tian
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Min Luo
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Tao Yan
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Zhanggui Hu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, 300384, Tianjin, China
| | - Jiyang Wang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, 300384, Tianjin, China
| | - Yicheng Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, 300384, Tianjin, China
| | - Ning Ye
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, 300384, Tianjin, China
| | - Guang Peng
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, 300384, Tianjin, China
| |
Collapse
|
6
|
Xu X, Li BX, Huang LX, Yang BP, Zhang G, Mao JG. Growth and Optical Properties of Large-Sized NaVO 2(IO 3) 2(H 2O) Crystals for Second-Harmonic Generation Applications. Inorg Chem 2023; 62:1744-1751. [PMID: 36644841 DOI: 10.1021/acs.inorgchem.2c04368] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Large-sized crystals of the quaternary iodate NaVO2(IO3)2(H2O) (NVIO) with centimeter-scale dimensions (23 mm × 18 mm × 6 mm as a representative) have been successfully grown by the top-seeded hydrothermal method. Linear optical properties have been measured, including the optical transmission spectrum and refractive index. The NVIO crystal possesses an optical window with high transmittance (above 80%) over the range of 500-1410 nm and exhibits strong optical anisotropy with large birefringence Δn (nz - nx) of 0.1522 at 1064 nm and 0.1720 at 532 nm. Based on the measured refractive indices, the phase-matching conditions for second-harmonic generation (SHG) have been calculated, and SHG devices have further been fabricated along the calculated type I and type II phase-matching directions of (θ = 39.0°, φ = 3.8°) and (θ =53.8°, φ = 1.3°). Laser experiments of extra-cavity frequency doubling have been performed on these NVIO devices. It has been confirmed that the effective SHG conversion from 1064 to 532 nm could be achieved with an energy conversion efficiency of 8.1%. Our work demonstrates that large-sized NVIO crystals are promising in the frequency-doubling application.
Collapse
Affiliation(s)
- Xiang Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,Center for Advanced Energy and Functional Materials, School of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Bing-Xuan Li
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Ling-Xiong Huang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Bing-Ping Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Ge Zhang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Jiang-Gao Mao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
7
|
Fan Z, Sun Z, Wang A, Yin Y, Li H, Jin G, Xin C. Machine Learning Regression Model for Predicting the Formation Energy of Nonlinear Optical Crystals. ADVANCED THEORY AND SIMULATIONS 2023. [DOI: 10.1002/adts.202200883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Zhen Fan
- School of Science Changchun University of Science and Technology Changchun 130022 China
| | - Zhixin Sun
- School of Science Changchun University of Science and Technology Changchun 130022 China
| | - Ai Wang
- School of Science Changchun University of Science and Technology Changchun 130022 China
| | - Yaohui Yin
- School of Science Changchun University of Science and Technology Changchun 130022 China
| | - Hui Li
- School of Science Changchun University of Science and Technology Changchun 130022 China
| | - Guangyong Jin
- School of Science Changchun University of Science and Technology Changchun 130022 China
| | - Chao Xin
- School of Science Changchun University of Science and Technology Changchun 130022 China
| |
Collapse
|
8
|
Hu C, Cheng M, Jin W, Han J, Yang Z, Pan S. A Cation-Driven Approach toward Deep-Ultraviolet Nonlinear Optical Materials. RESEARCH (WASHINGTON, D.C.) 2023; 6:0053. [PMID: 36930817 PMCID: PMC10013791 DOI: 10.34133/research.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/02/2023] [Indexed: 01/12/2023]
Abstract
The design of new materials with special performances is still a great challenge, especially for the deep-ultraviolet nonlinear optical materials in which it is difficult to balance large bandgaps and strong second harmonic generation responses due to their inverse relationship. Cation variation not only influences the whole structure frameworks but also directly participates in the formation of electronic structures, both of which could lead to the uncontrollability of the properties of the designed materials. Here, a novel approach, aiming at purposeful and foreseeable material designs, is proposed to characterize the role of cations. By the verification of several series of borates, the influences of cation variation on property changes are explored systematically. Accordingly, a feasible strategy of designing deep-ultraviolet nonlinear optical materials by substituting barium for lead has been concluded, which could obviously blue-shift the ultraviolet cutoff edge and maintain the relatively strong second harmonic generation response (more than 2 times of KH2PO4), achieving the property optimization, and especially works efficiently in fluorooxoborates. The property optimization design strategy and the cation characterization method are not only helpful in exploring nonlinear optical materials but also enlightening in material design and selection.
Collapse
Affiliation(s)
- Cong Hu
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Cheng
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqi Jin
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Han
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Yang
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilie Pan
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Temperature effect on potassium nitrate-tricine nanoparticles synthesis to enhance third order optical nonlinearity. Top Catal 2022. [DOI: 10.1007/s11244-022-01641-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Bardelli S, Ye Z, Wang F, Zhang B, Wang J. Synthesis, Crystal and Electronic Structures, and Nonlinear Optical Properties of Y4Si3S12. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202100388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Stefano Bardelli
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States UNITED STATES
| | - Zhengyang Ye
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States UNITED STATES
| | - Fei Wang
- Department of Chemistry, Missouri State University, Springfield, Missouri, 65897, United States UNITED STATES
| | - Bingbing Zhang
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China UNITED STATES
| | - Jian Wang
- Wichita State University Chemistry 1845 Fairmount Ave BOX051 67260 Wichita UNITED STATES
| |
Collapse
|
11
|
Nguyen V, Ji B, Wu K, Zhang B, Wang J. Unprecedented mid-infrared nonlinear optical materials achieved by crystal structure engineering, a case study of (KX)P 2S 6 (X = Sb, Bi, Ba). Chem Sci 2022; 13:2640-2648. [PMID: 35340857 PMCID: PMC8890106 DOI: 10.1039/d1sc06849k] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/02/2022] [Indexed: 12/20/2022] Open
Abstract
Three acentric type-I phase-matchable infrared nonlinear optical materials KSbP2S6, KBiP2S6, and K2BaP2S6, showing excellent balance between the second harmonic generation coefficient, bandgap, and laser damage threshold, were synthesized via a high-temperature solid-state method. KSbP2S6 is isostructural to KBiP2S6, which both crystallize in the β-KSbP2Se6 structure type. K2BaP2S6 was discovered for the first time, which crystallizes in a new structure type. KSbP2S6 and KBiP2S6 exhibit close structural similarity to the parent compound, centrosymmetric Ba2P2S6. The [P2S6] motifs, isotypic to ethane, exist in Ba2P2S6, KSbP2S6, KBiP2S6, and K2BaP2S6. The mixed cations, K/Sb pair, K/Bi pair, and K/Ba pair, play a dual-role of aligning the [P2S6] structure motifs, contributing to a high SHG coefficient, as well as enlarging the bandgap. KSbP2S6, KBiP2S6, and K2BaP2S6 are direct bandgap semiconductors with a bandgap of 2.9(1) eV, 2.3(1) eV and 4.1(1) eV, respectively. KSbP2S6, KBiP2S6, and K2BaP2S6 exhibit a high second harmonic response of 2.2× AgGaS2, 1.8× AgGaS2, and 2.1× AgGaS2, respectively, coupled with a high laser damage threshold of 3× AgGaS2, 3× AgGaS2, and 8× AgGaS2, respectively. The DFT calculations also confirm that the large SHG coefficient mainly originates from [P2S6] anionic motifs.
Collapse
Affiliation(s)
- Vivian Nguyen
- Department of Chemistry and Biochemistry, Wichita State University Wichita Kansas 67260 USA
| | - Bingheng Ji
- Department of Chemistry and Biochemistry, Wichita State University Wichita Kansas 67260 USA
| | - Kui Wu
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province Baoding 071002 China
| | - Bingbing Zhang
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province Baoding 071002 China
| | - Jian Wang
- Department of Chemistry and Biochemistry, Wichita State University Wichita Kansas 67260 USA
| |
Collapse
|
12
|
Wang D, Zhang Y, Liu Q, Zhang B, Yang D, Wang Y. Band Gap Modulation and Properties of Quaternary Tellurates Li2GeTeO6. Dalton Trans 2022; 51:8955-8959. [DOI: 10.1039/d2dt01320g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tellurate crystals are attractive for developing new () materials in the mid-infrared region due to their wide transmission window. In this work, we report a quaternary tellurate oxide crystal, Li2GeTeO6,...
Collapse
|
13
|
Wang D, Zhang Y, Shi Q, Liu Q, Yang D, Zhang B, Wang Y. Tellurate Polymorphs with High-performance Nonlinear Optical Switch Property and Wide Mid-IR Transparency. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00200k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we report two tellurate polymorphs, α- and β-Li2HfTeO6, undergoes a fast thermally induced phase transition that originates from symmetry breaking of HfO6 and TeO6 octahedra, behaves as a potential...
Collapse
|
14
|
Wang W, Mei D, Wen S, Wang J, Wu Y. Complex coordinated functional groups: A great genes for nonlinear optical materials. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.11.089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Yang HD, Ran MY, Wei WB, Wu XT, Lin H, Zhu QL. The Rise of Infrared Nonlinear Optical Pnictides: Advances and Outlooks. Chem Asian J 2021; 16:3299-3310. [PMID: 34469055 DOI: 10.1002/asia.202100935] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/31/2021] [Indexed: 11/09/2022]
Abstract
Infrared (IR) nonlinear optical (NLO) materials are the core devices to realize IR laser output, which are of vital importance in civilian and military fields. Non-centrosymmetric chalcogenide and pnictide compounds have already been widely accepted as favorable systems for IR-NLO materials. Compared to the extensively investigated IR-NLO chalcogenides during the past few decades, the research of non-centrosymmetric phosphides as IR-NLO materials is relatively scarce. In this frontier article, the recent progress of pnictides as emerging IR-NLO candidates has been highlighted based on the perspective of new crystal exploration. These IR-NLO pnictides recently reported were divided into three groups from binary to quaternary according to their chemical compositions. The synthetic methods, structural chemistry, and structure-activity relationships are analyzed and summarized in detail. Finally, current problems and the future development of this field are also proposed.
Collapse
Affiliation(s)
- He-Di Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, 350002, P. R. China.,College of Chemistry, Fuzhou University, Fujian, 350002, P. R. China
| | - Mao-Yin Ran
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wen-Bo Wei
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xin-Tao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, 350002, P. R. China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian, 350108, P. R. China
| | - Hua Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, 350002, P. R. China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian, 350108, P. R. China
| | - Qi-Long Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, 350002, P. R. China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian, 350108, P. R. China
| |
Collapse
|
16
|
Shi YF, Wei WB, Wu XT, Lin H, Zhu QL. Recent progress in oxychalcogenides as IR nonlinear optical materials. Dalton Trans 2021; 50:4112-4118. [DOI: 10.1039/d1dt00222h] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This Frontiers article discusses the recent progress and challenges of non-centrosymmetric oxychalcogenides in the IR nonlinear optical field.
Collapse
Affiliation(s)
- Yang-Fang Shi
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China
- Fuzhou
- China
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
| | - Wen-Bo Wei
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China
- Fuzhou
- China
- University of Chinese Academy of Sciences
- Beijing 100049
| | - Xin-Tao Wu
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China
- Fuzhou
- China
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
| | - Hua Lin
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China
- Fuzhou
- China
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
| | - Qi-Long Zhu
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China
- Fuzhou
- China
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
| |
Collapse
|
17
|
Xiao Y, Chen MM, Shen YY, Liu PF, Lin H, Liu Y. A3Mn2Sb3S8 (A = K and Rb): a new type of multifunctional infrared nonlinear optical material based on unique three-dimensional open frameworks. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00214g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A new type of multifunctional IR-NLO material, A3Mn2Sb3S8 (A = K and Rb), with unique 3D open frameworks has been developed using a facile surfactant–thermal method.
Collapse
Affiliation(s)
- Yu Xiao
- Institute for Composites Science Innovation (InCSI)
- School of Materials Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Man-Man Chen
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China
- Fuzhou
- China
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
| | - Ya-Ying Shen
- Institute for Composites Science Innovation (InCSI)
- School of Materials Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Peng-Fei Liu
- Spallation Neutron Source Science Center
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Dongguan 523803
- China
| | - Hua Lin
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China
- Fuzhou
- China
- University of Chinese Academy of Sciences
- Beijing 100049
| | - Yi Liu
- Institute for Composites Science Innovation (InCSI)
- School of Materials Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|