1
|
Mondal A, Pal A, Sarkar S, Datta R, De P. Antioxidant Polymers with Phenolic Pendants for the Mitigation of Cellular Oxidative Stress. Biomacromolecules 2024; 25:1649-1659. [PMID: 38331427 DOI: 10.1021/acs.biomac.3c01193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Overproduction of reactive oxygen species (ROS) in cells is a major health concern as it may lead to various diseases through oxidative damage of biomolecules. Commonly used traditional small molecular antioxidants (polyphenols, carotenoids, vitamins, etc.) have inadequate efficacy in lowering excessive levels of ROS due to their poor aqueous solubility and bioavailability. In response to the widespread occurrence of antioxidant polyphenols in various biorenewable resources, we aimed to develop water-soluble antioxidant polymers with side chain phenolic pendants. Four different types of copolymers (P1-P4) containing phenyl rings with different numbers of hydroxy (-OH) substituents (0: phenylalanine, 1: tyrosyl, 2: catechol, or 3: gallol) were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization with a desired molar mass (8500-10000 g/mol) and a narrow dispersity (Đ ≤ 1.3). After successful characterizations of P1-P4, their in vitro antioxidant properties were analyzed by different methods, including 2,2-diphenyl-1-picrylhydrazyl (DPPH•), 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS•+), 4,4'-diamino-3,3',5,5'-tetramethylbiphenyl (TMB), and β-carotene (βC) assays. Our results revealed that the gallol pendant polymers can effectively scavenge ROS. Furthermore, electron paramagnetic resonance (EPR) spectroscopy with DPPH• also confirmed the radical quenching ability of the synthesized polymers. The gallol pendant polymers, at a well-tolerated concentration, could effectively penetrate the macrophage cells and restore the H2O2-induced ROS to the basal level. Overall, the present approach demonstrates the efficacy of water-soluble antioxidant polymers with gallol pendants toward the mitigation of cellular oxidative stress.
Collapse
Affiliation(s)
| | | | - Subhasish Sarkar
- Department of General Surgery, College of Medicine and Sagore Dutta Hospital, Kamarhati, Kolkata - 700058, West Bengal, India
| | | | | |
Collapse
|
2
|
Xue T, Zhu C, Yu D, Zhang X, Lai F, Zhang L, Zhang C, Fan W, Liu T. Fast and scalable production of crosslinked polyimide aerogel fibers for ultrathin thermoregulating clothes. Nat Commun 2023; 14:8378. [PMID: 38104160 PMCID: PMC10725485 DOI: 10.1038/s41467-023-43663-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
Polyimide aerogel fibers hold promise for intelligent thermal management fabrics, but their scalable production faces challenges due to the sluggish gelation kinetics and the weak backbone strength. Herein, a strategy is developed for fast and scalable fabrication of crosslinked polyimide (CPI) aerogel fibers by wet-spinning and ambient pressure drying via UV-enhanced dynamic gelation strategy. This strategy enables fast sol-gel transition of photosensitive polyimide, resulting in a strongly-crosslinked gel skeleton that effectively maintains the fiber shape and porous nanostructure. Continuous production of CPI aerogel fibers (length of hundreds of meters) with high specific modulus (390.9 kN m kg-1) can be achieved within 7 h, more efficiently than previous methods (>48 h). Moreover, the CPI aerogel fabric demonstrates almost the same thermal insulating performance as down, but is about 1/8 the thickness of down. The strategy opens a promisingly wide-space for fast and scalable fabrication of ultrathin fabrics for personal thermal management.
Collapse
Affiliation(s)
- Tiantian Xue
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Chenyu Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Dingyi Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Xu Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Feili Lai
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Longsheng Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Chao Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Wei Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China.
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China.
| | - Tianxi Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China.
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China.
| |
Collapse
|
3
|
Fu X, Wang Y, Xu L, Narumi A, Sato SI, Yang X, Shen X, Kakuchi T. Thermoresponsive Property of Poly( N, N-bis(2-methoxyethyl)acrylamide) and Its Copolymers with Water-Soluble Poly( N, N-disubstituted acrylamide) Prepared Using Hydrosilylation-Promoted Group Transfer Polymerization. Polymers (Basel) 2023; 15:4681. [PMID: 38139932 PMCID: PMC10747282 DOI: 10.3390/polym15244681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
The group-transfer polymerization (GTP) of N,N-bis(2-methoxyethyl)acrylamide (MOEAm) initiated by Me2EtSiH in the hydrosilylation-promoted method and by silylketene acetal (SKA) in the conventional method proceeded in a controlled/living manner to provide poly(N,N-bis(2-methoxyethyl)acrylamide) (PMOEAm) and PMOEAm with the SKA residue at the α-chain end (MCIP-PMOEAm), respectively. PMOEAm-b-poly(N,N-dimethylacrylamide) (PDMAm) and PMOEAm-s-PDMAm and PMOEAm-b-poly(N,N-bis(2-ethoxyethyl)acrylamide) (PEOEAm) and PMOEAm-s-PEOEAm were synthesized by the block and random group-transfer copolymerization of MOEAm and N,N-dimethylacrylamide or N,N-bis(2-ethoxyethyl)acrylamide. The homo- and copolymer structures affected the thermoresponsive properties; the cloud point temperature (Tcp) increasing by decreasing the degree of polymerization (x). The chain-end group in PMOEAm affected the Tcp with PMOEAmx > MCIP-PMOEAmx. The Tcp of statistical copolymers was higher than that of block copolymers, with PMOEAmx-s-PDMAmy > PMOEAmx-b-PDMAmy and PMOEAmx-s-PEOEAmy > PMOEAmx-b-PEOEAmy.
Collapse
Affiliation(s)
- Xiangming Fu
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Changchun 130022, China; (X.F.); (Y.W.); (L.X.); (X.Y.)
| | - Yanqiu Wang
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Changchun 130022, China; (X.F.); (Y.W.); (L.X.); (X.Y.)
| | - Liang Xu
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Changchun 130022, China; (X.F.); (Y.W.); (L.X.); (X.Y.)
| | - Atsushi Narumi
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Yamagata, Japan;
| | - Shin-ichiro Sato
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Hokkaido, Japan;
| | - Xiaoran Yang
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Changchun 130022, China; (X.F.); (Y.W.); (L.X.); (X.Y.)
| | - Xiande Shen
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Changchun 130022, China; (X.F.); (Y.W.); (L.X.); (X.Y.)
- Chongqing Research Institute, Changchun University of Science and Technology, No. 618 Liangjiang Avenue, Longxing Town, Yubei District, Chongqing 401135, China
| | - Toyoji Kakuchi
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Changchun 130022, China; (X.F.); (Y.W.); (L.X.); (X.Y.)
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Hokkaido, Japan;
- Chongqing Research Institute, Changchun University of Science and Technology, No. 618 Liangjiang Avenue, Longxing Town, Yubei District, Chongqing 401135, China
| |
Collapse
|
4
|
Deka N, Bera A, Roy D, De P. Methyl Methacrylate-Based Copolymers: Recent Developments in the Areas of Transparent and Stretchable Active Matrices. ACS OMEGA 2022; 7:36929-36944. [PMID: 36312394 PMCID: PMC9607668 DOI: 10.1021/acsomega.2c04564] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The recent advancements of poly(methyl methacrylate) (PMMA) as a transparent flexible polymer material have been utilized in numerous areas of engineering and materials science. PMMA-based copolymers demonstrate outstanding mechanical and optical properties owing to high transparency, lightweight nature, high impact resistance, and stress relaxation across glass transition temperature. These copolymers have unique characteristics of retaining optical and microstructural integrities during successive bending or elongations which make them an attractive choice for materials of stretchable electronics. In particular, there has been an escalated rise in the use of methyl methacrylate (MMA)-based transparent and stretchable copolymer films during the recent decades. Therefore, we have highlighted these recent developments into a comprehensive review in order to aid the future progress in these diverse fields. Herein, we have highlighted the scope of MMA as an important building block for the synthesis of highly transparent and flexible materials. The synthetic pathways of these copolymer materials and the resulting mechanical properties have been discussed. Moreover, the immense scope of these copolymer films has been highlighted by virtue of their applications in various industries.
Collapse
Affiliation(s)
- Namrata Deka
- Polymer
Research Centre and Centre for Advanced Functional Materials, Department
of Chemical Sciences, Indian Institute of
Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Avisek Bera
- Polymer
Research Centre and Centre for Advanced Functional Materials, Department
of Chemical Sciences, Indian Institute of
Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Debmalya Roy
- Directorate
of Nanomaterials, Defence Materials and
Stores Research and Development Establishment (DMSRDE), GT Road, Kanpur 208013, Uttar
Pradesh, India
| | - Priyadarsi De
- Polymer
Research Centre and Centre for Advanced Functional Materials, Department
of Chemical Sciences, Indian Institute of
Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| |
Collapse
|
5
|
A low-cost high-entropy porous CrO/CrN/C biosensor for highly sensitive simultaneous detection of dopamine and uric acid. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
6
|
|