1
|
Bari MA, Elsherbeni SA, Maqbool T, Latham DE, Gushlow EB, Harper EJ, Morrill LC. Iron-Catalyzed Transfer Hydrogenation of Allylic Alcohols with Isopropanol. J Org Chem 2024; 89:14571-14576. [PMID: 39320102 PMCID: PMC11459429 DOI: 10.1021/acs.joc.4c01701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Herein, we report an iron-catalyzed transfer hydrogenation of allylic alcohols. The operationally simple protocol employs a well-defined bench stable (cyclopentadienone)iron(0) carbonyl complex as a precatalyst in combination with K2CO3 (4 mol %) and isopropanol as the hydrogen donor. A diverse range of allylic alcohols undergo transfer hydrogenation to form the corresponding alcohols in good yields (33 examples, ≤83% isolated yield). The scope and limitations of the method have been investigated, and experiments that shed light on the reaction mechanism have been conducted.
Collapse
Affiliation(s)
- Md Abdul Bari
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Salma A. Elsherbeni
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Tahir Maqbool
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
- Department
of Chemistry, Government College University
Faisalabad, Faisalabad 38000, Pakistan
| | - Daniel E. Latham
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Edward B. Gushlow
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Emily J. Harper
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Louis C. Morrill
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| |
Collapse
|
2
|
Bhowmick T, Orthaber A. Main Group Pentafulvenes: Challenges and Opportunities in Heavy Main Group Isolobal Substitution of Pentafulvene. Chemphyschem 2024; 25:e202300940. [PMID: 38709950 DOI: 10.1002/cphc.202300940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024]
Abstract
Heterofulvenes based on isolobal substitution of carbon fragments by (heavier) main group motifs provide a rich source of structurally interesting building blocks with electronic situations that can vastly differ from all-carbon congeners. Group 13, heavier 14 & 16 fulvenes are rare and pose significant stability challenges, while group 15 derivatives, particularly phosphorus and arsenic, have led to many derivatives with intriguing opto-electronic properties.
Collapse
Affiliation(s)
- Toma Bhowmick
- Department of Chemistry Ångström laboratories, Uppsala University, Box 523, 75120, Uppsala, Sweden
| | - Andreas Orthaber
- Department of Chemistry Ångström laboratories, Uppsala University, Box 523, 75120, Uppsala, Sweden
| |
Collapse
|
3
|
Alexandridis A, Rancon T, Halliday A, Kochem A, Quintard A. Iron- and Organo-Catalyzed Borrowing Hydrogen for the Stereoselective Construction of Tetrahydropyrans. Org Lett 2024; 26:5788-5793. [PMID: 38935856 DOI: 10.1021/acs.orglett.4c01969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Stereocontrolled oxa-Michael additions are challenging, given the high reversibility of the process, which ultimately leads to racemization of the newly formed stereocenters. When iron-catalyzed borrowing hydrogen from allylic alcohols was combined with a stereocontrolled organocatalytic oxa-Michael addition, a wide array of chiral tetrahydropyrans were efficiently prepared. The reaction could be performed in a diastereoselective manner from pre-existing stereocenters or enantioselectively from achiral substrates. The key to success was the reactivity of the iron complex, which was selective for allylic alcohol dehydrogenation and irreversibly led the reaction to the final product.
Collapse
Affiliation(s)
| | - Thibault Rancon
- Université Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| | | | - Amélie Kochem
- Université Grenoble Alpes, CNRS, CEA, LCBM (UMR 5249), F-38000 Grenoble, France
| | - Adrien Quintard
- Université Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| |
Collapse
|
4
|
Werley BK, Hou X, Bertonazzi EP, Chianese A, Funk TW. Substituent Effects and Mechanistic Insights on the Catalytic Activities of (Tetraarylcyclopentadienone)iron Carbonyl Compounds in Transfer Hydrogenations and Dehydrogenations. Organometallics 2023; 42:3053-3065. [PMID: 38028505 PMCID: PMC10647929 DOI: 10.1021/acs.organomet.3c00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Indexed: 12/01/2023]
Abstract
(Cyclopentadienone)iron carbonyl compounds are catalytically active in carbonyl/imine reductions, alcohol oxidations, and borrowing hydrogen reactions, but the effect of cyclopentadienone electronics on their activity is not well established. A series of (tetraarylcyclopentadienone)iron tricarbonyl compounds with varied electron densities on the cyclopentadienone were prepared, and their activities in transfer hydrogenations and dehydrogenations were explored. Additionally, mechanistic studies, including kinetic isotope effect experiments and modifications to substrate electronics, were undertaken to gain insights into catalyst resting states and turnover-limiting steps of these reactions. As the cyclopentadienone electron density increased, both the transfer hydrogenation and dehydrogenation rates increased. A catalytically relevant, trimethylamine-ligated iron compound was isolated and characterized and was observed in solution under both transfer hydrogenation and dehydrogenation conditions. Importantly, it was catalytically active in both reactions. Kinetic isotope effect data and initial rates in transfer hydrogenation reactions with 4'-substituted acetophenones provided evidence that hydrogen transfer from the catalyst to the carbonyl substrate occurred during the turnover-limiting step, and NMR spectroscopy supports the trimethylamine adduct as an off-cycle resting state and the (hydroxycyclopentadienyl)iron hydride as an on-cycle resting state. In transfer dehydrogenations of alcohols, the use of electronically modified benzylic alcohols provided evidence that the turnover-limiting step involves the transfer of hydrogen from the alcohol substrate to the catalyst. The trimethylamine-ligated compound was proposed as the primary catalyst resting state in dehydrogenations.
Collapse
Affiliation(s)
- Bryn K. Werley
- Department
of Chemistry, Gettysburg College, Gettysburg, Pennsylvania 17325, United States
| | - Xintong Hou
- Department
of Chemistry, Gettysburg College, Gettysburg, Pennsylvania 17325, United States
| | - Evan P. Bertonazzi
- Department
of Chemistry, Gettysburg College, Gettysburg, Pennsylvania 17325, United States
| | - Anthony Chianese
- Department
of Chemistry, Colgate University, Hamilton, New York 13346, United States
| | - Timothy W. Funk
- Department
of Chemistry, Gettysburg College, Gettysburg, Pennsylvania 17325, United States
| |
Collapse
|
5
|
Lin WS, Kuwata S. Recent Developments in Reactions and Catalysis of Protic Pyrazole Complexes. Molecules 2023; 28:molecules28083529. [PMID: 37110763 PMCID: PMC10143336 DOI: 10.3390/molecules28083529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Protic pyrazoles (N-unsubstituted pyrazoles) have been versatile ligands in various fields, such as materials chemistry and homogeneous catalysis, owing to their proton-responsive nature. This review provides an overview of the reactivities of protic pyrazole complexes. The coordination chemistry of pincer-type 2,6-bis(1H-pyrazol-3-yl)pyridines is first surveyed as a class of compounds for which significant advances have made in the last decade. The stoichiometric reactivities of protic pyrazole complexes with inorganic nitrogenous compounds are then described, which possibly relates to the inorganic nitrogen cycle in nature. The last part of this article is devoted to outlining the catalytic application of protic pyrazole complexes, emphasizing the mechanistic aspect. The role of the NH group in the protic pyrazole ligand and resulting metal-ligand cooperation in these transformations are discussed.
Collapse
Affiliation(s)
- Wei-Syuan Lin
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 E4-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Shigeki Kuwata
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu 525-8577, Shiga, Japan
| |
Collapse
|
6
|
Visible light mediated Iron-Catalyzed synthesis of C-3 alkylated Indoles, bisindolylmethanes and flavanones using alcohols. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
7
|
Late stage modifications of phosphine oxide ligands by iron‐catalyzed hydrogen borrowing reactions. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Ruiz‐Zambrana C, Dubey RK, Poyatos M, Mateo‐Alonso A, Peris E. Redox-Switchable Complexes Based on Nanographene-NHCs. Chemistry 2022; 28:e202201384. [PMID: 35638131 PMCID: PMC9400984 DOI: 10.1002/chem.202201384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 12/22/2022]
Abstract
A series of rhodium and iridium complexes with a N-heterocyclic carbene (NHC) ligand decorated with a perylene-diimide-pyrene moiety are described. Electrochemical studies reveal that the complexes can undergo two successive one-electron reduction events, associated to the reduction of the PDI moiety attached to the NHC ligand. The reduction of the ligand produces a significant increase on its electron-donating character, as observed from the infrared spectroelectrochemical studies. The rhodium complex was tested in the [3+2] cycloaddition of diphenylcyclopropenone and methylphenylacetylene, where it displayed a redox-switchable behavior. The neutral complex showed moderate activity, which was suppressed when the catalyst was reduced.
Collapse
Affiliation(s)
- César Ruiz‐Zambrana
- Institute of Advanced Materials (INAM). Centro de Innovación en Química Avanzada (ORFEO-CINQA).Universitat Jaume I.Av. Vicente Sos Baynat s/n.Castellón.12071Spain
| | - Rajeev K. Dubey
- POLYMATUniversity of the Basque Country UPV/EHUAvenida de Tolosa 7220018Donostia-San SebastianSpain
| | - Macarena Poyatos
- Institute of Advanced Materials (INAM). Centro de Innovación en Química Avanzada (ORFEO-CINQA).Universitat Jaume I.Av. Vicente Sos Baynat s/n.Castellón.12071Spain
| | - Aurelio Mateo‐Alonso
- POLYMATUniversity of the Basque Country UPV/EHUAvenida de Tolosa 7220018Donostia-San SebastianSpain
- Ikerbasque, Basque Foundation for Science48009BilbaoSpain
| | - Eduardo Peris
- Institute of Advanced Materials (INAM). Centro de Innovación en Química Avanzada (ORFEO-CINQA).Universitat Jaume I.Av. Vicente Sos Baynat s/n.Castellón.12071Spain
| |
Collapse
|
9
|
Biswal P, Siva Subramani M, Samser S, Chandrasekhar V, Venkatasubbaiah K. Ligand-Controlled Ruthenium-Catalyzed Borrowing-Hydrogen and Interrupted-Borrowing-Hydrogen Methodologies: Functionalization of Ketones Using Methanol as a C1 Source. J Org Chem 2022; 88:5135-5146. [PMID: 35695675 DOI: 10.1021/acs.joc.2c00653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Herein we report simple, highly efficient, and phosphine-free N,C-Ru and N,N-Ru catalysts for ligand-controlled borrowing-hydrogen (BH) and interrupted-borrowing-hydrogen (I-BH) methods, respectively. This protocol has been employed on a variety of ketones using MeOH as a green, sustainable, and alternative C1 source to form a C-C bond through the BH and I-BH methods. Reasonably good substrate scope, functional group tolerance, and good-to-excellent yields at 70 °C are the added highlights of these methodologies. Controlled experiments reveal that an in situ formed formaldehyde is one of the crucial elements in this ligand-controlled selective protocol, which upon reaction with a ketone generates an enone as an intermediate. This enone in the presence of the N,C-Ru catalyst and N,N-Ru catalyst through the BH and I-BH pathways yields methylated ketones and 1,5-diketones, respectively.
Collapse
Affiliation(s)
- Priyabrata Biswal
- School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar, an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India
| | - M Siva Subramani
- School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar, an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India
| | - Shaikh Samser
- School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar, an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, India.,Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - Krishnan Venkatasubbaiah
- School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar, an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India
| |
Collapse
|
10
|
Shi Q, Liu B, Li J, Wang X, Wang L. Catalysis in Single Crystalline Materials: From Discrete Molecules to Metal-Organic Frameworks. Chem Asian J 2021; 16:3544-3557. [PMID: 34545994 DOI: 10.1002/asia.202100957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/18/2021] [Indexed: 11/11/2022]
Abstract
Catalysis is one of the key techniques for people's modern life. It has created numerous essential chemicals such as biomedicines, agricultural chemicals and unique materials. Heterogeneous catalysis is the new emerging method with reusable catalysts. Among heterogenous catalysis patterns developed so far, single crystalline catalysis has become the promising one owing to its high catalytic density and selectivity resulted by the inherent porosity, orderliness of the lattices and permeability. These crystalline catalysts could be used in various reactions such as photo-dimerization, Diels-Alder reaction, CO2 transformation and so on. In this review, we highlighted the reported works about the single crystalline catalysts. Both discrete small molecules and metal-organic frameworks (MOFs) have been used to prepare single crystals for catalysis. For discrete molecules based crystalline catalysts, coordinated and covalent molecules have been used. There were more catalytic modes in crystalline MOF catalysts. Three patterns were identified in this review: single crystalline MOFs i) without catalytic sites, ii) with inherent catalytic features and iii) with introducing catalytic units by post synthetic modification. Based on these examples, this review committed to provide the inspirations for the further design and application of single crystalline materials.
Collapse
Affiliation(s)
- Qiang Shi
- Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250014, P. R. China.,Key Laboratory of Light Conversion Materials and Technology of Shandong Academy of Sciences, Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Bing Liu
- Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250014, P. R. China.,Key Laboratory of Light Conversion Materials and Technology of Shandong Academy of Sciences, Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Jing Li
- Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250014, P. R. China.,Shandong Provincial Key Laboratory of High Strength Lightweight Metallic Materials, Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Xuping Wang
- Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250014, P. R. China.,Key Laboratory of Light Conversion Materials and Technology of Shandong Academy of Sciences, Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Leyong Wang
- Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250014, P. R. China.,Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
11
|
Biswal P, Samser S, Meher SK, Chandrasekhar V, Venkatasubbaiah K. Palladium‐Catalyzed Synthesis of α‐Methyl Ketones from Allylic Alcohols and Methanol. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Priyabrata Biswal
- School of Chemical Sciences National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI Bhubaneswar 752050 Odisha India
| | - Shaikh Samser
- School of Chemical Sciences National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI Bhubaneswar 752050 Odisha India
| | - Sushanta Kumar Meher
- School of Chemical Sciences National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI Bhubaneswar 752050 Odisha India
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad Gopanpally Hyderabad 500 046 India
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur 208016 India
| | - Krishnan Venkatasubbaiah
- School of Chemical Sciences National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI Bhubaneswar 752050 Odisha India
| |
Collapse
|
12
|
|