1
|
Liu L, Liu X, Li X, Xu S, Wang YZ. An Integrative Chemical Recycling Approach for Catalytic Oxidation of Epoxy Resin and in situ Separation of Degraded Products. Angew Chem Int Ed Engl 2024; 63:e202405912. [PMID: 38655622 DOI: 10.1002/anie.202405912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024]
Abstract
Although many approaches have been proposed to recycling waste epoxy resin (EP), the separation of mixed degraded products remains a challenge due to their similar structures. To address this, we present a catalytic oxidation strategy that enables mild degradation of EP and in situ separation of degraded products through supramolecular interactions. The oxidative degradation relies on FeIV=O radicals with strong oxidizing properties, which are generated from the electron transfer of FeCl2 with reaction reagents. As the FeIV=O radicals attacked the C-N bonds of EP, EP was broken into fragments rich in active functional groups. Meanwhile, the FeIV=O radicals were reduced to iron ions that can coordinate with the carboxyl groups on the fragments. As a result, the degraded products with different carboxyl content can be effortlessly separated into liquid and solid phase by coordinating with the catalyst. The success of this work lays the foundation for high-value application of degraded products and provides new design ideas for recycling waste plastics with complex compositions.
Collapse
Affiliation(s)
- Lulu Liu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610064, China
| | - Xuehui Liu
- College of Architecture and Environment, The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Sichuan University, Chengdu, 610064, China
| | - Xiaohui Li
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610064, China
| | - Shimei Xu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
2
|
Dhibar S, Pal B, Karmakar K, Roy S, Hafiz SA, Roy A, Bhattacharjee S, Ray SJ, Ray PP, Saha B. A 5-aminoisophthalic acid low molecular weight gelator based novel semiconducting supramolecular Zn(ii)-metallogel: unlocking an efficient Schottky barrier diode for microelectronics. NANOSCALE ADVANCES 2023; 5:6714-6723. [PMID: 38024309 PMCID: PMC10662173 DOI: 10.1039/d3na00671a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
A novel method has been successfully developed for creating supramolecular metallogels using zinc(ii) ions and 5-aminoisophthalic acid as the gelator (low molecular weight gelator) in a dimethylformamide (DMF) solvent at room temperature. Comprehensive rheological investigations confirm the robust mechanical strength of the resulting zinc(ii)-metallogel. Microstructural analysis conducted through field-emission scanning electron microscopy (FESEM) unveils a unique flake-like morphology, with energy-dispersive X-ray (EDX) elemental mapping confirming the prevalence of zinc as the primary constituent of the metallogel. To understand the formation mechanism of this metallogel, Fourier-transform infrared (FT-IR) spectroscopy was employed. Notably, these supramolecular zinc(ii)-metallogel assemblies exhibit electrical conductivity reminiscent of metal-semiconductor (MS) junction electronic components. Surprisingly, the metallogel-based thin film device showcases an impressive electrical conductivity of 1.34 × 10-5 S m-1. The semiconductor characteristics of the synthesized zinc(ii)-metallogel devices, including their Schottky barrier diode properties, have been extensively investigated. This multifaceted study opens up a promising avenue for designing functional materials tailored for electronic applications. It harnesses the synergistic properties of supramolecular metallogels and highlights their significant potential in the development of semiconductor devices. This work represents a novel approach to the creation of advanced materials with unique electronic properties, offering exciting prospects for future innovations in electronic and semiconductor technologies.
Collapse
Affiliation(s)
- Subhendu Dhibar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| | - Baishakhi Pal
- Department of Physics, Jadavpur University Jadavpur Kolkata 700032 India +91 3324572844
| | - Kripasindhu Karmakar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| | - Sanjay Roy
- Department of Chemistry, School of Sciences, Kalyani Regional Centre, Netaji Subhas Open University West Bengal India
| | - Sk Abdul Hafiz
- Department of Chemistry, KaziNazrul University Asansol 713303 West Bengal India
| | - Arpita Roy
- Department of Physics, Indian Institute of Technology Patna Bihar 801106 India
| | | | - Soumya Jyoti Ray
- Department of Physics, Indian Institute of Technology Patna Bihar 801106 India
| | - Partha Pratim Ray
- Department of Physics, Jadavpur University Jadavpur Kolkata 700032 India +91 3324572844
| | - Bidyut Saha
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| |
Collapse
|
3
|
Hema K, Grommet AB, Białek MJ, Wang J, Schneider L, Drechsler C, Yanshyna O, Diskin-Posner Y, Clever GH, Klajn R. Guest Encapsulation Alters the Thermodynamic Landscape of a Coordination Host. J Am Chem Soc 2023; 145. [PMID: 37917939 PMCID: PMC10655118 DOI: 10.1021/jacs.3c08666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023]
Abstract
The architecture of self-assembled host molecules can profoundly affect the properties of the encapsulated guests. For example, a rigid cage with small windows can efficiently protect its contents from the environment; in contrast, tube-shaped, flexible hosts with large openings and an easily accessible cavity are ideally suited for catalysis. Here, we report a "Janus" nature of a Pd6L4 coordination host previously reported to exist exclusively as a tube isomer (T). We show that upon encapsulating various tetrahedrally shaped guests, T can reconfigure into a cage-shaped host (C) in quantitative yield. Extracting the guest affords empty C, which is metastable and spontaneously relaxes to T, and the T⇄C interconversion can be repeated for multiple cycles. Reversible toggling between two vastly different isomers paves the way toward controlling functional properties of coordination hosts "on demand".
Collapse
Affiliation(s)
- Kuntrapakam Hema
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Angela B. Grommet
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Michał J. Białek
- Department
of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50383 Wrocław, Poland
| | - Jinhua Wang
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Laura Schneider
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn Straße 6, 44227 Dortmund, Germany
| | - Christoph Drechsler
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn Straße 6, 44227 Dortmund, Germany
| | - Oksana Yanshyna
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Yael Diskin-Posner
- Chemical
Research Support, Weizmann Institute of
Science, Rehovot 76100, Israel
| | - Guido H. Clever
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn Straße 6, 44227 Dortmund, Germany
| | - Rafal Klajn
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
- Institute
of Science and Technology Austria, Am Campus 1, A-3400 Klosterneuburg, Austria
| |
Collapse
|
4
|
Abuhafez N, Gramage-Doria R. Boosting the activity of Mizoroki-Heck cross-coupling reactions with a supramolecular palladium catalyst favouring remote Zn⋯pyridine interactions. Faraday Discuss 2023; 244:186-198. [PMID: 37083293 DOI: 10.1039/d2fd00165a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Transition metal catalysis benefitting from supramolecular interactions in the secondary coordination sphere in order to pre-organize substrates around the active site and reach a specific selectivity typically occurs under long reaction times and mild reaction temperatures with the aim to maximize such subtle effects. Herein, we demonstrate that the kinetically labile Zn⋯N interaction between a pyridine substrate and a zinc-porphyrin site serving for substrate binding is a unique type of weak interaction that enables identification of supramolecular effects in transition metal catalysis after one hour at a high reaction temperature of 130 °C. Under carefully selected reaction conditions, supramolecularly-regulated palladium-catalyzed Mizoroki-Heck reactions between 3-bromopyridine and terminal olefins (acrylates or styrenes) proceeded in a more efficient manner compared to the non-supramolecular version. The supramolecular catalysis developed here also displayed interesting substrate-selectivity patterns.
Collapse
Affiliation(s)
- Naba Abuhafez
- Univ Rennes, CNRS, ISCR-UMR6226, F-35000 Rennes, France.
| | | |
Collapse
|
5
|
Ham R, Nielsen CJ, Pullen S, Reek JNH. Supramolecular Coordination Cages for Artificial Photosynthesis and Synthetic Photocatalysis. Chem Rev 2023; 123:5225-5261. [PMID: 36662702 PMCID: PMC10176487 DOI: 10.1021/acs.chemrev.2c00759] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Because sunlight is the most abundant energy source on earth, it has huge potential for practical applications ranging from sustainable energy supply to light driven chemistry. From a chemical perspective, excited states generated by light make thermodynamically uphill reactions possible, which forms the basis for energy storage into fuels. In addition, with light, open-shell species can be generated which open up new reaction pathways in organic synthesis. Crucial are photosensitizers, which absorb light and transfer energy to substrates by various mechanisms, processes that highly depend on the distance between the molecules involved. Supramolecular coordination cages are well studied and synthetically accessible reaction vessels with single cavities for guest binding, ensuring close proximity of different components. Due to high modularity of their size, shape, and the nature of metal centers and ligands, cages are ideal platforms to exploit preorganization in photocatalysis. Herein we focus on the application of supramolecular cages for photocatalysis in artificial photosynthesis and in organic photo(redox) catalysis. Finally, a brief overview of immobilization strategies for supramolecular cages provides tools for implementing cages into devices. This review provides inspiration for future design of photocatalytic supramolecular host-guest systems and their application in producing solar fuels and complex organic molecules.
Collapse
Affiliation(s)
- Rens Ham
- Homogeneous and Supramolecular Catalysis, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XHAmsterdam, The Netherlands
| | - C Jasslie Nielsen
- Homogeneous and Supramolecular Catalysis, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XHAmsterdam, The Netherlands
| | - Sonja Pullen
- Homogeneous and Supramolecular Catalysis, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XHAmsterdam, The Netherlands
| | - Joost N H Reek
- Homogeneous and Supramolecular Catalysis, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XHAmsterdam, The Netherlands
| |
Collapse
|
6
|
Brown CM, Lundberg DJ, Lamb JR, Kevlishvili I, Kleinschmidt D, Alfaraj YS, Kulik HJ, Ottaviani MF, Oldenhuis NJ, Johnson JA. Endohedrally Functionalized Metal-Organic Cage-Cross-Linked Polymer Gels as Modular Heterogeneous Catalysts. J Am Chem Soc 2022; 144:13276-13284. [PMID: 35819842 DOI: 10.1021/jacs.2c04289] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The immobilization of homogeneous catalysts onto supports to improve recyclability while maintaining catalytic efficiency is often a trial-and-error process limited by poor control of the local catalyst environment and few strategies to append catalysts to support materials. Here, we introduce a modular heterogenous catalysis platform that addresses these challenges. Our approach leverages the well-defined interiors of self-assembled Pd12L24 metal-organic cages/polyhedra (MOCs): simple mixing of a catalyst-ligand of choice with a polymeric ligand, spacer ligands, and a Pd salt induces self-assembly of Pd12L24-cross-linked polymer gels featuring endohedrally catalyst-functionalized junctions. Semi-empirical calculations show that catalyst incorporation into the MOC junctions of these materials has minimal affect on the MOC geometry, giving rise to well-defined nanoconfined catalyst domains as confirmed experimentally using several techniques. Given the unique network topology of these freestanding gels, they are mechanically robust regardless of their endohedral catalyst composition, allowing them to be physically manipulated and transferred from one reaction to another to achieve multiple rounds of catalysis. Moreover, by decoupling the catalyst environment (interior of MOC junctions) from the physical properties of the support (the polymer matrix), this strategy enables catalysis in environments where homogeneous catalyst analogues are not viable, as demonstrated for the Au(I)-catalyzed cyclization of 4-pentynoic acid in aqueous media.
Collapse
Affiliation(s)
- Christopher M Brown
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - David J Lundberg
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.,Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jessica R Lamb
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ilia Kevlishvili
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Denise Kleinschmidt
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yasmeen S Alfaraj
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | | | - Nathan J Oldenhuis
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Menuey EM, Zhou J, Tian S, Brenner RE, Ren Z, Hua DH, Kilway KV, Moteki SA. Chirality-driven self-assembly: application toward renewable/exchangeable resin-immobilized catalysts. Org Biomol Chem 2022; 20:4314-4319. [PMID: 35583170 DOI: 10.1039/d2ob00439a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Resin-immobilized catalysts were prepared through chirality-driven self-assembly. The method allows the resin-immobilized catalyst to be regenerated under mild conditions and in situ catalyst exchange to be carried out quantitatively. The uniqueness of the methodology was demonstrated by the preparation of a catalyst for TEMPO oxidation as well as a two-step sequential TEMPO oxidation/aldol condensation sequence enabled by facile catalyst exchange.
Collapse
Affiliation(s)
- Elizabeth M Menuey
- Department of Chemistry, University of Missouri Kansas City, 5100 Rockhill Road, Kansas City, Missouri, 64110-2499, USA.
| | - John Zhou
- Department of Chemistry, University of Missouri Kansas City, 5100 Rockhill Road, Kansas City, Missouri, 64110-2499, USA.
| | - Shuyuan Tian
- Department of Chemistry, University of Missouri Kansas City, 5100 Rockhill Road, Kansas City, Missouri, 64110-2499, USA.
| | - Reid E Brenner
- Department of Chemistry, University of Missouri Kansas City, 5100 Rockhill Road, Kansas City, Missouri, 64110-2499, USA.
| | - Zhaoyang Ren
- Department of Chemistry, Kansas State University, 1212 Mid-Campus Dr., Manhattan, KS 66506-0401, USA
| | - Duy H Hua
- Department of Chemistry, Kansas State University, 1212 Mid-Campus Dr., Manhattan, KS 66506-0401, USA
| | - Kathleen V Kilway
- Department of Chemistry, University of Missouri Kansas City, 5100 Rockhill Road, Kansas City, Missouri, 64110-2499, USA.
| | - Shin A Moteki
- Department of Chemistry, University of Missouri Kansas City, 5100 Rockhill Road, Kansas City, Missouri, 64110-2499, USA.
| |
Collapse
|
8
|
Keita H. Supramolecular Immobilization of Adamantyl and Carboxylate Modified N-Heterocyclic Carbene Ligand on Cucurbituril Substrates. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051662. [PMID: 35268763 PMCID: PMC8911794 DOI: 10.3390/molecules27051662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022]
Abstract
Herein, the design, synthesis, supramolecular interactions and structural analysis of a novel bidentate carboxylate chelating N-heterocylic carbene (NHC) ligand is presented. The NHC structure was modified to strategically incorporate adamantyl moiety for the formation of a supramolecular complex with host molecules such as cucurbiturils. The adamantyl modified NHC ligand could potentially be used in recoverable homogeneous catalysts when Immobilized on a solid support via host–guest chemistry. As a versatile precursor, NHC ligand (8) was synthesized and characterized by 1H-NMR, 13C-NMR, FTIR, single crystal x-ray crystallography and elemental analysis. A proof-of-principle non-covalent immobilization of the NHC ligand (8) with a Cucurbit[7]uril (CB7) host was demonstrated using 1H-NMR titration.
Collapse
Affiliation(s)
- Hamidou Keita
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
9
|
Tang Y, Zhao L, Ji G, Zhang Y, He C, Wang Y, Wei J, Duan C. Ligand regulated metal–organic frameworks for synergistic photoredox and nickel catalysis. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00173j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synergistic photoredox and nickel catalytic cross-coupling systems have created a great attraction as a promising methodology to produce the aryl C−N bonds under mild conditions as well as extreme challenge,...
Collapse
|