1
|
Jiang YV, Sisk CA, Toh YN. Implicit guidance of attention in contextual cueing: Neuropsychological and developmental evidence. Neurosci Biobehav Rev 2019; 105:115-125. [DOI: 10.1016/j.neubiorev.2019.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/28/2019] [Accepted: 07/01/2019] [Indexed: 12/13/2022]
|
2
|
Not So Fast: Autistic traits and Anxious Apprehension in Real-World Visual Search Scenarios. J Autism Dev Disord 2019; 49:1795-1806. [DOI: 10.1007/s10803-018-03874-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
3
|
Powell G, Wass SV, Erichsen JT, Leekam SR. First evidence of the feasibility of gaze-contingent attention training for school children with autism. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2016; 20:927-937. [PMID: 26862085 PMCID: PMC5070492 DOI: 10.1177/1362361315617880] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A number of authors have suggested that attention control may be a suitable target for cognitive training in children with autism spectrum disorder. This study provided the first evidence of the feasibility of such training using a battery of tasks intended to target visual attentional control in children with autism spectrum disorder within school-based settings. Twenty-seven children were recruited and randomly assigned to either training or an active control group. Of these, 19 completed the initial assessment, and 17 (9 trained and 8 control) completed all subsequent training sessions. Training of 120 min was administered per participant, spread over six sessions (on average). Compliance with the training tasks was generally high, and evidence of within-task training improvements was found. A number of untrained tasks to assess transfer of training effects were administered pre- and post-training. Changes in the trained group were assessed relative to an active control group. Following training, significant and selective changes in visual sustained attention were observed. Trend training effects were also noted on disengaging visual attention, but no convincing evidence of transfer was found to non-trained assessments of saccadic reaction time and anticipatory looking. Directions for future development and refinement of these new training techniques are discussed.
Collapse
Affiliation(s)
| | - Sam V Wass
- Medical Research Council (MRC) Cognition and Brain Sciences Unit, UK
| | | | | |
Collapse
|
4
|
Abstract
The scientific community has witnessed growing concern about the high rate of false positives and unreliable results within the psychological literature, but the harmful impact of false negatives has been largely ignored. False negatives are particularly concerning in research areas where demonstrating the absence of an effect is crucial, such as studies of unconscious or implicit processing. Research on implicit processes seeks evidence of above-chance performance on some implicit behavioral measure at the same time as chance-level performance (that is, a null result) on an explicit measure of awareness. A systematic review of 73 studies of contextual cuing, a popular implicit learning paradigm, involving 181 statistical analyses of awareness tests, reveals how underpowered studies can lead to failure to reject a false null hypothesis. Among the studies that reported sufficient information, the meta-analytic effect size across awareness tests was dz = 0.31 (95 % CI 0.24–0.37), showing that participants’ learning in these experiments was conscious. The unusually large number of positive results in this literature cannot be explained by selective publication. Instead, our analyses demonstrate that these tests are typically insensitive and underpowered to detect medium to small, but true, effects in awareness tests. These findings challenge a widespread and theoretically important claim about the extent of unconscious human cognition.
Collapse
|
5
|
Johnson BP, Lum JAG, Rinehart NJ, Fielding J. Ocular motor disturbances in autism spectrum disorders: Systematic review and comprehensive meta-analysis. Neurosci Biobehav Rev 2016; 69:260-79. [PMID: 27527824 DOI: 10.1016/j.neubiorev.2016.08.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/25/2016] [Accepted: 08/05/2016] [Indexed: 01/21/2023]
Abstract
There has been considerable focus placed on how individuals with autism spectrum disorder (ASD) visually perceive and attend to social information, such as facial expressions or social gaze. The role of eye movements is inextricable from visual perception, however this aspect is often overlooked. We performed a series of meta-analyses based on data from 28 studies of eye movements in ASD to determine whether there is evidence for ocular motor dysfunction in ASD. Tasks assessed included visually-guided saccade tasks, gap/overlap, anti-saccade, pursuit tasks and ocular fixation. These analyses revealed evidence for ocular motor dysfunction in ASD, specifically relating to saccade dysmetria, difficulty inhibiting saccades and impaired tracking of moving targets. However there was no evidence for deficits relating to initiating eye movements, or engaging and disengaging from simple visual targets. Characterizing ocular motor abnormalities in ASD may provide insight into the functional integrity of brain networks in ASD across development, and assist our understanding of visual and social attention in ASD.
Collapse
Affiliation(s)
- Beth P Johnson
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, 18 Innovation Walk, Monash University, VIC 3800, Australia.
| | - Jarrad A G Lum
- Deakin Child Study Centre, School of Psychology, Deakin Unviersity, 221 Burwood Highway, Burwood, VIC 3125, Australia
| | - Nicole J Rinehart
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, 18 Innovation Walk, Monash University, VIC 3800, Australia; Deakin Child Study Centre, School of Psychology, Deakin Unviersity, 221 Burwood Highway, Burwood, VIC 3125, Australia
| | - Joanne Fielding
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, 18 Innovation Walk, Monash University, VIC 3800, Australia
| |
Collapse
|
6
|
Leekam S. Social cognitive impairment and autism: what are we trying to explain? Philos Trans R Soc Lond B Biol Sci 2016; 371:20150082. [PMID: 26644600 PMCID: PMC4685527 DOI: 10.1098/rstb.2015.0082] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2015] [Indexed: 12/31/2022] Open
Abstract
Early psychological theories of autism explained the clinical features of this condition in terms of perceptual and sensory processing impairments. The arrival of domain-specific social cognitive theories changed this focus, postulating a 'primary' and specific psychological impairment of social cognition. Across the years, evidence has been growing in support of social cognitive and social attention explanations in autism. However, there has also been evidence for general non-social cognitive impairments in representational understanding, attention allocation and sensory processing. Here, I review recent findings and consider the case for the specificity and primacy of the social cognitive impairment, proposing that we should focus more explicitly on clinically valid features for insights on the integration of 'social' and 'non-social' cognition.
Collapse
Affiliation(s)
- Susan Leekam
- Wales Autism Research Centre, School of Psychology, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| |
Collapse
|
7
|
Brief Report: Patterns of Eye Movements in Face to Face Conversation are Associated with Autistic Traits: Evidence from a Student Sample. J Autism Dev Disord 2015; 46:305-314. [DOI: 10.1007/s10803-015-2546-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Foti F, De Crescenzo F, Vivanti G, Menghini D, Vicari S. Implicit learning in individuals with autism spectrum disorders: a meta-analysis. Psychol Med 2015; 45:897-910. [PMID: 25126858 DOI: 10.1017/s0033291714001950] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Individuals with autism spectrum disorders (ASDs) are characterized by social communication difficulties and behavioural rigidity. Difficulties in learning from others are one of the most devastating features of this group of conditions. Nevertheless, the nature of learning difficulties in ASDs is still unclear. Given the relevance of implicit learning for social and communicative functioning, a link has been hypothesized between ASDs and implicit learning deficit. However, studies that have employed formal testing of implicit learning in ASDs provided mixed results. METHOD We undertook a systematic search of studies that examined implicit learning in ASDs using serial reaction time (SRT), alternating serial reaction time (ASRT), pursuit rotor (PR), and contextual cueing (CC) tasks, and synthesized the data using meta-analysis. A total of 11 studies were identified, representing data from 407 individuals with ASDs and typically developing comparison participants. RESULTS The results indicate that individuals with ASDs do not differ in any task considered [SRT and ASRT task: standardized mean difference (SMD) -0.18, 95% confidence interval (CI) -0.71 to 0.36; PR task: SMD -0.34, 95% CI -1.04 to 0.36; CC task: SMD 0.27, 95% CI -0.07 to 0.60]. CONCLUSIONS Based on our synthesis of the existing literature, we conclude that individuals with ASDs can learn implicitly, supporting the hypothesis that implicit learning deficits do not represent a core feature in ASDs.
Collapse
Affiliation(s)
- F Foti
- Department of Psychology,'Sapienza' University of Rome,Italy
| | - F De Crescenzo
- Child Neuropsychiatry Unit, Neuroscience Department,'Children's Hospital Bambino Gesu',Rome,Italy
| | - G Vivanti
- Olga Tennison Autism Research Centre, School of Psychological Science,La Trobe University,Melbourne, VIC,Australia
| | - D Menghini
- Child Neuropsychiatry Unit, Neuroscience Department,'Children's Hospital Bambino Gesu',Rome,Italy
| | - S Vicari
- Child Neuropsychiatry Unit, Neuroscience Department,'Children's Hospital Bambino Gesu',Rome,Italy
| |
Collapse
|
9
|
Wass SV, Jones EJH, Gliga T, Smith TJ, Charman T, Johnson MH. Shorter spontaneous fixation durations in infants with later emerging autism. Sci Rep 2015; 5:8284. [PMID: 25655672 PMCID: PMC4319149 DOI: 10.1038/srep08284] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 01/12/2015] [Indexed: 12/24/2022] Open
Abstract
Little is known about how spontaneous attentional deployment differs on a millisecond-level scale in the early development of autism spectrum disorders (ASD). We measured fine-grained eye movement patterns in 6-to 9-month-old infants at high or low familial risk (HR/LR) of ASD while they viewed static images. We observed shorter fixation durations (i.e. the time interval between saccades) in HR than LR infants. Preliminary analyses indicate that these results were replicated in a second cohort of infants. Fixation durations were shortest in those infants who went on to receive an ASD diagnosis at 36 months. While these findings demonstrate early-developing atypicality in fine-grained measures of attentional deployment early in the etiology of ASD, the specificity of these effects to ASD remains to be determined.
Collapse
Affiliation(s)
- Sam V Wass
- Medical Research Council Cognition and Brain Sciences Unit, Cambridge, UK
| | - Emily J H Jones
- Centre for Brain and Cognitive Development, Birkbeck, University of London, UK
| | - Teodora Gliga
- Centre for Brain and Cognitive Development, Birkbeck, University of London, UK
| | - Tim J Smith
- Centre for Brain and Cognitive Development, Birkbeck, University of London, UK
| | - Tony Charman
- King's College London, Institute of Psychiatry, Psychology &Neuroscience, Department of Psychology, UK
| | - Mark H Johnson
- Centre for Brain and Cognitive Development, Birkbeck, University of London, UK
| | | |
Collapse
|
10
|
Miller M, Chukoskie L, Zinni M, Townsend J, Trauner D. Dyspraxia, motor function and visual-motor integration in autism. Behav Brain Res 2014; 269:95-102. [PMID: 24742861 PMCID: PMC4072207 DOI: 10.1016/j.bbr.2014.04.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 03/12/2014] [Accepted: 04/07/2014] [Indexed: 11/28/2022]
Abstract
This project assessed dyspraxia in high-functioning school aged children with autism with a focus on Ideational Praxis. We examined the association of specific underlying motor function including eye movement with ideational dyspraxia (sequences of skilled movements) as well as the possible role of visual-motor integration in dyspraxia. We found that compared to IQ-, sex- and age-matched typically developing children, the children with autism performed significantly worse on: Ideational and Buccofacial praxis; a broad range of motor tests, including measures of simple motor skill, timing and accuracy of saccadic eye movements and motor coordination; and tests of visual-motor integration. Impairments in individual children with autism were heterogeneous in nature, although when we examined the praxis data as a function of a qualitative measure representing motor timing, we found that children with poor motor timing performed worse on all praxis categories and had slower and less accurate eye movements while those with regular timing performed as well as typical children on those same tasks. Our data provide evidence that both motor function and visual-motor integration contribute to dyspraxia. We suggest that dyspraxia in autism involves cerebellar mechanisms of movement control and the integration of these mechanisms with cortical networks implicated in praxis.
Collapse
Affiliation(s)
- M Miller
- School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - L Chukoskie
- Institute for Neural Computation, University of California, San Diego, La Jolla, CA, USA
| | - M Zinni
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, MC-0959, La Jolla, CA 92093-0959, USA
| | - J Townsend
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, MC-0959, La Jolla, CA 92093-0959, USA.
| | - D Trauner
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, MC-0959, La Jolla, CA 92093-0959, USA
| |
Collapse
|