1
|
Fan S, Wei X, Lü R, Feng C, Zhang Q, Lü X, Jin Y, Yan M, Yang Z. Roles of the N-terminal motif in improving the activity and soluble expression of phenylalanine ammonia lyases in Escherichia coli. Int J Biol Macromol 2024; 262:130248. [PMID: 38367782 DOI: 10.1016/j.ijbiomac.2024.130248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Phenylalanine ammonia-lyase (PAL) has various applications in fine chemical manufacturing and the pharmaceutical industry. In particular, PAL derived from Anabaena variabilis (AvPAL) is used as a therapeutic agent to the treat phenylketonuria in clinical settings. In this study, we aligned the amino acid sequences of AvPAL and PAL derived from Nostoc punctiforme (NpPAL) to obtain several mutants with enhanced activity, expression yield, and thermal stability via amino acid substitution and saturation mutagenesis at the N-terminal position. Enzyme kinetic experiments revealed that the kcat values of NpPAL-N2K, NpPAL-I3T, and NpPAL-T4L mutants were increased to 3.2-, 2.8-, and 3.3-fold that of the wild-type, respectively. Saturation mutagenesis of the fourth amino acid in AvPAL revealed that the kcat values of AvPAL-L4N, AvPAL-L4P, AvPAL-L4Q and AvPAL-L4S increased to 4.0-, 3.7-, 3.6-, and 3.2-fold, respectively. Additionally, the soluble protein yield of AvPAL-L4K increased to approximately 14 mg/L, which is approximately 3.5-fold that of AvPAL. Molecular dynamics studies further revealed that maintaining the attacking state of the reaction and N-terminal structure increased the rate of catalytic reaction and improved the solubility of proteins. These findings provide new insights for the rational design of PAL in the future.
Collapse
Affiliation(s)
- Shuai Fan
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiyu Wei
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ruijie Lü
- School of Pharmacy, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Cuiyue Feng
- School of Pharmacy, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Qian Zhang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xudong Lü
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuanyuan Jin
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Maocai Yan
- School of Pharmacy, Jining Medical University, Rizhao 276800, Shandong, China.
| | - Zhaoyong Yang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
2
|
Albogami A, Naguib DM. Agricultural wastes: a new promising source for phenylalanine ammonia-lyase as anticancer agent. 3 Biotech 2024; 14:22. [PMID: 38156037 PMCID: PMC10751285 DOI: 10.1007/s13205-023-03871-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 11/21/2023] [Indexed: 12/30/2023] Open
Abstract
The present study aims to investigate the physicochemical characteristics of phenylalanine ammonia-lyase (PAL) extracted from agricultural waste and its potential use as an anticancer agent in comparison to microbial PAL. We extracted and partially purified PAL from agricultural waste sources. We assessed the temperature and pH range of PAL and determined enzyme kinetics parameters including Michaelis constants (Km), maximum velocity (Vmax), and specificity constant values (Vmax/Km). Additionally, we examined the effects of different storage temperatures on PAL activity. In our analysis, we compared the efficacy of agricultural waste-derived PAL with PAL from Rhodotorula glutinis. The results demonstrated that PAL extracted from agricultural waste exhibited significantly higher specific activity (Vmax/Km) compared to its microbial counterpart. The agricultural waste-derived PAL displayed a stronger affinity for phenylalanine, as indicated by a lower Km value than the microbial PAL did. Furthermore, PAL from agricultural waste maintained activity across a broader temperature and pH range (15-75 °C, pH 5-11), in contrast to microbial PAL (20-60 °C, pH 5.5-10). Importantly, the PAL derived from agricultural waste exhibited superior stability, retaining over 90% of its activity after 6 months of storage at room temperature (25 °C), whereas microbial PAL lost more than 70% of its activity under similar storage conditions. In anticancer experiments against various cancer cell lines, agricultural waste-derived PAL demonstrated greater anticancer activity compared to microbial PAL. These findings suggest that PAL sourced from agricultural waste has the potential to be a safe and effective natural anticancer agent.
Collapse
Affiliation(s)
- Abdulaziz Albogami
- Biology Department, Faculty of Science, Al-Baha University (BU), Alaqiq, Saudi Arabia
| | - Deyala M. Naguib
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
- Biology Department, Faculty of Science and Arts in Al-Mikhwah, Al-Baha University (BU), Al-Mikhwah, Saudi Arabia
| |
Collapse
|
3
|
Trivedi VD, Chappell TC, Krishna NB, Shetty A, Sigamani GG, Mohan K, Ramesh A, R PK, Nair NU. In-Depth Sequence–Function Characterization Reveals Multiple Pathways to Enhance Enzymatic Activity. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05508] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Vikas D. Trivedi
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Todd C. Chappell
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | | | - Anuj Shetty
- Kcat Enzymatic Private Limited, Bengaluru, Karnataka, India 560005
| | | | - Karishma Mohan
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Athreya Ramesh
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Pravin Kumar R
- Kcat Enzymatic Private Limited, Bengaluru, Karnataka, India 560005
| | - Nikhil U. Nair
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
4
|
Xue F, Liu Z, Yu Y, Wu Y, Jin Y, Yang M, Ma L. Codon-Optimized Rhodotorula glutinis PAL Expressed in Escherichia coli With Enhanced Activities. Front Bioeng Biotechnol 2021; 8:610506. [PMID: 33614604 PMCID: PMC7886678 DOI: 10.3389/fbioe.2020.610506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
PAL (phenylalanine ammonia lyase) is important for secondary metabolite production in plants and microorganisms. There is broad interest in engineering PAL for its biocatalytic applications in industry, agriculture, and medicine. The production of quantities of high-activity enzymes has been explored by gene cloning and heterogeneous expression of the corresponding protein. Here, we cloned the cDNA of Rhodotorula glutinis PAL (RgPAL) and introduced codon optimization to improve protein expression in Escherichia coli and enzyme activities in vitro. The RgPAL gene was cloned by reverse transcription and named pal-wt. It had a full-length of 2,121 bp and encoded a 706-amino-acid protein. The pal-wt was inefficiently expressed in E. coli, even when the expression host and physical conditions were optimized. Therefore, codon optimization was used to obtain the corresponding gene sequence, named pal-opt, in order to encode the same amino acid for the RgPAL protein. The recombinant protein encoded by pal-opt, named PAL-opt, was successfully expressed in E. coli and then purified to detect its enzymatic activity in vitro. Consequently, 55.33 ± 0.88 mg/L of PAL-opt protein with a specific activity of 1,219 ± 147 U/mg and Km value of 609 μM for substrate L-phenylalanine was easily obtained. The enzyme protein also displayed tyrosine ammonia lyase (TAL)–specific activity of 80 ± 2 U/mg and Km value of 13.3 μM for substrate L-tyrosine. The bifunctional enzyme RgPAL/TAL (PAL-opt) and its easy expression advantage will provide an important basis for further applications.
Collapse
Affiliation(s)
- Feiyan Xue
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
| | - Zihui Liu
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
| | - Yue Yu
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
| | - Yangjie Wu
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
| | - Yuxin Jin
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
| | - Mingfeng Yang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
| | - Lanqing Ma
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
5
|
Vachher M, Sen A, Kapila R, Nigam A. Microbial therapeutic enzymes: A promising area of biopharmaceuticals. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
6
|
Biomedical applications of microbial phenylalanine ammonia lyase: Current status and future prospects. Biochimie 2020; 177:142-152. [PMID: 32828824 DOI: 10.1016/j.biochi.2020.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/01/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022]
Abstract
Phenylalanine ammonia lyase (PAL) has recently emerged as an important therapeutic enzyme with several biomedical applications. The enzyme catabolizes l-phenylalanine to trans-cinnamate and ammonia. PAL is widely distributed in higher plants, some algae, ferns, and microorganisms, but absent in animals. Although microbial PAL has been extensively exploited in the past for producing industrially important metabolites, its high substrate specificity and catalytic efficacy lately spurred interest in its biomedical applications. PEG-PAL drug named Palynziq™, isolated from Anabaena variabilis has been recently approved for the treatment of adult phenylketonuria (PKU) patients. Further, it has exhibited high potency in regressing tumors and treating tyrosine related metabolic abnormalities like tyrosinemia. Several therapeutically valuable metabolites have been biosynthesized via its catalytic action including dietary supplements, antimicrobial peptides, aspartame, amino-acids, and their derivatives. This review focuses on all the prospective biomedical applications of PAL. It also provides an overview of the structure, production parameters, and various strategies to improve the therapeutic potential of this enzyme. Engineered PAL with improved pharmacodynamic and pharmacokinetic properties will further establish this enzyme as a highly efficient biological drug.
Collapse
|
7
|
Study of the Potential of the Capsule Shell Based on Natural Polysaccharides in Targeted Delivery of the L-Phenylalanine Ammonia-Lyase Enzyme Preparation. Pharmaceuticals (Basel) 2020; 13:ph13040063. [PMID: 32283743 PMCID: PMC7243110 DOI: 10.3390/ph13040063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022] Open
Abstract
The treatment of classical phenylketonuria is currently represented by many new methods of disease management. A promising method is the use of the enzyme L-phenylalanine ammonia-lyase (PAL) in various forms. The widespread use of enzyme preparations in therapy is limited by a lack of understanding of the mechanisms and systems of the targeted transport of PAL into certain organs and tissues as a result of the incorporation of a drug into the carrier. To ensure the stability of enzymes during the delivery process, encapsulation is preferable, which, as a rule, ensures the preservation of the qualitative characteristics of the enzymes orally applied to the environmental effects of the gastrointestinal tract (acidity, temperature, oxidation, etc.). Capsule preparations showed sufficient stability in the model gastric fluids and sustained release of the drug in the simulated intestinal fluid. Currently, there is a wide range of polymers used for encapsulation. The use of natural sources in the production technology of capsule systems improves bioavailability, controls the release, and prolongs the half-life of active substances. The advantage of this method is that the used enzyme is completely protected by the cell membranes of the capsules, which preserve its stability in the aggressive environment of the gastrointestinal tract. Capsules were obtained on the basis of compositions of hydrocolloids of plant origin. The potential of the developed capsules for targeted delivery of the enzyme preparation was studied. The degradation of the encapsulated form of the PAL enzyme preparation was studied in vitro in model bio-relevant media simulating the gastric and intestinal environment. The dynamics of the breakdown of the capsule shell allow us to expect that the release of L-phenylalanine ammonia-lyase from capsules based on plant hydrocolloids will occur no earlier than reaching the upper intestines, where the interaction with the protein components of the consumed food products to neutralize phenylalanine should occur.
Collapse
|
8
|
Microbial enzymes for deprivation of amino acid metabolism in malignant cells: biological strategy for cancer treatment. Appl Microbiol Biotechnol 2020; 104:2857-2869. [PMID: 32037468 DOI: 10.1007/s00253-020-10432-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 12/17/2022]
Abstract
Amino acid deprivation therapy (AADT) is emerging as a promising strategy for the development of novel therapeutics against cancer. This biological therapy relies upon the differences in the metabolism of cancer and normal cells. The rapid growth of tumors results in decreased expression of certain enzymes leading to auxotrophy for some specific amino acids. These auxotrophic tumors are targeted by amino acid-depleting enzymes. The depletion of amino acid selectively inhibits tumor growth as the normal cells can synthesize amino acids by their usual machinery. The enzymes used in AADT are mostly obtained from microbes for their easy availability. Microbial L-asparaginase is already approved by FDA for the treatment of acute lymphoblastic leukemia. Arginine deiminase and methionase are under clinical trials and the therapeutic potential of lysine oxidase, glutaminase and phenylalanine ammonia lyase is also being explored. The present review provides an overview of microbial amino acid depriving enzymes. Various attributes of these enzymes like structure, mode of action, production, formulations, and targeted cancers are discussed. The challenges faced and the combat strategies to establish AADT in standard cancer armamentarium are also reviewed.Key Points • Amino acid deprivation therapy is a potential therapy for auxotrophic tumors. • Microbial enzymes are used due to their ease of manipulation and high productivity. • Enzyme properties are improved by PEGylation, encapsulation, and genetic engineering. • AADT can be employed as combinational therapy for better containment of cancer.
Collapse
|
9
|
Babich O, Dyshlyuk L, Noskova S, Prosekov A, Ivanova S, Pavsky V. The effectiveness of plant hydrocolloids at maintaining the quality characteristics of the encapsulated form of L-phenylalanine-ammonia-lyase. Heliyon 2019; 6:e03096. [PMID: 31909265 PMCID: PMC6938834 DOI: 10.1016/j.heliyon.2019.e03096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 11/13/2019] [Accepted: 12/18/2019] [Indexed: 01/29/2023] Open
Abstract
The effect of three types of polysaccharides (agar-agar, carrageenan, hydroxypropyl methylcellulose) on the activity and stability during storage at given temperature conditions of the enzyme preparation L-phenylalanine ammonia-lyase was studied. It was found that the most suitable storage temperature for encapsulated L-phenylalanine-ammonia-lyase is room temperature up to 25 °C for all samples of capsules from plant polysaccharides. Samples of capsules with agar-agar and hydroxypropyl methylcellulose under different temperature conditions inhibited the decrease in enzyme activity, which in other samples of capsules reached 90% in 6 months of storage. In samples of capsules with carrageenan at temperatures of 4 °C and 30 °C, there was a significant decrease in the activity of the enzyme preparation. Selection of capsule samples from plant polysaccharides suitable for L-phenylalanine-ammonia-lyase replacement therapy is done after studying the mechanisms of capsule destruction under conditions close to the conditions of the gastrointestinal tract, to which the next stage of our research will be devoted.
Collapse
Affiliation(s)
- Olga Babich
- Laboratory of Biocatalysis, Kemerovo State University, Krasnaya Street 6, Kemerovo, 650043, Russia.,Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad, 236016, Russia
| | - Lyubov Dyshlyuk
- Research Institute of Biotechnology, Kemerovo State University, Krasnaya Street 6, Kemerovo, 650043, Russia
| | - Svetlana Noskova
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad, 236016, Russia
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, Krasnaya Street 6, Kemerovo, 650043, Russia
| | - Svetlana Ivanova
- Research Institute of Biotechnology, Kemerovo State University, Krasnaya Street 6, Kemerovo, 650043, Russia.,Department of General Mathematics and Informatics, Kemerovo State University, Krasnaya Street 6, Kemerovo 650043, Russia
| | - Valery Pavsky
- Research Institute of Biotechnology, Kemerovo State University, Krasnaya Street 6, Kemerovo, 650043, Russia.,Department of General Mathematics and Informatics, Kemerovo State University, Krasnaya Street 6, Kemerovo 650043, Russia
| |
Collapse
|
10
|
Pokrovsky VS, Anisimova NY, Davydov DZ, Bazhenov SV, Bulushova NV, Zavilgelsky GB, Kotova VY, Manukhov IV. Methionine Gamma Lyase from Clostridium sporogenes Increases the Anticancer Efficacy of Doxorubicin on A549 Cancer Cells In Vitro and Human Cancer Xenografts. Methods Mol Biol 2019; 1866:243-261. [PMID: 30725420 DOI: 10.1007/978-1-4939-8796-2_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The anticancer efficacy of methionine γ-lyase (MGL) from Clostridium sporogenes (C. sporogenes) is described. MGL was active against cancer cells in vitro and in vivo. Doxorubicin (DOX) and MGL were more effective on A549 human lung-cancer growth inhibition than either agent alone in vitro and in vivo.
Collapse
Affiliation(s)
- V S Pokrovsky
- Laboratory of Combined Treatment, N.N. Blokhin Cancer Research Center, Moscow, Russia. .,Department of Biochemistry, People's Friendship University (RUDN University), Moscow, Russia.
| | - N Yu Anisimova
- Laboratory of Combined Treatment, N.N. Blokhin Cancer Research Center, Moscow, Russia
| | - D Zh Davydov
- Laboratory of Combined Treatment, N.N. Blokhin Cancer Research Center, Moscow, Russia
| | - S V Bazhenov
- State Research Institute of Genetics and Selection of Industrial Microorganisms, Moscow, Russia.,Laboratory of Molecular Genetics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - N V Bulushova
- State Research Institute of Genetics and Selection of Industrial Microorganisms, Moscow, Russia
| | - G B Zavilgelsky
- State Research Institute of Genetics and Selection of Industrial Microorganisms, Moscow, Russia
| | - V Y Kotova
- State Research Institute of Genetics and Selection of Industrial Microorganisms, Moscow, Russia
| | - I V Manukhov
- State Research Institute of Genetics and Selection of Industrial Microorganisms, Moscow, Russia.,Laboratory of Molecular Genetics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
11
|
Pokrovsky VS, Chepikova OE, Davydov DZ, Zamyatnin AA, Lukashev AN, Lukasheva EV. Amino Acid Degrading Enzymes and their Application in Cancer Therapy. Curr Med Chem 2019; 26:446-464. [PMID: 28990519 DOI: 10.2174/0929867324666171006132729] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 09/12/2017] [Accepted: 09/28/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Amino acids are essential components in various biochemical pathways. The deprivation of certain amino acids is an antimetabolite strategy for the treatment of amino acid-dependent cancers which exploits the compromised metabolism of malignant cells. Several studies have focused on the development and preclinical and clinical evaluation of amino acid degrading enzymes, namely L-asparaginase, L-methionine γ-lyase, L-arginine deiminase, L-lysine α-oxidase. Further research into cancer cell metabolism may therefore define possible targets for controlling tumor growth. OBJECTIVE The purpose of this review was to summarize recent progress in the relationship between amino acids metabolism and cancer therapy, with a particular focus on Lasparagine, L-methionine, L-arginine and L-lysine degrading enzymes and their formulations, which have been successfully used in the treatment of several types of cancer. METHODS We carried out a structured search among literature regarding to amino acid degrading enzymes. The main aspects of search were in vitro and in vivo studies, clinical trials concerning application of these enzymes in oncology. RESULTS Most published research are on the subject of L-asparaginase properties and it's use for cancer treatment. L-arginine deiminase has shown promising results in a phase II trial in advanced melanoma and hepatocellular carcinoma. Other enzymes, in particular Lmethionine γ-lyase and L-lysine α-oxidase, were effective in vitro and in vivo. CONCLUSION The findings of this review revealed that therapy based on amino acid depletion may have the potential application for cancer treatment but further clinical investigations are required to provide the efficacy and safety of these agents.
Collapse
Affiliation(s)
- Vadim S Pokrovsky
- Blokhin Cancer Research Center, Moscow, Russian Federation.,Orekhovich Institute of Biomedical Chemistry, Moscow, Russian Federation.,People's Friendship University, Russia (RUDN University), Moscow, Russian Federation
| | - Olga E Chepikova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation.,Belozersky Institute of Physico- Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Alexander N Lukashev
- People's Friendship University, Russia (RUDN University), Moscow, Russian Federation.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Elena V Lukasheva
- People's Friendship University, Russia (RUDN University), Moscow, Russian Federation
| |
Collapse
|
12
|
Owji H, Hemmati S. A comprehensive in silico characterization of bacterial signal peptides for the excretory production of Anabaena variabilis phenylalanine ammonia lyase in Escherichia coli. 3 Biotech 2018; 8:488. [PMID: 30498661 DOI: 10.1007/s13205-018-1517-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 11/13/2018] [Indexed: 12/30/2022] Open
Abstract
Anabaena variabilis double mutant (C503S/C565S) phenylalanine ammonia-lyase (PAL) is an appealing enzyme in the enzyme-replacement therapy of phenylketonuria. Yet abundant production of this enzyme has been of concern for industrial production. In this study, we have characterized 1175 bacterial signal peptides (SPs) and identified the most efficient ones for the excretory production of mutant AvPAL. Analysis by SignalP 4.1 revealed that more than 61% of SPs had a D-score greater than 0.7, denoting to be highly efficient. The optimum length of a bacterial SP was 25-30. The preferable net positive charge and the second residue of N-region were + 2 and Lys/Arg, respectively. Highly efficient SPs possessed 3-5 Leus in their H-region and A/L/VXA-FF cleavage site. Highly efficient SPs were from Escherichia coli, corroborating the necessity of an agreement between SPs and the host. Physiochemical characterization of mutant AvPAL conjugates via ProtParam and PROSOII, revealed that ~ 99.5% of proteins would not be entraped in inclusion bodies. Secretory pathways were identified by EffectiveDB and more than 98% of SPs were cleavable. Chimeras were modeled using the I-TASSER program, being evaluated by the Ramachandran plots. The mRNA secondary structure of mutant AvPAL upon linkage to SPs was assessed using the mfold program. It was shown that the linkage of a SP does not affect mutant AvPAL's stability at the protein or mRNA level. AllergenFP tool demonstrated that chimeras were not allergen. SPs, including FMF4_ECOLX, E2BB_ECOLX, and LPTA_ECOLI exhibited the highest propensity for secretion and appropriate features in all analyses.
Collapse
Affiliation(s)
- Hajar Owji
- 1Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- 2Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Hemmati
- 1Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- 2Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
Methionine gamma lyase from Clostridium sporogenes increases the anticancer effect of doxorubicin in A549 cells and human cancer xenografts. Invest New Drugs 2018; 37:201-209. [PMID: 29948359 DOI: 10.1007/s10637-018-0619-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/06/2018] [Indexed: 10/28/2022]
Abstract
The anti-cancer efficacy of methionine γ-lyase (MGL) from Clostridium sporogenes (C. sporogenes) is described. MGL was active against cancer models in vitro and in vivo. The calculated EC50 values for MGL were 4.4 U/ml for A549, 7.5 U/ml for SK-BR3, 2.4 U/ml for SKOV3, and 0.4 U/ml for MCF7 cells. The combination of doxorubicin (DOX) and MGL was more effective for A549 human lung cancer growth inhibition than either agent alone in vitro and in vivo. MGL reduced the EC50 of doxorubicin from 35.9 μg/mL to 0.01-0.265 μg/mL. The growth inhibitory effect of DOX + MGL on A549 xenografts in vivo was reflective of the results obtained in vitro. The inhibition rate of tumor growth in the combined arm was 57%, significantly higher than that in the doxorubicin (p = 0.033)-alone arm.
Collapse
|
14
|
Zhdanov DD, Pokrovsky VS, Pokrovskaya MV, Alexandrova SS, Eldarov MA, Grishin DV, Basharov MM, Gladilina YA, Podobed OV, Sokolov NN. Rhodospirillum rubruml-asparaginase targets tumor growth by a dual mechanism involving telomerase inhibition. Biochem Biophys Res Commun 2017; 492:282-288. [PMID: 28837806 DOI: 10.1016/j.bbrc.2017.08.078] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 08/21/2017] [Indexed: 01/20/2023]
Abstract
Rhodospirillum rubruml-asparaginase mutant RrA E149R, V150P, F151T (RrA) was previously identified to down-regulate telomerase activity along with catalyzing the hydrolysis of l-asparagine. The aim of this study was to define the effect of prolonged RrA exposure on telomerase activity, maintenance of telomeres and proliferation of cancer cells in vitro and in vivo. RrA could inhibit telomerase activity in SCOV-3, SkBr-3 and A549 human cancer cell lines due to its ability to down-regulate the expression of telomerase catalytic subunit hTERT. Telomerase activity in treated cells did not exceeded 29.63 ± 12.3% of control cells. Continuous RrA exposure of these cells resulted in shortening of telomeres followed by cell death in vitro. Using real time PCR we showed that length of telomeres in SCOV-3 cells has been gradually decreasing from 10105 ± 2530 b.p. to 1233 ± 636 b.p. after 35 days of cultivation. RrA treatment of xenograft models in vivo showed slight inhibition of tumor growth accompanied with 49.5-53.3% of decrease in hTERT expression in the all tumors. However down-regulation of hTERT expression, inhibition of telomerase activity and the loss of telomeres was significant in response to RrA administration in xenograft models. These results should facilitate further investigations of RrA as a potent therapeutic protein.
Collapse
Affiliation(s)
| | - Vadim S Pokrovsky
- Institute of Biomedical Chemistry, Moscow, Russia; N.N. Blokhin Cancer Research Center, Moscow, Russia; Peoples' Friendship University of Russia, Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Parmeggiani F, Weise NJ, Ahmed ST, Turner NJ. Synthetic and Therapeutic Applications of Ammonia-lyases and Aminomutases. Chem Rev 2017; 118:73-118. [DOI: 10.1021/acs.chemrev.6b00824] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Fabio Parmeggiani
- School of Chemistry, Manchester
Institute of Biotechnology, University of Manchester, 131 Princess
Street, M1 7DN, Manchester, United Kingdom
| | - Nicholas J. Weise
- School of Chemistry, Manchester
Institute of Biotechnology, University of Manchester, 131 Princess
Street, M1 7DN, Manchester, United Kingdom
| | - Syed T. Ahmed
- School of Chemistry, Manchester
Institute of Biotechnology, University of Manchester, 131 Princess
Street, M1 7DN, Manchester, United Kingdom
| | - Nicholas J. Turner
- School of Chemistry, Manchester
Institute of Biotechnology, University of Manchester, 131 Princess
Street, M1 7DN, Manchester, United Kingdom
| |
Collapse
|
16
|
Zhang F, Huang N, Zhou L, Cui W, Liu Z, Zhu L, Liu Y, Zhou Z. Modulating the pH Activity Profiles of Phenylalanine Ammonia Lyase from Anabaena variabilis by Modification of Center-Near Surface Residues. Appl Biochem Biotechnol 2017; 183:699-711. [DOI: 10.1007/s12010-017-2458-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/12/2017] [Indexed: 10/19/2022]
|
17
|
Li L, Yan K, Huang S, Pan S, Chen G, Liang Z. A Novel Phenylalanine Ammonia-Lyase Purified from Rhodosporidium paludigenum PT3. Chem Nat Compd 2017. [DOI: 10.1007/s10600-017-2008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Walter T, Wijewardena D, Walker KD. Mutation of Aryl Binding Pocket Residues Results in an Unexpected Activity Switch in an Oryza sativa Tyrosine Aminomutase. Biochemistry 2016; 55:3497-503. [DOI: 10.1021/acs.biochem.6b00331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tyler Walter
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Devinda Wijewardena
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kevin D. Walker
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
19
|
Zang Y, Jiang T, Cong Y, Zheng Z, Ouyang J. Molecular Characterization of a Recombinant Zea mays Phenylalanine Ammonia-Lyase (ZmPAL2) and Its Application in trans-Cinnamic Acid Production from L-Phenylalanine. Appl Biochem Biotechnol 2015; 176:924-37. [PMID: 25947617 DOI: 10.1007/s12010-015-1620-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/06/2015] [Indexed: 10/23/2022]
Abstract
Phenylalanine ammonia-lyase (PAL) is one of the most extensively studied enzymes with its crucial role in secondary phenylpropanoid metabolism of plants. Recently, its demand has been increased for aromatic chemical production, but its applications in trans-cinnamic acid production were not much explored. In the present study, a putative PAL gene from Zea mays designated as ZmPAL2 was expressed and characterized in Escherichia coli BL21 (DE3). The recombinant ZmPAL2 exhibited a high PAL activity (7.14 U/mg) and a weak tyrosine ammonia-lyase activity. The optimal temperature of ZmPAL2 was 55 °C, and the thermal stability results showed that about 50 % of enzyme activity remained after a treatment at 60 °C for 6 h. The recombinant ZmPAL2 is a good candidate for the production of trans-cinnamic acid. The vitro conversion indicated that the recombinant ZmPAL2 could effectively catalyze the L-phenylalanine to trans-cinnamic acid, and the trans-cinnamic acid concentration can reach up to 5 g/l.
Collapse
Affiliation(s)
- Ying Zang
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | | | | | | | | |
Collapse
|
20
|
Bartha‐Vári JH, Toşa MI, Irimie F, Weiser D, Boros Z, Vértessy BG, Paizs C, Poppe L. Immobilization of Phenylalanine Ammonia-Lyase on Single-Walled Carbon Nanotubes for Stereoselective Biotransformations in Batch and Continuous-Flow Modes. ChemCatChem 2015; 7:1122-1128. [PMID: 26925171 PMCID: PMC4744988 DOI: 10.1002/cctc.201402894] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/17/2014] [Indexed: 12/05/2022]
Abstract
Carboxylated single-walled carbon nanotubes (SwCNTCOOH) were used as a support for the covalent immobilization of phenylalanine ammonia-lyase (PAL) from parsley by two different methods. The nanostructured biocatalysts (SwCNTCOOH-PALI and SwCNTCOOH-PALII) with low diffusional limitation were tested in the batch-mode kinetic resolution of racemic 2-amino-3-(thiophen-2-yl)propanoic acid (1) to yield a mixture of (R)-1 and (E)-3-(thiophen-2-yl)acrylic acid (2) and in ammonia addition to 2 to yield enantiopure (S)-1. SwCNTCOOH-PALII was a stable biocatalyst (>90 % of the original activity remained after six cycles with 1 and after three cycles in 6 m NH3 with 2). The study of ammonia addition to 2 in a continuous-flow microreactor filled with SwCNTCOOH-PALII (2 m NH3, pH 10.0, 15 bar) between 30-80 °C indicated no significant loss of activity over 72 h up to 60 °C. SwCNTCOOH-PALII in the continuous-flow system at 30 °C was more productive (specific reaction rate, rflow=2.39 μmol min-1 g-1) than in the batch reaction (rbatch=1.34 μmol min-1 g-1).
Collapse
Affiliation(s)
- Judith H. Bartha‐Vári
- Biocatalysis and Biotransformation Research Group, Babeş‐Bolyai University of Cluj‐Napoca, Arany János str. 11, 400028 Cluj‐Napoca (Romania)
| | - Monica I. Toşa
- Biocatalysis and Biotransformation Research Group, Babeş‐Bolyai University of Cluj‐Napoca, Arany János str. 11, 400028 Cluj‐Napoca (Romania)
| | - Florin‐Dan Irimie
- Biocatalysis and Biotransformation Research Group, Babeş‐Bolyai University of Cluj‐Napoca, Arany János str. 11, 400028 Cluj‐Napoca (Romania)
| | - Diána Weiser
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest (Hungary)
| | - Zoltán Boros
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest (Hungary)
- SynBiocat Ltd, Lázár deák u 4/1, 1173 Budapest (Hungary)
| | - Beáta G. Vértessy
- Department of Biotechnology and Food Sciences, Budapest University of Technology and Economics, Szt. Gellért tér 4, 1111 Budapest (Hungary)
- Institute of Enzymology, Research Centre for Natural Sciences of Hungarian Academy of Sciences, Magyar tudósok krt. 2, 1117 Budapest (Hungary)
| | - Csaba Paizs
- Biocatalysis and Biotransformation Research Group, Babeş‐Bolyai University of Cluj‐Napoca, Arany János str. 11, 400028 Cluj‐Napoca (Romania)
| | - László Poppe
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest (Hungary)
- SynBiocat Ltd, Lázár deák u 4/1, 1173 Budapest (Hungary)
| |
Collapse
|
21
|
Kong JQ. Phenylalanine ammonia-lyase, a key component used for phenylpropanoids production by metabolic engineering. RSC Adv 2015. [DOI: 10.1039/c5ra08196c] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Phenylalanine ammonia-lyase, a versatile enzyme with industrial and medical applications.
Collapse
Affiliation(s)
- Jian-Qiang Kong
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products
- Beijing
- China
| |
Collapse
|
22
|
Weiser D, Varga A, Kovács K, Nagy F, Szilágyi A, Vértessy BG, Paizs C, Poppe L. Bisepoxide Cross-Linked Enzyme Aggregates-New Immobilized Biocatalysts for Selective Biotransformations. ChemCatChem 2014. [DOI: 10.1002/cctc.201300806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Kovács K, Bánóczi G, Varga A, Szabó I, Holczinger A, Hornyánszky G, Zagyva I, Paizs C, Vértessy BG, Poppe L. Expression and properties of the highly alkalophilic phenylalanine ammonia-lyase of thermophilic Rubrobacter xylanophilus. PLoS One 2014; 9:e85943. [PMID: 24475062 PMCID: PMC3903478 DOI: 10.1371/journal.pone.0085943] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 12/04/2013] [Indexed: 11/18/2022] Open
Abstract
The sequence of a phenylalanine ammonia-lyase (PAL; EC: 4.3.1.24) of the thermophilic and radiotolerant bacterium Rubrobacter xylanophilus (RxPAL) was identified by screening the genomes of bacteria for members of the phenylalanine ammonia-lyase family. A synthetic gene encoding the RxPAL protein was cloned and overexpressed in Escherichia coli TOP 10 in a soluble form with an N-terminal His6-tag and the recombinant RxPAL protein was purified by Ni-NTA affinity chromatography. The activity assay of RxPAL with l-phenylalanine at various pH values exhibited a local maximum at pH 8.5 and a global maximum at pH 11.5. Circular dichroism (CD) studies showed that RxPAL is associated with an extensive α-helical character (far UV CD) and two distinctive near-UV CD peaks. These structural characteristics were well preserved up to pH 11.0. The extremely high pH optimum of RxPAL can be rationalized by a three-dimensional homology model indicating possible disulfide bridges, extensive salt-bridge formation and an excess of negative electrostatic potential on the surface. Due to these properties, RxPAL may be a candidate as biocatalyst in synthetic biotransformations leading to unnatural l- or d-amino acids or as therapeutic enzyme in treatment of phenylketonuria or leukemia.
Collapse
Affiliation(s)
- Klaudia Kovács
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
- Institute of Enzymology, Research Centre for Natural Sciences of Hungarian Academy of Sciences, Budapest, Hungary
| | - Gergely Bánóczi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Andrea Varga
- Biocatalysis Research Group, Babeş-Bolyai University of Cluj-Napoca, Cluj-Napoca, Romania
| | - Izabella Szabó
- Biocatalysis Research Group, Babeş-Bolyai University of Cluj-Napoca, Cluj-Napoca, Romania
| | - András Holczinger
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - Gábor Hornyánszky
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Imre Zagyva
- Institute of Enzymology, Research Centre for Natural Sciences of Hungarian Academy of Sciences, Budapest, Hungary
| | - Csaba Paizs
- Biocatalysis Research Group, Babeş-Bolyai University of Cluj-Napoca, Cluj-Napoca, Romania
| | - Beáta G. Vértessy
- Institute of Enzymology, Research Centre for Natural Sciences of Hungarian Academy of Sciences, Budapest, Hungary
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - László Poppe
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|