1
|
Saikawa GIA, Guidone GHM, Noriler SA, Reis GF, de Oliveira AG, Nakazato G, Rocha SPD. Green-Synthesized Silver Nanoparticles in the Prevention of Multidrug-Resistant Proteus mirabilis Infection and Incrustation of Urinary Catheters BioAgNPs Against P. mirabilis Infection. Curr Microbiol 2024; 81:100. [PMID: 38372801 DOI: 10.1007/s00284-024-03616-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 01/10/2024] [Indexed: 02/20/2024]
Abstract
This study aimed to assess the activity of AgNPs biosynthesized by Fusarium oxysporum (bio-AgNPs) against multidrug-resistant uropathogenic Proteus mirabilis, and to assess the antibacterial activity of catheters coated with bio-AgNPs. Broth microdilution and time-kill kinetics assays were used to determine the antibacterial activity of bio-AgNPs. Catheters were coated with two (2C) and three (3C) bio-AgNPs layers using polydopamine as crosslinker. Catheters were challenged with urine inoculated with P. mirabilis to assess the anti-incrustation activity. MIC was found to be 62.5 µmol l-1, causing total loss of viability after 4 h and bio-AgNPs inhibited biofilm formation by 76.4%. Catheters 2C and 3C avoided incrustation for 13 and 20 days, respectively, and reduced biofilm formation by more than 98%, while the pristine catheter was encrusted on the first day. These results provide evidence for the use of bio-AgNPs as a potential alternative to combat of multidrug-resistant P. mirabilis infections.
Collapse
Affiliation(s)
- Gustavo Issamu Asai Saikawa
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid PO-BOX 6001, Londrina, 86051-980, Brazil
| | - Gustavo Henrique Migliorini Guidone
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid PO-BOX 6001, Londrina, 86051-980, Brazil
| | - Sandriele Aparecida Noriler
- Laboratory of Microbial Biotechnology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Guilherme Fonseca Reis
- Laboratory of Microbial Biotechnology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Admilton Gonçalves de Oliveira
- Laboratory of Microbial Biotechnology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
- Laboratory of Electron Microscopy and Microanalysis, State University of Londrina, Londrina, Brazil
| | - Gerson Nakazato
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Sergio Paulo Dejato Rocha
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid PO-BOX 6001, Londrina, 86051-980, Brazil.
| |
Collapse
|
2
|
Gautam D, Dolma KG, Khandelwal B, Gupta M, Singh M, Mahboob T, Teotia A, Thota P, Bhattacharya J, Goyal R, M.R. Oliveira S, Pereira MDL, Wiart C, Wilairatana P, Eawsakul K, Rahmatullah M, Saravanabhavan SS, Nissapatorn V. Green synthesis of silver nanoparticles using Ocimum sanctum Linn. and its antibacterial activity against multidrug resistant Acinetobacter baumannii. PeerJ 2023; 11:e15590. [PMID: 37529215 PMCID: PMC10389072 DOI: 10.7717/peerj.15590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 05/29/2023] [Indexed: 08/03/2023] Open
Abstract
The biosynthesis of nanoparticles using the green route is an effective strategy in nanotechnology that provides a cost-effective and environmentally friendly alternative to physical and chemical methods. This study aims to prepare an aqueous extract of Ocimum sanctum (O. sanctum)-based silver nanoparticles (AgNPs) through the green route and test their antibacterial activity. The biosynthesized silver nanoparticles were characterised by colour change, UV spectrometric analysis, FTIR, and particle shape and size morphology by SEM and TEM images. The nanoparticles are almost spherical to oval or rod-shaped with smooth surfaces and have a mean particle size in the range of 55 nm with a zeta potential of -2.7 mV. The antibacterial activities of AgNPs evaluated against clinically isolated multidrug-resistant Acinetobacter baumannii (A. baumannii) showed that the AgNPs from O. sanctum are effective in inhibiting A. baumannii growth with a zone of inhibition of 15 mm in the agar well diffusion method and MIC and MBC of 32 µg/mL and 64 µg/mL, respectively. The SEM images of A. baumannii treated with AgNPs revealed damage and rupture in bacterial cells. The time-killing assay by spectrophotometry revealed the time- and dose-dependent killing action of AgNPs against A. baumannii, and the assay at various concentrations and time intervals indicated a statistically significant result in comparison with the positive control colistin at 2 µg/mL (P < 0.05). The cytotoxicity test using the MTT assay protocol showed that prepared nanoparticles of O. sanctum are less toxic against human cell A549. This study opens up a ray of hope to explore the further research in this area and to improve the antimicrobial activities against multidrug resistant bacteria.
Collapse
Affiliation(s)
- Deepan Gautam
- School of Allied Health Sciences and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok, Sikkim, India
| | - Karma Gurmey Dolma
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok, Sikkim, India
| | - Bidita Khandelwal
- Department of Medicine, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok, Sikkim, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Meghna Singh
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Tooba Mahboob
- School of Allied Health Sciences and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Anil Teotia
- Department of Microbiology, Indian Pharmacopoeia Commission, Ministry of Health and Family Welfare, Ghaziabad, Utter Pradesh, India
| | - Prasad Thota
- Department of Microbiology, Indian Pharmacopoeia Commission, Ministry of Health and Family Welfare, Ghaziabad, Utter Pradesh, India
| | | | - Ramesh Goyal
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Sonia M.R. Oliveira
- Hunter Medical Research Institute, New Lambton, Australia
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- Department of Medical Science, University of Aveiro, Aveiro, Portugal
| | - Christophe Wiart
- The Institute for Tropical Biology and Conservation, University Malaysia Sabah, Sabah, Malaysia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Komgrit Eawsakul
- School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh
| | - Shanmuga Sundar Saravanabhavan
- Department of Biotechnology, Aarupadai Veedu Institute of Technology, Vinayak Mission’s Research Foundation (DU), Chennai, Tamil Nadu, India
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
3
|
Iwalokun BA, Akinloye O, Udoh BE, Akinyemi KO. Efficacy of silver nanoparticles against multidrug resistant clinical Staphylococcus aureus isolates from Nigeria. J Immunoassay Immunochem 2019; 40:214-236. [PMID: 30696349 DOI: 10.1080/15321819.2018.1555765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Multidrug resistant (MDR) S. aureus infections continue to account for excess mortality in hospital and community settings and constitute a rising global health problem. However, data on the efficacy and mechanism of actions of alternative solutions like silver nanoparticles in developing countries are lacking. This study investigated anti-staphylococcal activity of silver nanoparticles (AgNP) against local strains from Nigeria. A total 119 clinical isolates of S. aureus from five Nigerian laboratories categorized as MRSA (n = 52) and MSSA (n = 67) by PCR were studied. The MIC of AgNP produced by chemical reduction method and characterized by surface plasmon resonance absorbance and size equivalence by scanning electron microscopy was determined by microbroth dilution method. Its effect on protease activity and plasmids were also investigated. Baseline characteristics of the isolates revealed MDR phenotype of the isolates, carriage of diverse plasmids (15-32 kb) among the MDR MSSA, and mean extracellular protease activity of 24.8-55.7 U/mL. The chemically synthesized AgNP had a peak absorbance at 400 nm with a size equivalence of 4.58 nm. The MICs of AgNP against the isolates were 4.7 μg/mL and 4.9 μg/mL, respectively, for MRSA and MSSA (P > 0.05). The bactericidal effect of AgNP at 2.5-5 μg/mL on the MSSA and MRSA isolates was observed at 2.7-5.5 h post exposure in vitro. Further analysis revealed plasmid eviction in the MDR MSSA isolates exposed to 5 μg/mL AgNP and dose-dependent reduction in extracellular protease activity by 84.6-93.1%. Hemolysis of human erythrocytes by AgNP was not observed at the MIC range. Conclusion: This study revealed safety and efficacy of AgNP against clinical MDR S. aureus isolates from Nigeria, using plasmid eviction and protease inhibition as mechanisms of action.
Collapse
Affiliation(s)
- B A Iwalokun
- a Molecular Biology & Biotechnology Department , Nigerian Institute of Medical Research , Lagos , Nigeria
| | - O Akinloye
- a Molecular Biology & Biotechnology Department , Nigerian Institute of Medical Research , Lagos , Nigeria.,b Clinical Chemistry and Molecular Diagnostic Research Laboratory, Department of Medical Laboratory Science, College of Medicine , University of Lagos , Lagos , Nigeria
| | - B E Udoh
- c Department of Medical Microbiology and Parasitology , Olabisi Onabanjo University , Sagamu , Nigeria
| | - K O Akinyemi
- d Department of Microbiology , Lagos State University , Lagos , Nigeria
| |
Collapse
|
4
|
Bilal M, Rasheed T, Iqbal HMN, Hu H, Zhang X. Silver Nanoparticles: Biosynthesis and Antimicrobial Potentialities. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.832.845] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
5
|
Dhas SP, Anbarasan S, Mukherjee A, Chandrasekaran N. Biobased silver nanocolloid coating on silk fibers for prevention of post-surgical wound infections. Int J Nanomedicine 2015; 10 Suppl 1:159-70. [PMID: 26491317 PMCID: PMC4599606 DOI: 10.2147/ijn.s82211] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Bombyx mori silk fibers are an important biomaterial and are used in surgical sutures due to their remarkable biocompatibility. The major drawback to the application of biomaterials is the risk of bacterial invasion, leading to clinical complications. We have developed an easy and cost-effective method for fabrication of antibacterial silk fibers loaded with silver nanoparticles (AgNPs) by an in situ and ex situ process using an aqueous extract of Rhizophora apiculata leaf. Scanning electron microscopy revealed that well dispersed nanoparticles impregnated the silk fibers both in situ and ex situ. The crystalline nature of the AgNPs in the silk fibers was demonstrated by X-ray diffraction. The thermal and mechanical properties of the silk fibers were enhanced after they were impregnated with AgNPs. The silver-coated silk fibers fabricated by the in situ and ex situ method exhibited more than 90% inhibition against Pseudomonas aeruginosa and Staphylococcus aureus. Silk fibers doped with AgNPs were found to be biocompatible with 3T3 fibroblasts. The results obtained represent an important advance towards the clinical application of biocompatible AgNP-loaded silk fibers for prevention of surgical wound infections.
Collapse
|
6
|
Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M. Silver nanoparticles as potential antibacterial agents. Molecules 2015; 20:8856-74. [PMID: 25993417 PMCID: PMC6272636 DOI: 10.3390/molecules20058856] [Citation(s) in RCA: 808] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 05/12/2015] [Indexed: 12/12/2022] Open
Abstract
Multi-drug resistance is a growing problem in the treatment of infectious diseases and the widespread use of broad-spectrum antibiotics has produced antibiotic resistance for many human bacterial pathogens. Advances in nanotechnology have opened new horizons in nanomedicine, allowing the synthesis of nanoparticles that can be assembled into complex architectures. Novel studies and technologies are devoted to understanding the mechanisms of disease for the design of new drugs, but unfortunately infectious diseases continue to be a major health burden worldwide. Since ancient times, silver was known for its anti-bacterial effects and for centuries it has been used for prevention and control of disparate infections. Currently nanotechnology and nanomaterials are fully integrated in common applications and objects that we use every day. In addition, the silver nanoparticles are attracting much interest because of their potent antibacterial activity. Many studies have also shown an important activity of silver nanoparticles against bacterial biofilms. This review aims to summarize the emerging efforts to address current challenges and solutions in the treatment of infectious diseases, particularly the use of nanosilver antimicrobials.
Collapse
Affiliation(s)
- Gianluigi Franci
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università degli Studi di Napoli, Vico L. De Crecchio 7, 80138 Napoli, Italy.
| | - Annarita Falanga
- Department of Pharmacy, University of Naples Federico II, 80100 Naples, Italy.
- Istituto di Biostrutture e Bioimmagini, CNR, 80100 Napoli, Italy.
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples Federico II, 80100 Naples, Italy.
- Istituto di Biostrutture e Bioimmagini, CNR, 80100 Napoli, Italy.
- CIRPEB, and DFM, University of Naples Federico II, 80100 Naples, Italy.
| | - Luciana Palomba
- Department of Experimental Medicine, II University of Naples, 80138 Naples, Italy.
| | - Mahendra Rai
- Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, Maharashtra 444602, India.
| | - Giancarlo Morelli
- Department of Pharmacy, University of Naples Federico II, 80100 Naples, Italy.
- Istituto di Biostrutture e Bioimmagini, CNR, 80100 Napoli, Italy.
- CIRPEB, and DFM, University of Naples Federico II, 80100 Naples, Italy.
| | - Massimiliano Galdiero
- CIRPEB, and DFM, University of Naples Federico II, 80100 Naples, Italy.
- Department of Experimental Medicine, II University of Naples, 80138 Naples, Italy.
| |
Collapse
|