1
|
Lee E, de Paula MN, Baek S, Ta HKK, Nguyen MT, Jeong TH, Kim CJ, Jang YJ, Choe H. Novel Bacterial Production of Two Different Bioactive Forms of Human Stem-Cell Factor. Int J Mol Sci 2021; 22:ijms22126361. [PMID: 34198626 PMCID: PMC8232154 DOI: 10.3390/ijms22126361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 11/30/2022] Open
Abstract
Human stem-cell factor (hSCF) stimulates the survival, proliferation, and differentiation of hematopoietic cells by binding to the c-Kit receptor. Various applications of hSCF require the efficient and reliable production of hSCF. hSCF exists in three forms: as two membrane-spanning proteins hSCF248 and hSCF229 and truncated soluble N-terminal protein hSCF164. hSCF164 is known to be insoluble when expressed in Escherichia coli cytoplasm, requiring a complex refolding procedure. The activity of hSCF248 has never been studied. Here, we investigated novel production methods for recombinant hSCF164 and hSCF248 without the refolding process. To increase the solubility of hSCF164, maltose-binding protein (MBP) and protein disulfide isomerase b’a’ domain (PDIb’a’) tags were attached to the N-terminus of hSCF164. These fusion proteins were overexpressed in soluble form in the Origami 2(DE3) E. coli strain. These solubilization effects were enhanced at a low temperature. His-hSCF248, the poly-His tagged form of hSCF248, was expressed in a highly soluble form without a solubilization tag protein, which was unexpected because His-hSCF248 contains a transmembrane domain. hSCF164 was purified using affinity and ion-exchange chromatography, and His-hSCF248 was purified by ion-exchange and gel filtration chromatography. The purified proteins stimulated the proliferation of TF-1 cells. Interestingly, the EC50 value of His-hSCF248 was 1 pg/mL, 100-fold lower than 9 ng/mL hSCF164. Additionally, His-hSCF248 decreased the doubling time, increased the proportion of S and G2/M stages in the cell cycle, and increased the c-Myc expression at a 1000-fold lower concentration than hSCF164. In conclusion, His-hSCF248 was expressed in a soluble form in E. coli and had stronger activity than hSCF164. The molecular chaperone, MBP, enabled the soluble overexpression of hSCF164.
Collapse
Affiliation(s)
- Eunyoung Lee
- Department of Physiology, Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea; (E.L.); (M.N.d.P.); (S.B.); (H.K.K.T.); (M.T.N.); (T.-H.J.); (Y.J.J.)
| | - Michelle Novais de Paula
- Department of Physiology, Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea; (E.L.); (M.N.d.P.); (S.B.); (H.K.K.T.); (M.T.N.); (T.-H.J.); (Y.J.J.)
| | - Sangki Baek
- Department of Physiology, Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea; (E.L.); (M.N.d.P.); (S.B.); (H.K.K.T.); (M.T.N.); (T.-H.J.); (Y.J.J.)
| | - Huynh Kim Khanh Ta
- Department of Physiology, Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea; (E.L.); (M.N.d.P.); (S.B.); (H.K.K.T.); (M.T.N.); (T.-H.J.); (Y.J.J.)
| | - Minh Tan Nguyen
- Department of Physiology, Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea; (E.L.); (M.N.d.P.); (S.B.); (H.K.K.T.); (M.T.N.); (T.-H.J.); (Y.J.J.)
| | - Taeck-Hyun Jeong
- Department of Physiology, Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea; (E.L.); (M.N.d.P.); (S.B.); (H.K.K.T.); (M.T.N.); (T.-H.J.); (Y.J.J.)
| | - Chong Jai Kim
- Department of Pathology, Asan-Minnesota Institute for Innovating Transplantation, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea;
| | - Yeon Jin Jang
- Department of Physiology, Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea; (E.L.); (M.N.d.P.); (S.B.); (H.K.K.T.); (M.T.N.); (T.-H.J.); (Y.J.J.)
| | - Han Choe
- Department of Physiology, Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea; (E.L.); (M.N.d.P.); (S.B.); (H.K.K.T.); (M.T.N.); (T.-H.J.); (Y.J.J.)
- Correspondence: ; Tel.: +82-2-3010-4292; Fax: +82-2-3010-8148
| |
Collapse
|
2
|
Zhang Y, Gao H, Qi X, Gao S, Xu S, Wang H, An Y. Efficient Molecular Biological Manipulations with Improved Strategies Based on Novel Escherichia coli Vectors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5086-5095. [PMID: 33882667 DOI: 10.1021/acs.jafc.1c00109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, some novel plasmids have been constructed for flexible and zero-background molecular cloning, more efficient expression, and purification of proteins with improved strategies. The plasmids pANY4-pL18-ccdB and pANY4-pR18/pL18-ccdB have different promoters in the complementary DNA strands. Therefore, recombinant plasmids for either isopropyl-β-d-thiogalactoside-induced or temperature-induced protein expression could be simultaneously constructed in a single molecular cloning process for parallel comparison. Intriguingly, the mutated pL18 and pR18/pL18 promoters performed similar to or even better than the T7 promoter when used for promoting the expression of the GFP or pfLamA enzyme. Moreover, the plasmid pANY8 containing the His-elastin-like polypeptide (ELP)-intein multifunctional tag was constructed, and special purification protocol was designed to obtain purified proteins without the requirement of time-consuming dialysis steps to remove imidazole and high concentration of salt ions. Additionally, the urea-based denaturation and refolding processes can be conveniently integrated into the ELP-mediated precipitation protocol for purification of insoluble inclusion bodies, omitting the time-consuming dialysis steps.
Collapse
Affiliation(s)
- Yifeng Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110161, China
| | - Herui Gao
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110161, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Song Gao
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110161, China
| | - Shumin Xu
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110161, China
| | - Hongling Wang
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110161, China
| | - Yingfeng An
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110161, China
| |
Collapse
|
3
|
An efficient large-scale refolding technique for recovering biologically active recombinant human FGF-21 from inclusion bodies. Int J Biol Macromol 2019; 135:362-372. [PMID: 31129207 DOI: 10.1016/j.ijbiomac.2019.05.167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 01/15/2023]
Abstract
Fibroblast growth factor 21 (FGF-21) is an important regulator in glycolipid metabolism that is a promising drug candidate for treatment of diabetes and obesity. However, the productivity of recombinant hFGF-21 (rhFGF-21) in Escherichia coli (E. coli) is relatively low, which limits its clinical application. To meet the clinical demand and control the production cost, rhFGF-21 proteins were expressed in inclusion bodies (IBs) form in Rosetta (DE3) by high cell density fermentation in 50-L scale. Hollow fiber membrane filtration technology was used to enrich the bacteria, wash, denature and refold the IBs in the current report. The renatured proteins were purified by two-step affinity chromatography. Authenticity of the purified rhFGF-21 was confirmed by the N-and C-terminal sequence, disulfide bond composition and molecular weight analyses. Results showed that the average target protein and recovery of rhFGF-21 expressed in IBs form of three batches were more than those of the soluble form. Both the rhFGF-21 proteins from the two forms showed equal potency in improving the glucose uptake in HepG2 cells and anti-diabetic effect in db/db mice. In this study, an efficient method for preparation of FGF-21 was established. This novel process provides an important technical basis for the large-scale production of rhFGF-21.
Collapse
|
4
|
Gao H, Qi X, Hart DJ, Gao S, Wang H, Xu S, Zhang Y, Liu X, Liu Y, An Y. Three Novel Escherichia coli Vectors for Convenient and Efficient Molecular Biological Manipulations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6123-6131. [PMID: 29798665 DOI: 10.1021/acs.jafc.8b01960] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We have constructed novel plasmids pANY2, pANY3, and pANY6 for flexible cloning with low false positives, efficient expression, and convenient purification of proteins. The pANY2 plasmid can be used for efficient isopropyl-β-d-thiogalactoside (IPTG) induced protein expression, while the pANY3 plasmid can be used for temperature-induced expression. The pANY6 plasmid contains a self-cleaving elastin-like protein (ELP) tag for purification of recombinant protein by simple ELP-mediated precipitation steps and removal of the ELP tag by self-cleavage. A urea-based denaturation and refolding processes for renaturation of insoluble inclusion bodies can be conveniently integrated into the ELP-mediated precipitation protocol, removing time-consuming dialysis steps. These novel vectors, together with the described strategies of gene cloning, protein expression, and purification, may have wide applications in biosciences, agricultural, food technologies, and so forth.
Collapse
Affiliation(s)
- Herui Gao
- College of Biosciences and Biotechnology , Shenyang Agricultural University , Shenyang 110161 , China
| | - Xianghui Qi
- School of Food and Biological Engineering , Jiangsu University , Zhenjiang 212013 , China
| | - Darren J Hart
- Institut de Biologie Structurale (IBS), CEA, CNRS , University Grenoble Alpes , Grenoble 38044 , France
| | - Song Gao
- College of Biosciences and Biotechnology , Shenyang Agricultural University , Shenyang 110161 , China
| | - Hongling Wang
- College of Biosciences and Biotechnology , Shenyang Agricultural University , Shenyang 110161 , China
| | - Shumin Xu
- College of Biosciences and Biotechnology , Shenyang Agricultural University , Shenyang 110161 , China
| | - Yifeng Zhang
- College of Biosciences and Biotechnology , Shenyang Agricultural University , Shenyang 110161 , China
| | - Xia Liu
- College of Biosciences and Biotechnology , Shenyang Agricultural University , Shenyang 110161 , China
| | - Yifei Liu
- College of Biosciences and Biotechnology , Shenyang Agricultural University , Shenyang 110161 , China
| | - Yingfeng An
- College of Biosciences and Biotechnology , Shenyang Agricultural University , Shenyang 110161 , China
| |
Collapse
|
5
|
Zhao M, Li P, Xie Y, Liu X, Cheng L, Liu T, Kong L, Wang O, Han F. Recombinant protein of the first two ectodomains of cadherin 23 from erl mice shows impairment in Ca 2+-dependent proteolysis protection. Protein Expr Purif 2018; 147:55-60. [PMID: 29486248 DOI: 10.1016/j.pep.2018.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 10/18/2022]
Abstract
The erl mouse is a mouse model of nonsyndromic autosomal recessive deafness (DFNB12) on the C57BL/6J background. This project was carried out to express the first two ectodomains of cadherin 23 (CDH23 EC1+2) of erl mice in Escherichia coli and identify the Ca2+-binding ability of the recombinant protein. DNA sequences of CDH23 EC1+2 from wild type and erl mice were synthesized and cloned into pBV220 plasmids. Recombinant plasmids were transformed into Escherichia coli and expression of CDH23 EC1+2 was induced by increasing the temperature from 30 °C to 42 °C. The proteins were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and antigenicity of proteins was identified by Western Blotting. Inclusion bodies were denatured in 8 M urea, purified by ion-exchange and gel filtration chromatography and refolded with dialysis in buffer containing 0.1% sarkosyl. The Ca2+-binding ability of CDH23 EC1+2 was determined by Ca2+-dependent proteolysis protection. The results showed that the sizes and sequences of inserts in recombinant plasmids were consistent with expectation and that the recombinant proteins were found mainly in the form of inclusion bodies which maintain antigenicity. After refolding, the secondary structures of recombinant proteins were measured by circular dichroism (CD) spectra. Moreover, CDH23 EC1+2 from the erl mice showed less Ca2+-dependent proteolysis protection comparing with that of the wild type control. We therefore concluded that impairment of Ca2+-dependent protein interaction was likely involved in the progressive hearing loss in erl mice. The results may aid in understanding the mechanism of hearing loss in DFNB12.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong, 264003, PR China; Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong, 264003, PR China
| | - Ping Li
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong, 264003, PR China
| | - Yi Xie
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong, 264003, PR China; Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong, 264003, PR China
| | - Xiang Liu
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong, 264003, PR China
| | - Lin Cheng
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong, 264003, PR China
| | - Tingyan Liu
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong, 264003, PR China
| | - Lijun Kong
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong, 264003, PR China; Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong, 264003, PR China
| | - Oumei Wang
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong, 264003, PR China.
| | - Fengchan Han
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong, 264003, PR China; Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong, 264003, PR China.
| |
Collapse
|