1
|
Rashid MHU, Yi EKJ, Amin NDM, Ismail MN. An Empirical Analysis of Sacha Inchi (Plantae: Plukenetia volubilis L.) Seed Proteins and Their Applications in the Food and Biopharmaceutical Industries. Appl Biochem Biotechnol 2024; 196:4823-4836. [PMID: 37979081 DOI: 10.1007/s12010-023-04783-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Sacha Inchi (Plukenetia volubilis L.) is a plant native in the Amazon rainforest in South America known for its edible seeds, which are rich in lipids, proteins, vitamin E, polyphenols, minerals, and amino acids. Rural communities in developing nations have been using this plant for its health benefits, including as a topical cream for rejuvenating and revitalising skin and as a treatment for muscle pain and rheumatism. Although Sacha Inchi oil has been applied topically to soften skin, treat skin diseases, and heal wounds, its protein-rich seeds have not yet received proper attention for extensive investigation. Proteins in Sacha Inchi seeds are generally known to have antioxidant and antifungal activities and are extensively used nowadays in making protein-rich food alternatives worldwide. Notably, large-scale use of seed proteins has begun in nanoparticle and biofusion technologies related to the human health-benefitting sector. To extract and identify their proteins, the current study examined Sacha Inchi seeds collected from the Malaysian state of Kedah. Our analysis revealed a protein concentration of 73.8 ± 0.002 mg/g of freeze-dried seed flour. Employing liquid chromatography-tandem mass spectrometry (LC-MS/MS) and PEAKS studio analysis, we identified 217 proteins in the seed extract, including 152 with known proteins and 65 unknown proteins. This study marks a significant step towards comprehensively investigating the protein composition of Sacha Inchi seeds and elucidating their potential applications in the food and biopharmaceutical sectors. Our discoveries not only enhance our knowledge of Sacha Inchi's nutritional characteristics but also pave the way for prospective research and innovative advancements in the realms of functional food and health-related domains.
Collapse
Affiliation(s)
- Mohammad Harun Ur Rashid
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia (USM), 11900, Penang, Malaysia
| | - Erica Kok Jia Yi
- International Medical University Malaysia, Kuala Lumpur, Malaysia
| | - Nor Datiakma Mat Amin
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia (USM), 11900, Penang, Malaysia
- Natural Products Division, Forest Research Institute of Malaysia (FRIM), 52109, Kepong, Selangor, Malaysia
| | - Mohd Nazri Ismail
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia (USM), 11900, Penang, Malaysia.
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia (USM), 11800, Penang, Malaysia.
| |
Collapse
|
2
|
Xu K, Zou W, Peng B, Guo C, Zou X. Lipid Droplets from Plants and Microalgae: Characteristics, Extractions, and Applications. BIOLOGY 2023; 12:biology12040594. [PMID: 37106794 PMCID: PMC10135979 DOI: 10.3390/biology12040594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
Plant and algal LDs are gaining popularity as a promising non-chemical technology for the production of lipids and oils. In general, these organelles are composed of a neutral lipid core surrounded by a phospholipid monolayer and various surface-associated proteins. Many studies have shown that LDs are involved in numerous biological processes such as lipid trafficking and signaling, membrane remodeling, and intercellular organelle communications. To fully exploit the potential of LDs for scientific research and commercial applications, it is important to develop suitable extraction processes that preserve their properties and functions. However, research on LD extraction strategies is limited. This review first describes recent progress in understanding the characteristics of LDs, and then systematically introduces LD extraction strategies. Finally, the potential functions and applications of LDs in various fields are discussed. Overall, this review provides valuable insights into the properties and functions of LDs, as well as potential approaches for their extraction and utilization. It is hoped that these findings will inspire further research and innovation in the field of LD-based technology.
Collapse
Affiliation(s)
- Kaiwei Xu
- Institute of Systems Security and Control, College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China
- Shaanxi Provincial Key Laboratory of Land Consolidation, Chang'an University, Xi'an 710074, China
| | - Wen Zou
- State Owned SIDA Machinery Manufacturing, Xianyang 712201, China
| | - Biao Peng
- Shaanxi Provincial Key Laboratory of Land Consolidation, Chang'an University, Xi'an 710074, China
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an 710021, China
| | - Chao Guo
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an 710021, China
| | - Xiaotong Zou
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an 710048, China
| |
Collapse
|
3
|
Moustafa K, Makhzoum A, Trémouillaux-Guiller J. Molecular farming on rescue of pharma industry for next generations. Crit Rev Biotechnol 2015; 36:840-50. [DOI: 10.3109/07388551.2015.1049934] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
4
|
Kuo YC, Tan CC, Ku JT, Hsu WC, Su SC, Lu CA, Huang LF. Improving pharmaceutical protein production in Oryza sativa. Int J Mol Sci 2013; 14:8719-39. [PMID: 23615467 PMCID: PMC3676753 DOI: 10.3390/ijms14058719] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/14/2013] [Accepted: 04/15/2013] [Indexed: 01/01/2023] Open
Abstract
Application of plant expression systems in the production of recombinant proteins has several advantages, such as low maintenance cost, absence of human pathogens, and possession of complex post-translational glycosylation capabilities. Plants have been successfully used to produce recombinant cytokines, vaccines, antibodies, and other proteins, and rice (Oryza sativa) is a potential plant used as recombinant protein expression system. After successful transformation, transgenic rice cells can be either regenerated into whole plants or grown as cell cultures that can be upscaled into bioreactors. This review summarizes recent advances in the production of different recombinant protein produced in rice and describes their production methods as well as methods to improve protein yield and quality. Glycosylation and its impact in plant development and protein production are discussed, and several methods of improving yield and quality that have not been incorporated in rice expression systems are also proposed. Finally, different bioreactor options are explored and their advantages are analyzed.
Collapse
Affiliation(s)
- Yu-Chieh Kuo
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, 135 Yuan-Tung Road, Taoyuan 32003, Taiwan; E-Mails: (Y.-C.K.); (C.-C.T.); (J.-T.K.); (W.-C.H.); (S.-C.S.)
| | - Chia-Chun Tan
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, 135 Yuan-Tung Road, Taoyuan 32003, Taiwan; E-Mails: (Y.-C.K.); (C.-C.T.); (J.-T.K.); (W.-C.H.); (S.-C.S.)
- Department of Life Sciences, National Central University, 300, Jhongda Rd., Taoyuan 32001, Taiwan; E-Mail:
| | - Jung-Ting Ku
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, 135 Yuan-Tung Road, Taoyuan 32003, Taiwan; E-Mails: (Y.-C.K.); (C.-C.T.); (J.-T.K.); (W.-C.H.); (S.-C.S.)
| | - Wei-Cho Hsu
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, 135 Yuan-Tung Road, Taoyuan 32003, Taiwan; E-Mails: (Y.-C.K.); (C.-C.T.); (J.-T.K.); (W.-C.H.); (S.-C.S.)
| | - Sung-Chieh Su
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, 135 Yuan-Tung Road, Taoyuan 32003, Taiwan; E-Mails: (Y.-C.K.); (C.-C.T.); (J.-T.K.); (W.-C.H.); (S.-C.S.)
| | - Chung-An Lu
- Department of Life Sciences, National Central University, 300, Jhongda Rd., Taoyuan 32001, Taiwan; E-Mail:
| | - Li-Fen Huang
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, 135 Yuan-Tung Road, Taoyuan 32003, Taiwan; E-Mails: (Y.-C.K.); (C.-C.T.); (J.-T.K.); (W.-C.H.); (S.-C.S.)
| |
Collapse
|
5
|
Abstract
Hydrophobic storage neutral lipids are stably preserved in specialized organelles termed oil bodies in the aqueous cytosolic compartment of plant cells via encapsulation with surfactant molecules including phospholipids and integral proteins. To date, three classes of integral proteins, termed oleosin, caleosin, and steroleosin, have been identified in oil bodies of angiosperm seeds. Proposed structures, targeting traffic routes, and biological functions of these three integral oil-body proteins were summarized and discussed. In the viewpoint of evolution, isoforms of oleosin and caleosin are found in oil bodies of pollens as well as those of more primitive species; moreover, caleosin- and steroleosin-like proteins are also present in other subcellular locations besides oil bodies. Technically, artificial oil bodies of structural stability similar to native ones were successfully constituted and seemed to serve as a useful tool for both basic research studies and biotechnological applications.
Collapse
Affiliation(s)
- Jason T. C. Tzen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
6
|
Production of active single-chain antibodies in seeds using trimeric polyoleosin fusion. J Biotechnol 2012; 161:407-13. [DOI: 10.1016/j.jbiotec.2012.07.195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 06/21/2012] [Accepted: 07/23/2012] [Indexed: 01/13/2023]
|