1
|
Pihlaja TLM, Pätsi J, Ollikainen E, Sikanen TM. Comparative in vitro hepatic clearances of commonly used antidepressants, antipsychotics, and anti-inflammatory agents in rainbow trout liver S9 fractions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 274:107048. [PMID: 39146846 DOI: 10.1016/j.aquatox.2024.107048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
Residues of human pharmaceuticals are widely detected in surface waters and can be taken up by and bioaccumulate in aquatic organisms, especially fish. One of the key challenges in assessing the bioaccumulation potential of ionizable organic compounds, such as the pharmaceuticals, is the lack of empirical data for biotransformation. In the present study, we assessed the in vitro intrinsic clearances (CLINT) of twelve pharmaceuticals, individually and some additionally as mixtures, in rainbow trout (Oncorhynchus mykiss) liver S9 fractions (RT-S9) adhering to the OECD test guidance 319B. The test substances included four anti-inflammatory agents (diclofenac, ibuprofen, ketoprofen, naproxen), seven antidepressants/antipsychotics (citalopram, haloperidol, levomepromazine, mirtazapine, risperidone, sertraline, venlafaxine) and the O-desmethyl metabolite of venlafaxine. Quantifiable intrinsic clearances were detected for diclofenac, ibuprofen, naproxen, levomepromazine, and sertraline. Apart from diclofenac, the in vitro clearances of the other four pharmaceuticals were shown to be critically dependent on the cytochrome P450 (CYP) metabolism. Therefore, we also determined the half-maximal inhibitory concentrations (IC50) of the same twelve pharmaceuticals toward CYP1A-like (7-ethoxyresorufin-O-deethylation, EROD) and CYP3A-like (benzyloxy-4-trifluoromethylcoumarin-O-debenzyloxylation, BFCOD) activities in RT-S9 using IC50 shift assay. As a result, levomepromazine and sertraline were identified as the most potent inhibitors of both EROD and BFCOD activity (unbound IC50 < 10 µM each), followed by citalopram and haloperidol (10 µM < IC50 < 100 µM). Additionally, mirtazapine was a selective EROD inhibitor (IC50 ∼ 30 µM). The inhibitory impacts of haloperidol and sertraline were indicatively time dependent. Finally, we carried out intrinsic clearance assays with mixtures of diclofenac, ibuprofen, naproxen, levomepromazine, and sertraline to examine the impacts of EROD and BFCOD inhibitions on their in vitro CLINT in RT-S9. Our in vitro data suggests that the intrinsic clearances of ibuprofen, levomepromazine, and sertraline in rainbow trout can be significantly reduced as the result of P450 inhibition by pharmaceutical mixtures, whereas the clearances of diclofenac and naproxen are less impacted.
Collapse
Affiliation(s)
- Tea L M Pihlaja
- Faculty of Pharmacy, Drug Research Program, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland; Helsinki Institute of Sustainability Science, University of Helsinki, Yliopistonkatu 3, 00100 Helsinki, Finland
| | - Jade Pätsi
- Faculty of Pharmacy, Drug Research Program, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
| | - Elisa Ollikainen
- Faculty of Pharmacy, Drug Research Program, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
| | - Tiina M Sikanen
- Faculty of Pharmacy, Drug Research Program, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland; Helsinki Institute of Sustainability Science, University of Helsinki, Yliopistonkatu 3, 00100 Helsinki, Finland.
| |
Collapse
|
2
|
Kahma H, Paludetto MN, Neuvonen M, Kurkela M, Filppula AM, Niemi M, Backman JT. Screening of 16 major drug glucuronides for time-dependent inhibition of nine drug-metabolizing CYP enzymes - detailed studies on CYP3A inhibitors. Eur J Pharm Sci 2024; 198:106735. [PMID: 38423227 DOI: 10.1016/j.ejps.2024.106735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/24/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Time-dependent inhibition of cytochrome P450 (CYP) enzymes has been observed for a few glucuronide metabolites of clinically used drugs. Here, we investigated the inhibitory potential of 16 glucuronide metabolites towards nine major CYP enzymes in vitro. Automated substrate cocktail methods were used to screen time-dependent inhibition of CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2J2 and 3A in human liver microsomes. Seven glucuronides (carvedilol β-D-glucuronide, diclofenac acyl-β-D-glucuronide, 4-hydroxyduloxetine β-D-glucuronide, ezetimibe phenoxy-β-D-glucuronide, raloxifene 4'-glucuronide, repaglinide acyl-β-D-glucuronide and valproic acid β-D-glucuronide) caused NADPH- and time-dependent inhibition of at least one of the CYPs investigated, including CYP2A6, CYP2C19 and CYP3A. In more detailed experiments, we focused on the glucuronides of carvedilol and diclofenac, which inhibited CYP3A. Carvedilol β-D-glucuronide showed weak time-dependent inhibition of CYP3A, but the parent drug carvedilol was found to be a more potent inhibitor of CYP3A, with the half-maximal inhibitor concentration (IC50) decreasing from 7.0 to 1.1 µM after a 30-min preincubation with NADPH. The maximal inactivation constant (kinact) and the inhibitor concentration causing half of kinact (KI) for CYP3A inactivation by carvedilol were 0.051 1/min and 1.8 µM, respectively. Diclofenac acyl-β-D-glucuronide caused time-dependent inactivation of CYP3A at high concentrations, with a 4-fold IC50 shift (from 400 to 98 µM after a 30-min preincubation with NADPH) and KI and kinact values of >2,000 µM and >0.16 1/min. In static predictions, carvedilol caused significant (>1.25-fold) increase in the exposure of the CYP3A substrates midazolam and simvastatin. In conclusion, we identified several glucuronide metabolites with CYP inhibitory properties. Based on detailed experiments, the inactivation of CYP3A by carvedilol may cause clinically significant drug-drug interactions.
Collapse
Affiliation(s)
- Helinä Kahma
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Marie-Noëlle Paludetto
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikko Neuvonen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mika Kurkela
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anne M Filppula
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Janne T Backman
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
3
|
Khalil SM, MacKenzie KR, Maletic-Savatic M, Li F. Metabolic bioactivation of antidepressants: advance and underlying hepatotoxicity. Drug Metab Rev 2024; 56:97-126. [PMID: 38311829 PMCID: PMC11118075 DOI: 10.1080/03602532.2024.2313967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
Many drugs that serve as first-line medications for the treatment of depression are associated with severe side effects, including liver injury. Of the 34 antidepressants discussed in this review, four have been withdrawn from the market due to severe hepatotoxicity, and others carry boxed warnings for idiosyncratic liver toxicity. The clinical and economic implications of antidepressant-induced liver injury are substantial, but the underlying mechanisms remain elusive. Drug-induced liver injury may involve the host immune system, the parent drug, or its metabolites, and reactive drug metabolites are one of the most commonly referenced risk factors. Although the precise mechanism by which toxicity is induced may be difficult to determine, identifying reactive metabolites that cause toxicity can offer valuable insights for decreasing the bioactivation potential of candidates during the drug discovery process. A comprehensive understanding of drug metabolic pathways can mitigate adverse drug-drug interactions that may be caused by elevated formation of reactive metabolites. This review provides a comprehensive overview of the current state of knowledge on antidepressant bioactivation, the metabolizing enzymes responsible for the formation of reactive metabolites, and their potential implication in hepatotoxicity. This information can be a valuable resource for medicinal chemists, toxicologists, and clinicians engaged in the fields of antidepressant development, toxicity, and depression treatment.
Collapse
Affiliation(s)
- Saleh M. Khalil
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kevin R. MacKenzie
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mirjana Maletic-Savatic
- Department of Pediatrics, Baylor College of Medicine; Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Feng Li
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
4
|
Fornaro M, Caiazza C, De Simone G, Rossano F, de Bartolomeis A. Insomnia and related mental health conditions: Essential neurobiological underpinnings towards reduced polypharmacy utilization rates. Sleep Med 2024; 113:198-214. [PMID: 38043331 DOI: 10.1016/j.sleep.2023.11.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/05/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
Insomnia represents a significant public health burden, with a 10% prevalence in the general population. Reduced sleep affects social and working functioning, productivity, and patient's quality of life, leading to a total of $100 billion per year in direct and indirect healthcare costs. Primary insomnia is unrelated to any other mental or medical illness; secondary insomnia co-occurs with other underlying medical, iatrogenic, or mental conditions. Epidemiological studies found a 40-50% comorbidity prevalence between insomnia and psychiatric disorders, suggesting a high relevance of mental health in insomniacs. Sleep disturbances also worsen the outcomes of several psychiatric disorders, leading to more severe psychopathology and incomplete remission, plausibly contributing to treatment-resistant conditions. Insomnia and psychiatric disorder coexistence can lead to polypharmacy, namely, the concurrent use of two or more medications in the same patient, regardless of their purpose or rationale. Polypharmacy increases the risk of using unnecessary drugs, the likelihood of drug interactions and adverse events, and reduces the patient's compliance due to regimen complexity. The workup of insomnia must consider the patient's sleep habits and inquire about any medical and mental concurrent conditions that must be handled to allow insomnia to be remitted adequately. Monotherapy or limited polypharmacy should be preferred, especially in case of multiple comorbidities, promoting multipurpose molecules with sedative properties and with bedtime administration. Also, non-pharmacological interventions for insomnia, such as sleep hygiene, relaxation training and Cognitive Behavioral Therapy may be useful in secondary insomnia to confront behaviors and thoughts contributing to insomnia and help optimizing the pharmacotherapy. However, insomnia therapy should always be patient-tailored, considering drug indications, contraindications, and pharmacokinetics, besides insomnia phenotype, clinical picture, patient preferences, and side effect profile.
Collapse
Affiliation(s)
- Michele Fornaro
- Clinical Section of Psychiatry and Psychology, Department of Neuroscience, Reproductive Sciences, and Odontostomatology, University School of Medicine Federico II, Naples, Italy
| | - Claudio Caiazza
- Clinical Section of Psychiatry and Psychology, Department of Neuroscience, Reproductive Sciences, and Odontostomatology, University School of Medicine Federico II, Naples, Italy.
| | - Giuseppe De Simone
- Clinical Section of Psychiatry and Psychology, Department of Neuroscience, Reproductive Sciences, and Odontostomatology, University School of Medicine Federico II, Naples, Italy; Laboratory of Molecular and Translational Psychiatry, University School of Medicine of Naples Federico II, Naples, Italy
| | - Flavia Rossano
- Clinical Section of Psychiatry and Psychology, Department of Neuroscience, Reproductive Sciences, and Odontostomatology, University School of Medicine Federico II, Naples, Italy
| | - Andrea de Bartolomeis
- Clinical Section of Psychiatry and Psychology, Department of Neuroscience, Reproductive Sciences, and Odontostomatology, University School of Medicine Federico II, Naples, Italy; Laboratory of Molecular and Translational Psychiatry, University School of Medicine of Naples Federico II, Naples, Italy
| |
Collapse
|
5
|
Cameron LP, Benetatos J, Lewis V, Bonniwell EM, Jaster AM, Moliner R, Castrén E, McCorvy JD, Palner M, Aguilar-Valles A. Beyond the 5-HT 2A Receptor: Classic and Nonclassic Targets in Psychedelic Drug Action. J Neurosci 2023; 43:7472-7482. [PMID: 37940583 PMCID: PMC10634557 DOI: 10.1523/jneurosci.1384-23.2023] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 11/10/2023] Open
Abstract
Serotonergic psychedelics, such as psilocybin and LSD, have garnered significant attention in recent years for their potential therapeutic effects and unique mechanisms of action. These compounds exert their primary effects through activating serotonin 5-HT2A receptors, found predominantly in cortical regions. By interacting with these receptors, serotonergic psychedelics induce alterations in perception, cognition, and emotions, leading to the characteristic psychedelic experience. One of the most crucial aspects of serotonergic psychedelics is their ability to promote neuroplasticity, the formation of new neural connections, and rewire neuronal networks. This neuroplasticity is believed to underlie their therapeutic potential for various mental health conditions, including depression, anxiety, and substance use disorders. In this mini-review, we will discuss how the 5-HT2A receptor activation is just one facet of the complex mechanisms of action of serotonergic psychedelics. They also interact with other serotonin receptor subtypes, such as 5-HT1A and 5-HT2C receptors, and with neurotrophin receptors (e.g., tropomyosin receptor kinase B). These interactions contribute to the complexity of their effects on perception, mood, and cognition. Moreover, as psychedelic research advances, there is an increasing interest in developing nonhallucinogenic derivatives of these drugs to create safer and more targeted medications for psychiatric disorders by removing the hallucinogenic properties while retaining the potential therapeutic benefits. These nonhallucinogenic derivatives would offer patients therapeutic advantages without the intense psychedelic experience, potentially reducing the risks of adverse reactions. Finally, we discuss the potential of psychedelics as substrates for post-translational modification of proteins as part of their mechanism of action.
Collapse
Affiliation(s)
- Lindsay P Cameron
- Department of Psychiatry, Stanford University, Palo Alto 94305, California
| | - Joseph Benetatos
- Department of Neurosciences, University of California-San Diego, La Jolla 92093, California
| | - Vern Lewis
- Department of Neuroscience, Carleton University, Ottawa K1S 5B6, Ontario Canada
| | - Emma M Bonniwell
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee 53226, Wisconsin
| | - Alaina M Jaster
- Pharmacology and Toxicology, Physiology and Biophysics, Virginia Commonwealth University, Richmond 23298, Virginia
| | - Rafael Moliner
- Neuroscience Center, HiLIFE and Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Eero Castrén
- Neuroscience Center, HiLIFE and Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - John D McCorvy
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee 53226, Wisconsin
| | - Mikael Palner
- Clinical Physiology and Nuclear Medicine, Department Clinical Research, University of Southern Denmark, Odense DK-2100, Denmark
| | | |
Collapse
|
6
|
Mirzaei MS, Ivanov MV, Taherpour AA, Mirzaei S. Mechanism-Based Inactivation of Cytochrome P450 Enzymes: Computational Insights. Chem Res Toxicol 2021; 34:959-987. [PMID: 33769041 DOI: 10.1021/acs.chemrestox.0c00483] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mechanism-based inactivation (MBI) refers to the metabolic bioactivation of a xenobiotic by cytochrome P450s to a highly reactive intermediate which subsequently binds to the enzyme and leads to the quasi-irreversible or irreversible inhibition. Xenobiotics, mainly drugs with specific functional units, are the major sources of MBI. Two possible consequences of MBI by medicinal compounds are drug-drug interaction and severe toxicity that are observed and highlighted by clinical experiments. Today almost all of these latent functional groups (e.g., thiophene, furan, alkylamines, etc.) are known, and their features and mechanisms of action, owing to the vast experimental and theoretical studies, are determined. In the past decade, molecular modeling techniques, mostly density functional theory, have revealed the most feasible mechanism that a drug undergoes by P450 enzymes to generate a highly reactive intermediate. In this review, we provide a comprehensive and detailed picture of computational advances toward the elucidation of the activation mechanisms of various known groups with MBI activity. To this aim, we briefly describe the computational concepts to carry out and analyze the mechanistic investigations, and then, we summarize the studies on compounds with known inhibition activity including thiophene, furan, alkylamines, terminal acetylene, etc. This study can be reference literature for both theoretical and experimental (bio)chemists in several different fields including rational drug design, the process of toxicity prevention, and the discovery of novel inhibitors and catalysts.
Collapse
Affiliation(s)
- M Saeed Mirzaei
- Department of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran 67149-67346
| | - Maxim V Ivanov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Avat Arman Taherpour
- Department of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran 67149-67346.,Medical Biology Research Centre, University of Medical Sciences, Kermanshah, Iran 67149-67346
| | - Saber Mirzaei
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
7
|
George B, Lumen A, Nguyen C, Wesley B, Wang J, Beitz J, Crentsil V. Application of physiologically based pharmacokinetic modeling for sertraline dosing recommendations in pregnancy. NPJ Syst Biol Appl 2020; 6:36. [PMID: 33159093 PMCID: PMC7648747 DOI: 10.1038/s41540-020-00157-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 10/02/2020] [Indexed: 01/26/2023] Open
Abstract
Pregnancy is a period of significant change that impacts physiological and metabolic status leading to alterations in the disposition of drugs. Uncertainty in drug dosing in pregnancy can lead to suboptimal therapy, which can contribute to disease exacerbation. A few studies show there are increased dosing requirements for antidepressants in late pregnancy; however, the quantitative data to guide dose adjustments are sparse. We aimed to develop a physiologically based pharmacokinetic (PBPK) model that allows gestational-age dependent prediction of sertraline dosing in pregnancy. A minimal physiological model with defined gut, liver, plasma, and lumped placental-fetal compartments was constructed using the ordinary differential equation solver package, ‘mrgsolve’, in R. We extracted data from the literature to parameterize the model, including sertraline physicochemical properties, in vitro metabolism studies, disposition in nonpregnant women, and physiological changes during pregnancy. The model predicted the pharmacokinetic parameters from a clinical study with eight subjects for the second trimester and six subjects for the third trimester. Based on the model, gestational-dependent changes in physiology and metabolism account for increased clearance of sertraline (up to 143% at 40 weeks gestational age), potentially leading to under-dosing of pregnant women when nonpregnancy doses are used. The PBPK model was converted to a prototype web-based interactive dosing tool to demonstrate how the output of a PBPK model may translate into optimal sertraline dosing in pregnancy. Quantitative prediction of drug exposure using PBPK modeling in pregnancy will support clinically appropriate dosing and increase the therapeutic benefit for pregnant women.
Collapse
Affiliation(s)
- Blessy George
- Center for Drug Evaluation and Research, U.S. FDA, Silver Spring, MD, USA.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Annie Lumen
- National Center for Toxicological Research, U.S. FDA, Jefferson, AR, USA
| | - Christine Nguyen
- Center for Drug Evaluation and Research, U.S. FDA, Silver Spring, MD, USA
| | - Barbara Wesley
- Center for Drug Evaluation and Research, U.S. FDA, Silver Spring, MD, USA
| | - Jian Wang
- Center for Drug Evaluation and Research, U.S. FDA, Silver Spring, MD, USA
| | - Julie Beitz
- Center for Drug Evaluation and Research, U.S. FDA, Silver Spring, MD, USA
| | - Victor Crentsil
- Center for Drug Evaluation and Research, U.S. FDA, Silver Spring, MD, USA.
| |
Collapse
|
8
|
|
9
|
Chen S, Wu Q, Li X, Li D, Fan M, Ren Z, Bryant M, Mei N, Ning B, Guo L. The role of hepatic cytochrome P450s in the cytotoxicity of sertraline. Arch Toxicol 2020; 94:2401-2411. [PMID: 32372212 DOI: 10.1007/s00204-020-02753-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/16/2020] [Indexed: 12/19/2022]
Abstract
Sertraline, an antidepressant, is commonly used to manage mental health symptoms related to depression, anxiety disorders, and obsessive-compulsive disorder. The use of sertraline has been associated with rare but severe hepatotoxicity. Previous research demonstrated that mitochondrial dysfunction, apoptosis, and endoplasmic reticulum stress were involved in sertraline-associated cytotoxicity. In this study, we reported that after a 24-h treatment in HepG2 cells, sertraline caused cytotoxicity, suppressed topoisomerase I and IIα, and damaged DNA in a concentration-dependent manner. We also investigated the role of cytochrome P450 (CYP)-mediated metabolism in sertraline-induced toxicity using our previously established HepG2 cell lines individually expressing 14 CYPs (1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, 3A4, 3A5, and 3A7). We demonstrated that CYP2D6, 2C19, 2B6, and 2C9 metabolize sertraline, and sertraline-induced cytotoxicity was significantly decreased in the cells expressing these CYPs. Western blot analysis demonstrated that the induction of ɣH2A.X (a hallmark of DNA damage) and topoisomerase inhibition were partially reversed in CYP2D6-, 2C19-, 2B6-, and 2C9-overexpressing HepG2 cells. These data indicate that DNA damage and topoisomerase inhibition are involved in sertraline-induced cytotoxicity and that CYPs-mediated metabolism plays a role in decreasing the toxicity of sertraline.
Collapse
Affiliation(s)
- Si Chen
- Divisions of Biochemical Toxicology, National Center for Toxicological Research (NCTR)/U.S. Food and Drug Administration (FDA), Jefferson, AR, 72079, USA.
| | - Qiangen Wu
- Divisions of Biochemical Toxicology, National Center for Toxicological Research (NCTR)/U.S. Food and Drug Administration (FDA), Jefferson, AR, 72079, USA
| | - Xilin Li
- Genetic and Molecular Toxicology, National Center for Toxicological Research (NCTR)/U.S. Food and Drug Administration (FDA), Jefferson, AR, 72079, USA
| | - Dongying Li
- Bioinformatics and Biostatistics, HFT-110, National Center for Toxicological Research (NCTR)/U.S. Food and Drug Administration (FDA), 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Michelle Fan
- Life Health and Medical Sciences, Brown University, Providence, RI, 02912, USA
| | - Zhen Ren
- Divisions of Biochemical Toxicology, National Center for Toxicological Research (NCTR)/U.S. Food and Drug Administration (FDA), Jefferson, AR, 72079, USA
| | - Matthew Bryant
- Divisions of Biochemical Toxicology, National Center for Toxicological Research (NCTR)/U.S. Food and Drug Administration (FDA), Jefferson, AR, 72079, USA
| | - Nan Mei
- Genetic and Molecular Toxicology, National Center for Toxicological Research (NCTR)/U.S. Food and Drug Administration (FDA), Jefferson, AR, 72079, USA
| | - Baitang Ning
- Bioinformatics and Biostatistics, HFT-110, National Center for Toxicological Research (NCTR)/U.S. Food and Drug Administration (FDA), 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Lei Guo
- Divisions of Biochemical Toxicology, National Center for Toxicological Research (NCTR)/U.S. Food and Drug Administration (FDA), Jefferson, AR, 72079, USA.
| |
Collapse
|
10
|
Digala LP, Lucchese S. IV Lidocaine Infusion Leading to the Toxic Levels in Serum Causing Asystole - A Case Report. Headache 2019; 60:269-270. [PMID: 31743428 DOI: 10.1111/head.13699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2019] [Indexed: 11/25/2022]
Affiliation(s)
- Lakshmi P Digala
- Neurology, University of Missouri Health Care, Columbia, MO, USA
| | - Scott Lucchese
- Neurology, University of Missouri Health Care, Columbia, MO, USA
| |
Collapse
|
11
|
Zhang J, Gao LZ, Chen YJ, Zhu PP, Yin SS, Su MM, Ni Y, Miao J, Wu WL, Chen H, Brouwer KLR, Liu CX, Xu L, Jia W, Lan K. Continuum of Host-Gut Microbial Co-metabolism: Host CYP3A4/3A7 are Responsible for Tertiary Oxidations of Deoxycholate Species. Drug Metab Dispos 2019; 47:283-294. [PMID: 30606729 PMCID: PMC6378331 DOI: 10.1124/dmd.118.085670] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 12/31/2018] [Indexed: 02/05/2023] Open
Abstract
The gut microbiota modifies endogenous primary bile acids (BAs) to produce exogenous secondary BAs, which may be further metabolized by cytochrome P450 enzymes (P450s). Our primary aim was to examine how the host adapts to the stress of microbe-derived secondary BAs by P450-mediated oxidative modifications on the steroid nucleus. Five unconjugated tri-hydroxyl BAs that were structurally and/or biologically associated with deoxycholate (DCA) were determined in human biologic samples by liquid chromatography-tandem mass spectrometry in combination with enzyme-digestion techniques. They were identified as DCA-19-ol, DCA-6β-ol, DCA-5β-ol, DCA-6α-ol, DCA-1β-ol, and DCA-4β-ol based on matching in-laboratory synthesized standards. Metabolic inhibition assays in human liver microsomes and recombinant P450 assays revealed that CYP3A4 and CYP3A7 were responsible for the regioselective oxidations of both DCA and its conjugated forms, glycodeoxycholate (GDCA) and taurodeoxycholate (TDCA). The modification of secondary BAs to tertiary BAs defines a host liver (primary BAs)-gut microbiota (secondary BAs)-host liver (tertiary BAs) axis. The regioselective oxidations of DCA, GDCA, and TDCA by CYP3A4 and CYP3A7 may help eliminate host-toxic DCA species. The 19- and 4β-hydroxylation of DCA species demonstrated outstanding CYP3A7 selectivity and may be useful as indicators of CYP3A7 activity.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| | - Ling-Zhi Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| | - Yu-Jie Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| | - Ping-Ping Zhu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| | - Shan-Shan Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| | - Ming-Ming Su
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| | - Yan Ni
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| | - Jia Miao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| | - Wen-Lin Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| | - Hong Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| | - Kim L R Brouwer
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| | - Chang-Xiao Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| | - Liang Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| | - Wei Jia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| | - Ke Lan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| |
Collapse
|
12
|
Munkboel CH, Larsen LW, Weisser JJ, Møbjerg Kristensen D, Styrishave B. Sertraline Suppresses Testis and Adrenal Steroid Production and Steroidogenic Gene Expression While Increasing LH in Plasma of Male Rats Resulting in Compensatory Hypogonadism. Toxicol Sci 2018; 163:609-619. [DOI: 10.1093/toxsci/kfy059] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Cecilie Hurup Munkboel
- Toxicology Laboratory, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen OE, Denmark
| | - Lizette Weber Larsen
- Toxicology Laboratory, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen OE, Denmark
| | - Johan Juhl Weisser
- Toxicology Laboratory, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen OE, Denmark
| | - David Møbjerg Kristensen
- Danish Headache Center, Department of Neurology, Rigshospitalet, University of Copenhagen, 1165 Copenhagen, Denmark
- Inserm (Institut National de la Santé et de la Recherche Médicale), Irset – Inserm UMR 1085, 35000 Rennes, France
| | - Bjarne Styrishave
- Toxicology Laboratory, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen OE, Denmark
| |
Collapse
|
13
|
Okamatsu G, Kawakami K, Komatsu T, Kitazawa T, Uno Y, Teraoka H. Functional expression and comparative characterization of four feline P450 cytochromes using fluorescent substrates. Xenobiotica 2016; 47:951-961. [DOI: 10.1080/00498254.2016.1257172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Gaku Okamatsu
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan and
| | - Kei Kawakami
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan and
| | - Tetsuya Komatsu
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan and
| | - Takio Kitazawa
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan and
| | - Yasuhiro Uno
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories Ltd., Kainan, Japan
| | - Hiroki Teraoka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan and
| |
Collapse
|
14
|
Probst-Schendzielorz K, Viviani R, Stingl JC. Effect of Cytochrome P450 polymorphism on the action and metabolism of selective serotonin reuptake inhibitors. Expert Opin Drug Metab Toxicol 2015; 11:1219-32. [PMID: 26028357 DOI: 10.1517/17425255.2015.1052791] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The aim of this article is to review the field of clinically relevant pharmacogenetic effects of cytochrome P450 polymorphisms on metabolism, kinetics, and action of selective serotonin reuptake inhibitors (SSRIs). AREAS COVERED The relevant literature in humans on the implications of genetic variation on SSRI drug exposure, drug safety, and efficacy was systematically evaluated. There is a large amount of evidence on the influences of CYP polymorphisms on the pharmacokinetics of SSRIs. Regulatory agencies have issued warnings or advice considering dose adjustments in the presence of affected metabolic phenotypes for several SSRIs. Evidence-based dose adjustments for drugs dependent on CYP genotype are available to clinicians. However, few data on the relationship between genetically determined elevated plasma concentrations of SSRIs and specific side effects or therapeutic failure are currently available. EXPERT OPINION Genetic polymorphisms in CYP2D6 and CYP2C19 exert large influences on the individual exposure to SSRIs, leading to the aim to achieve similar concentration time courses in different metabolizer phenotypes. The implementation of a stratified approach to medication with SSRIs in different metabolic phenotypes on a rational basis will require new studies assessing the association between clinical outcomes (such as adverse reactions) and genetically determined elevated plasma concentrations.
Collapse
|
15
|
Ghosh C, Hossain M, Spriggs A, Ghosh A, Grant GA, Marchi N, Perucca E, Janigro D. Sertraline-induced potentiation of the CYP3A4-dependent neurotoxicity of carbamazepine: an in vitro study. Epilepsia 2015; 56:439-49. [PMID: 25656284 PMCID: PMC4413932 DOI: 10.1111/epi.12923] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2014] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Drug toxicity is a hurdle to drug development and to clinical translation of basic research. Antiepileptic drugs such as carbamazepine (CBZ) and selective serotonin reuptake inhibitors such as sertraline (SRT) are commonly co-prescribed to patients with epilepsy and comorbid depression. Because SRT may interfere with cytochrome P450 (CYP) enzyme activity and CYPs have been implicated in the conversion of CBZ to reactive cytotoxic metabolites, we investigated in vitro models to determine whether SRT affects the neurotoxic potential of CBZ and the mechanisms involved. METHODS Human fetal brain-derived dopaminergic neurons, human brain microvascular endothelial cells (HBMECs), and embryonic kidney (HEK) cells were used to evaluate cytotoxicity of CBZ and SRT individually and in combination. Nitrite and glutathione (GSH) levels were measured with drug exposure. To validate the role of CYP3A4 in causing neurotoxicity, drug metabolism was compared to cell death in HEK CYP3A4 overexpressed and cells pretreated with the CYP3A4 inhibitor ketoconazole. RESULTS In all cellular systems tested, exposure to CBZ (127 μM) or SRT (5 μM) alone caused negligible cytotoxicity. By contrast CBZ, tested at a much lower concentration (17 μM) in combination with SRT (5 μM), produced prominent cytotoxicity within 15 min exposure. In neurons and HBMECs, cytotoxicity was associated with increased nitrite levels, suggesting involvement of free radicals as a pathogenetic mechanism. Pretreatment of HBMECs with reduced GSH or with the GSH precursor N-acetyl-L-cysteine prevented cytotoxic response. In HEK cells, the cytotoxic response to the CBZ + SRT combination correlated with the rate of CBZ biotransformation and production of 2-hydroxy CBZ, further suggesting a causative role of reactive metabolites. In the same system, cytotoxicity was potentiated by overexpression of CYP3A4, and prevented by CYP3A4 inhibitor. SIGNIFICANCE These results demonstrate an unexpected neurotoxic interaction between CBZ and SRT, apparently related to increased CYP3A4-mediated production of reactive CBZ metabolites. The potential clinical implications of these findings are discussed.
Collapse
Affiliation(s)
- Chaitali Ghosh
- Cerebrovascular Research, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
- Department of Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
- Department of Bio-medical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
| | - Mohammad Hossain
- Cerebrovascular Research, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
- Department of Bio-medical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
| | - Addison Spriggs
- Cerebrovascular Research, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
- Department of Bio-medical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
| | - Arnab Ghosh
- Department of Pathobiology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
| | - Gerald A. Grant
- Department of Neurosurgery and Neurobiology, Stanford University School of Medicine, Stanford, California, U.S.A
| | - Nicola Marchi
- Laboratory of Cerebrovascular Mechanisms of Brain Disorders, Department of Neuroscience, Institute of Functional Genomics, CNRS, Montpellier, France
| | - Emilio Perucca
- Department of Internal Medicine and Therapeutics, University of Pavia and C. Mondino National Neurological Institute, Pavia, Italy
| | - Damir Janigro
- Cerebrovascular Research, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
- Department of Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
- Department of Bio-medical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
- Department of Neurosurgery, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
| |
Collapse
|
16
|
Yu H, Balani SK, Chen W, Cui D, He L, Humphreys WG, Mao J, Lai WG, Lee AJ, Lim HK, MacLauchlin C, Prakash C, Surapaneni S, Tse S, Upthagrove A, Walsky RL, Wen B, Zeng Z. Contribution of Metabolites to P450 Inhibition–Based Drug–Drug Interactions: Scholarship from the Drug Metabolism Leadership Group of the Innovation and Quality Consortium Metabolite Group. Drug Metab Dispos 2015; 43:620-30. [DOI: 10.1124/dmd.114.059345] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|