1
|
Parulski C, Bya LA, Goebel J, Servais AC, Lechanteur A, Evrard B. Development of 3D printed mini-waffle shapes containing hydrocortisone for children's personalized medicine. Int J Pharm 2023:123131. [PMID: 37321464 DOI: 10.1016/j.ijpharm.2023.123131] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Hydrocortisone is mainly used in the substitution treatment of adrenal insufficiency which results in a dysregulation of cortisol. Compounding of hydrocortisone capsules remains the only low-dose oral treatment suitable for the pediatric population. However, capsules often show non-compliance in mass and content uniformity. Three-dimensional printing offers the prospect of practising personalized medicine for vulnerable patients like children. The goal of this work is to develop low-dose solid oral forms containing hydrocortisone by hot-melt extrusion coupled with fused deposition modeling for the pediatric population. Formulation, design and processes temperatures were optimized to produce printed forms with the desired characteristics. Red mini-waffle shapes containing drug loads of 2, 5 and 8 mg were successfully printed. This new 3D design allow to release more than 80% of the drug in 45 minutes indicating a conventional release like the one obtained with capsules. Mass and content uniformity, hardness and friability tests complied with European Pharmacopeia specifications, despite the considerable challenge of the small dimensions of the forms. This study demonstrates that FDM can be used to produce innovative pediatric-friendly printed shapes of an advanced pharmaceutical quality to practice personalize medicine.
Collapse
Affiliation(s)
- Chloé Parulski
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Department of Pharmacy, University of Liege (ULiege), Avenue Hippocrate 15, 4000 Liege, Belgium.
| | - Laure-Anne Bya
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Department of Pharmacy, University of Liege (ULiege), Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Justine Goebel
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Department of Pharmacy, University of Liege (ULiege), Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Anne-Catherine Servais
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), Department of Pharmacy, University of Liege (ULiege), Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Department of Pharmacy, University of Liege (ULiege), Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Department of Pharmacy, University of Liege (ULiege), Avenue Hippocrate 15, 4000 Liege, Belgium
| |
Collapse
|
2
|
Levoin N, Murthy AVR, Narendar V, Kumar NS, Aparna P, Bhavani AKD, Reddy CR, Mosset P, Grée R. Discovery of potent dual ligands for dopamine D4 and σ1 receptors. Bioorg Med Chem 2022; 69:116851. [PMID: 35753263 DOI: 10.1016/j.bmc.2022.116851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/04/2022] [Accepted: 05/20/2022] [Indexed: 11/27/2022]
Abstract
During our work on exploration of molecules with some piperidine-triazole scaffolds, we realized that our compounds display chemical similarity with some σ, as well as dopaminergic receptor ligands. Here we show that this series of molecules has indeed strong affinity both for σ1 and dopamine D4 receptors. Moreover, they appear selective towards σ2, dopamine paralogues D1, D2, D3 and D5 receptors and hERG channel. Extensive molecular dynamics with our lead compound AVRM-13 were carried out on σ1, supporting agonist activity of the ligand. Unexpectedly, several observations suggested the existence of a cation binding domain, a probable regulatory site for calcium.
Collapse
Affiliation(s)
- Nicolas Levoin
- Bioprojet-Biotech, 4 rue du Chesnay Beauregard, BP 96205, 35762 Saint Grégoire, France.
| | - Appala Venkata Ramana Murthy
- Chemveda Life Sciences India Pvt. Ltd., #B-11/1, IDA Uppal, Hyderabad 500039, Telangana, India; Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad 500 085, Telangana, India
| | - Vennu Narendar
- Chemveda Life Sciences India Pvt. Ltd., #B-11/1, IDA Uppal, Hyderabad 500039, Telangana, India
| | | | - Pasula Aparna
- Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad 500 085, Telangana, India
| | | | - Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Paul Mosset
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France
| | - René Grée
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France.
| |
Collapse
|
3
|
Dung DTM, Park EJ, Anh DT, Hai PT, Bao LQ, Ji AY, Kang JS, Tung TT, Han SB, Nam NH. Design, Synthesis and Evaluation of Novel (E)-N'-((1-(4-chlorobenzyl)-1H-indol-3-yl)methylene)-2-(4-oxoquinazolin-3(4H)-yl)acetohydrazides as Antitumor Agents. Anticancer Agents Med Chem 2022; 22:2586-2598. [PMID: 35040418 DOI: 10.2174/1871520622666220118154914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/21/2021] [Accepted: 11/29/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Herein, we have designed and synthesized a series of the novel (E)-N'-((1-(4-chlorobenzyl)-1H-indol-3-yl)methylene)-2-(4-oxoquinazolin-3(4H)-yl)acetohydrazides (5) as potent small molecules activating procaspase-3. The compounds were designed by the amalgamation of structural features of PAC-1 (the first procaspase-3 activator) and oncrasin-1, one potential anticancer agent. METHODS The target acetohydrazides (5a-m) were prepared via the Niementowski condensation of anthranilic acid (1a) or 5-substituted-2-aminobenzoic acid (1b-m) and formamide. The compound libraries were evaluated for their cytotoxicity, caspase-3 activation, cell cycle analysis, and apoptosis. In addition, computational chemistry is also performed. RESULTS A biological evaluation revealed that all thirteen compounds designed and synthesized showed strong cytotoxicity against three human cancer cell lines (SW620, colon cancer; PC-3, prostate cancer; NCI-H23, lung cancer) with eight compounds (5a, 5c-i, 5k), which were clearly more potent than both PAC-1 and oncrasin-1. In this series, four compounds including 5c, 5e, 5f, and 5h, were the most potent members with approximately 4- to 5-fold stronger than the reference compounds PAC-1 and oncrasin-1 in terms of IC50. In comparison to 5-FU, these compounds were even 18- to 29-fold more potent in terms of cytotoxicity in three human cell lines tested. In the caspase activation assay, the caspase activity was activated to 285% by compound 5e in comparison to PAC-1, the first procaspase activating compound, which was used as a control. Our docking simulation revealed that compound 5e was a potent allosteric inhibitor of procaspase-3 through chelation of inhibitory zinc ion. Physicochemical and ADMET calculations for 5e provided useful information of its suitable absorption profile and some toxicological effects that need further optimization to be developed as a promising anticancer agent. CONCLUSION Compound 5e has emerged as a potential hit for further design and development of caspases activators and anticancer agents.
Collapse
Affiliation(s)
- Do Thi Mai Dung
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 10000, Vietnam
| | - Eun Jae Park
- College of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyung-1, Heungdeok, Chungbuk, 28160, Republic of Korea
| | - Duong Tien Anh
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 10000, Vietnam
| | - Pham-The Hai
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 10000, Vietnam
| | - Le Quang Bao
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 10000, Vietnam
| | - A Young Ji
- Department of Pharmacy, Chungbuk National University, Korea
| | - Jong Soon Kang
- Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Truong Thanh Tung
- PHENIKAA Institute for Advanced Study (PIAS), Phenikaa University, Hanoi 12116, Vietnam
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyung-1, Heungdeok, Chungbuk, 28160, Republic of Korea
| | - Nguyen-Hai Nam
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 10000, Vietnam
| |
Collapse
|
4
|
Miranda C, Ruiz-Picazo A, Pomares P, Gonzalez-Alvarez I, Bermejo M, Gonzalez-Alvarez M, Avdeef A, Cabrera-Pérez MÁ. Integration of In Silico, In Vitro and In Situ Tools for the Preformulation and Characterization of a Novel Cardio-Neuroprotective Compound during the Early Stages of Drug Development. Pharmaceutics 2022; 14:182. [PMID: 35057075 PMCID: PMC8780741 DOI: 10.3390/pharmaceutics14010182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 11/18/2022] Open
Abstract
The main aim of this work is the biopharmaceutical characterization of a new hybrid benzodiazepine-dihydropyridine derivative, JM-20, derived with potent anti-ischemic and neuroprotective effects. In this study, the pKa and the pH-solubility profile were experimentally determined. Additionally, effective intestinal permeability was measured using three in vitro epithelial cell lines (MDCK, MDCK-MDR1 and Caco-2) and an in situ closed-loop intestinal perfusion technique. The results indicate that JM-20 is more soluble at acidic pH (9.18 ± 0.16); however, the Dose number (Do) was greater than 1, suggesting that it is a low-solubility compound. The permeability values obtained with in vitro cell lines as well as with the in situ perfusion method show that JM-20 is a highly permeable compound (Caco-2 value 3.8 × 10-5). The presence of an absorption carrier-mediated transport mechanism was also demonstrated, as well as the efflux effect of P-glycoprotein on the permeability values. Finally, JM-20 was provisionally classified as class 2 according to the biopharmaceutical classification system (BCS) due to its high intestinal permeability and low solubility. The potential good oral absorption of this compound could be limited by its solubility.
Collapse
Affiliation(s)
- Claudia Miranda
- Unit of Modeling & Experimental Biopharmaceutics, Central “Marta Abreu” de Las Villas, Centro de Bioactivos Químicos Universidad, Santa Clara 50100, Cuba; (C.M.); (M.-Á.C.-P.)
| | - Alejandro Ruiz-Picazo
- Department Engineering of Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, 03550 Alicante, Spain; (A.R.-P.); (P.P.); (I.G.-A.); (M.B.)
| | - Paula Pomares
- Department Engineering of Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, 03550 Alicante, Spain; (A.R.-P.); (P.P.); (I.G.-A.); (M.B.)
| | - Isabel Gonzalez-Alvarez
- Department Engineering of Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, 03550 Alicante, Spain; (A.R.-P.); (P.P.); (I.G.-A.); (M.B.)
| | - Marival Bermejo
- Department Engineering of Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, 03550 Alicante, Spain; (A.R.-P.); (P.P.); (I.G.-A.); (M.B.)
| | - Marta Gonzalez-Alvarez
- Department Engineering of Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, 03550 Alicante, Spain; (A.R.-P.); (P.P.); (I.G.-A.); (M.B.)
| | - Alex Avdeef
- In-ADME Research, 1732 First Avenue # 102, New York, NY 10128, USA;
| | - Miguel-Ángel Cabrera-Pérez
- Unit of Modeling & Experimental Biopharmaceutics, Central “Marta Abreu” de Las Villas, Centro de Bioactivos Químicos Universidad, Santa Clara 50100, Cuba; (C.M.); (M.-Á.C.-P.)
| |
Collapse
|
5
|
Ninh The S, Le Tuan A, Dinh Thi Thu T, Nguyen Dinh L, Tran Thi T, Pham-The H. Essential oils of Uvaria boniana - chemical composition, in vitro bioactivity, docking, and in silico ADMET profiling of selective major compounds. Z NATURFORSCH C 2021; 77:207-218. [PMID: 34761648 DOI: 10.1515/znc-2021-0111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/16/2021] [Indexed: 02/07/2023]
Abstract
Phytochemical investigation applying GC (gas chromatography)-MS (mass spectrometry)/GC-FID (flame ionization detection) on the hydro-distilled essential oils of the Vietnamese medicinal plant Uvaria boniana leaf and twig lead to the detection of 35 constituents (97.36%) in the leaf oil and 52 constituents (98.75%) in the twig oil. Monoterpenes, monoterpenoids, sesquiterpenes, and sesquiterpenoids were characteristic of U. boniana essential oils. The leaf oil was represented by major components (E)-caryophyllene (16.90%), bicyclogermacrene (15.95%), α-humulene (14.96%), and linalool (12.40%), whereas four compounds α-cadinol (16.16%), epi-α-muurolol (10.19%), α-pinene (11.01%), and β-pinene (8.08%) were the main ones in the twig oil. As compared with the leaf oil, the twig oil was better in antimicrobial activity. With the same MIC value of 40 mg/mL, the twig oil successfully controlled the growth of Gram (+) bacterium Bacillus subtilis, Gram (-) bacterium Escherichia coli, fungus Aspergillus niger, and yeast Saccharomyces cerevisiae. In addition, both two oil samples have induced antiinflammatory activity with the IC50 values of 223.7-240.6 mg/mL in NO productive inhibition when BV2 cells had been stimulated by LPS. Docking simulations of four major compounds of U. boniana twig oil on eight relevant antibacterial targets revealed that epi-α-muurolol and α-cadinol are moderate inhibitors of E. coli DNA gyrase subunit B, penicillin binding protein 2X and penicillin binding protein 3 of Pseudomonas aeruginosa with similar free binding energies of -30.1, -29.3, and -29.3 kJ/mol, respectively. Furthermore, in silico ADMET studies indicated that all four docked compounds have acceptable oral absorption, low metabolism, and appropriated toxicological profile to be considered further as drug candidates.
Collapse
Affiliation(s)
- Son Ninh The
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
| | - Anh Le Tuan
- Mien Trung Institute for Scientific Research, VAST, Hanoi, Vietnam
| | | | | | - Tuyen Tran Thi
- Institute of Natural Products Chemistry, VAST, Hanoi, Vietnam.,Graduate University of Science and Technology, VAST, Hanoi, Vietnam
| | - Hai Pham-The
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi, Vietnam
| |
Collapse
|
6
|
Dung DTM, Park EJ, Anh DT, Hai PT, Huy LD, Jun HW, Kwon JH, Young Ji A, Kang JS, Tung TT, Dung PTP, Han SB, Nam NH. Design, synthesis, and evaluation of novel (E)-N'-(3-allyl-2-hydroxy)benzylidene-2-(4-oxoquinazolin-3(4H)-yl)acetohydrazides as antitumor agents. Arch Pharm (Weinheim) 2021; 355:e2100216. [PMID: 34674294 DOI: 10.1002/ardp.202100216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022]
Abstract
In our continuing search for novel small-molecule anticancer agents, we designed and synthesized a series of novel (E)-N'-(3-allyl-2-hydroxy)benzylidene-2-(4-oxoquinazolin-3(4H)-yl)acetohydrazides (5), focusing on the modification of substitution in the quinazolin-4(3H)-one moiety. The biological evaluation showed that all 13 designed and synthesized compounds displayed significant cytotoxicity against three human cancer cell lines (SW620, colon cancer; PC-3, prostate cancer; NCI-H23, lung cancer). The most potent compound 5l displayed cytotoxicity up to 213-fold more potent than 5-fluorouracil and 87-fold more potent than PAC-1, the first procaspase-activating compound. Structure-activity relationship analysis revealed that substitution of either electron-withdrawing or electron-releasing groups at positions 6 or 7 on the quinazolin-4(3H)-4-one moiety increased the cytotoxicity of the compounds, but substitution at position 6 seemed to be more favorable. In the caspase activation assay, compound 5l was found to activate the caspase activity by 291% in comparison to PAC-1, which was used as a control. Further docking simulation also revealed that this compound may be a potent allosteric inhibitor of procaspase-3 through chelation of the inhibitory zinc ion. Physicochemical and ADMET calculations for 5l provided useful information of its suitable absorption profile and some toxicological effects that need further optimization to be developed as a promising anticancer agent.
Collapse
Affiliation(s)
- Do T M Dung
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Eun J Park
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Duong T Anh
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Pham-The Hai
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Le D Huy
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Hye W Jun
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Joo-Hee Kwon
- Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, Republic of Korea
| | - A Young Ji
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Jong S Kang
- Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, Republic of Korea
| | - Truong T Tung
- Faculty of Pharmacy, PHENIKAA University, Hanoi, Vietnam
- PHENIKAA Institute for Advanced Study (PIAS), PHENIKAA University, Hanoi, Vietnam
| | - Phan T P Dung
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Nguyen-Hai Nam
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, Hanoi, Vietnam
| |
Collapse
|
7
|
Xu Y, Shrestha N, Préat V, Beloqui A. An overview of in vitro, ex vivo and in vivo models for studying the transport of drugs across intestinal barriers. Adv Drug Deliv Rev 2021; 175:113795. [PMID: 33989702 DOI: 10.1016/j.addr.2021.05.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022]
Abstract
Oral administration is the most commonly used route for drug delivery owing to its cost-effectiveness, ease of administration, and high patient compliance. However, the absorption of orally delivered compounds is a complex process that greatly depends on the interplay between the characteristics of the drug/formulation and the gastrointestinal tract. In this contribution, we review the different preclinical models (in vitro, ex vivo and in vivo) from their development to application for studying the transport of drugs across intestinal barriers. This review also discusses the advantages and disadvantages of each model. Furthermore, the authors have reviewed the selection and validation of these models and how the limitations of the models can be addressed in future investigations. The correlation and predictability of the intestinal transport data from the preclinical models and human data are also explored. With the increasing popularity and prevalence of orally delivered drugs/formulations, sophisticated preclinical models with higher predictive capacity for absorption of oral formulations used in clinical studies will be needed.
Collapse
Affiliation(s)
- Yining Xu
- University of Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium.
| | - Neha Shrestha
- University of Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium.
| | - Véronique Préat
- University of Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium.
| | - Ana Beloqui
- University of Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium.
| |
Collapse
|
8
|
ICH Guideline for Biopharmaceutics Classification System-Based Biowaiver (M9): Toward Harmonization in Latin American Countries. Pharmaceutics 2021; 13:pharmaceutics13030363. [PMID: 33801796 PMCID: PMC8001157 DOI: 10.3390/pharmaceutics13030363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 12/02/2022] Open
Abstract
The biopharmaceutical classification system (BCS) is a very important tool to replace the traditional in vivo bioequivalence studies with in vitro dissolution assays during multisource product development. This paper compares the most recent harmonized guideline for biowaivers based on the biopharmaceutics classification system and the BCS regulatory guidelines in Latin America and analyzes the current BCS regulatory requirements and the perspective of the harmonization in the region to develop safe and effective multisource products. Differences and similarities between the official and publicly available BCS guidelines of several Latin American regulatory authorities and the new ICH harmonization guideline were identified and compared. Only Chile, Brazil, Colombia, and Argentina have a more comprehensive BCS guideline, which includes solubility, permeability, and dissolution requirements. Although their regulatory documents have many similarities with the ICH guidelines, there are still major differences in their interpretation and application. This situation is an obstacle to the successful development of safe and effective multisource products in the Latin American region, not only to improve their access to patients at a reasonable cost, but also to develop BCS biowaiver studies that fulfill the quality standards of regulators in developed and emerging markets.
Collapse
|
9
|
Romano M, Uchiyama MK, Cardoso RM, Toma SH, Baptista MS, Araki K. Nitric oxide inhibition of lipopolysaccharide-stimulated RAW 247.6 cells by ibuprofen-conjugated iron oxide nanoparticles. Nanomedicine (Lond) 2020; 15:2475-2492. [DOI: 10.2217/nnm-2020-0214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aim: To develop a series of superparamagnetic iron oxide nanoparticles (SPIONs) by coconjugating them with ibuprofen (ibu) and glycerol phosphate (glycerol) or ibu and glucose-1-phosphate and to assess capacity of these conjugates to inhibit the release of nitric oxide (NO) in macrophages, even at low concentrations. Materials & methods: The SPION conjugates were characterized and their properties evaluated showing the influence of those ligands on colloidal stability and inhibition of NO-release demonstrated. The cytotoxicity and possible anti-inflammatory activity were evaluated using murine macrophages (RAW 247.6). Results: SPION-glycerol phosphate/ibu conjugates inhibited the NO production induced by lipopolysaccharides, indicating a potential anti-inflammatory activity. Conclusion: SPION conjugated with ibu was shown to inhibit NO-release even at very low concentrations, suggesting possible action against inflammatory diseases.
Collapse
Affiliation(s)
- Mariana Romano
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil, Avenida Professor Lineu Prestes, 748, São Paulo, São Paulo, 05508-000, Brazil
| | - Mayara K Uchiyama
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil, Avenida Professor Lineu Prestes, 748, São Paulo, São Paulo, 05508-000, Brazil
| | - Roberta M Cardoso
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil, Avenida Professor Lineu Prestes, 748, São Paulo, São Paulo, 05508-000, Brazil
| | - Sergio H Toma
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil, Avenida Professor Lineu Prestes, 748, São Paulo, São Paulo, 05508-000, Brazil
| | - Mauricio S Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil, Avenida Professor Lineu Prestes, 748, São Paulo, São Paulo, 05508-000, Brazil
| | - Koiti Araki
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil, Avenida Professor Lineu Prestes, 748, São Paulo, São Paulo, 05508-000, Brazil
| |
Collapse
|
10
|
Miranda-Pérez de Alejo C, Aceituno Álvarez A, Mendes Lima Santos G, Fernández Cervera M, Jung-Cook H, Cabrera-Pérez MÁ. Policy of Multisource Drug Products in Latin America: Opportunities and Challenges on the Application of Bioequivalence In Vitro Assays. Ther Innov Regul Sci 2020; 55:65-81. [PMID: 32602028 DOI: 10.1007/s43441-020-00191-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/19/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The replacement of traditional in vivo bioequivalence studies by in vitro dissolution assays, based on the biopharmaceutical classification system (BCS), has emerged as an important tool for demonstrating the interchangeability of multisource products. This paper summarizes the current implementation of the BCS-based biowaiver for the development of multisource products in Latin America, and identifies several challenges and opportunities for greater convergence and application of BCS regulatory requirements. METHODS Differences and similarities between the current BCS-based biowaivers' guidelines proposed by two relevant regulatory agencies for the Latin American region (FDA and WHO) and the new ICH harmonization guideline were identified and compared. An update of the BCS-based biowaiver guideline for Latin American countries was also considered, based on the respective regulatory information on bioequivalence studies, which is publicly available. RESULTS About 50% of the Latin American countries analyzed have no information on the implementation of any bioequivalence standards, while in the countries where bioequivalence studies are considered, the acceptance and application of BCS-based biowaiver requirements is quite heterogeneous. This situation contrasts with the international trend of global harmonization for BCS-based biowaiver guidance, suggesting the need in Latin America to identify opportunities and overcome challenges to improve the development of BCS-based biowaivers to avoid costly and time-consuming in vivo bioequivalence studies. CONCLUSIONS The study shows that the region is in a position to improve access to safe and effective medicines at a reasonable cost by applying BCS-based biowaiver guidance.
Collapse
Affiliation(s)
- Claudia Miranda-Pérez de Alejo
- Unit of Modeling and Experimental Biopharmaceutics, Centre of Chemical Bioactive, Central University of Las Villas, Villa Clara, 54830, Santa Clara, Cuba
| | - Alexis Aceituno Álvarez
- ANAMED Department, Institute of Public Health, Chile and Faculty of Pharmacy, University of Valparaiso, Valparaiso, Chile
| | - Gustavo Mendes Lima Santos
- General Office of Medicines and Biological Products, Brazilian Health Regulatory Agency (ANVISA), Brasília, DF, Brazil
| | | | - Helgi Jung-Cook
- Department of Pharmacy, Chemistry Faculty, UNAM, Mexico, DF, Mexico
| | - Miguel Ángel Cabrera-Pérez
- Unit of Modeling and Experimental Biopharmaceutics, Centre of Chemical Bioactive, Central University of Las Villas, Villa Clara, 54830, Santa Clara, Cuba.
| |
Collapse
|
11
|
In Silico Prediction of PAMPA Effective Permeability Using a Two-QSAR Approach. Int J Mol Sci 2019; 20:ijms20133170. [PMID: 31261723 PMCID: PMC6651837 DOI: 10.3390/ijms20133170] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/12/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022] Open
Abstract
Oral administration is the preferred and predominant route of choice for medication. As such, drug absorption is one of critical drug metabolism and pharmacokinetics (DM/PK) parameters that should be taken into consideration in the process of drug discovery and development. The cell-free in vitro parallel artificial membrane permeability assay (PAMPA) has been adopted as the primary screening to assess the passive diffusion of compounds in the practical applications. A classical quantitative structure–activity relationship (QSAR) model and a machine learning (ML)-based QSAR model were derived using the partial least square (PLS) scheme and hierarchical support vector regression (HSVR) scheme to elucidate the underlying passive diffusion mechanism and to predict the PAMPA effective permeability, respectively, in this study. It was observed that HSVR executed better than PLS as manifested by the predictions of the samples in the training set, test set, and outlier set as well as various statistical assessments. When applied to the mock test, which was designated to mimic real challenges, HSVR also showed better predictive performance. PLS, conversely, cannot cover some mechanistically interpretable relationships between descriptors and permeability. Accordingly, the synergy of predictive HSVR and interpretable PLS models can be greatly useful in facilitating drug discovery and development by predicting passive diffusion.
Collapse
|
12
|
Pham-The H, Cabrera-Pérez MÁ, Nam NH, Castillo-Garit JA, Rasulev B, Le-Thi-Thu H, Casañola-Martin GM. In Silico Assessment of ADME Properties: Advances in Caco-2 Cell Monolayer Permeability Modeling. Curr Top Med Chem 2019; 18:2209-2229. [PMID: 30499410 DOI: 10.2174/1568026619666181130140350] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/16/2018] [Accepted: 11/19/2018] [Indexed: 11/22/2022]
Abstract
One of the main goals of in silico Caco-2 cell permeability models is to identify those drug substances with high intestinal absorption in human (HIA). For more than a decade, several in silico Caco-2 models have been made, applying a wide range of modeling techniques; nevertheless, their capacity for intestinal absorption extrapolation is still doubtful. There are three main problems related to the modest capacity of obtained models, including the existence of inter- and/or intra-laboratory variability of recollected data, the influence of the metabolism mechanism, and the inconsistent in vitro-in vivo correlation (IVIVC) of Caco-2 cell permeability. This review paper intends to sum up the recent advances and limitations of current modeling approaches, and revealed some possible solutions to improve the applicability of in silico Caco-2 permeability models for absorption property profiling, taking into account the above-mentioned issues.
Collapse
Affiliation(s)
- Hai Pham-The
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Vietnam
| | - Miguel Á Cabrera-Pérez
- Unit of Modeling and Experimental Biopharmaceutics, Chemical Bioactive Center, Central University of Las Villas, Santa Clara, 54830, Villa Clara, Cuba.,Department of Engineering, Area of Pharmacy and Pharmaceutical Technology, Miguel Hernández University, 03550 Sant Juan d'Alacant, Alicante, Spain
| | - Nguyen-Hai Nam
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Vietnam
| | - Juan A Castillo-Garit
- Unidad de Toxicologia Experimental, Universidad de Ciencias Medicas "Dr. Serafín Ruiz de Zarate Ruiz" de Villa Clara, Santa Clara, 50200, Villa Clara, Cuba
| | - Bakhtiyor Rasulev
- Department of Coatings and Polymer Materials, North Dakota State University, Fargo, ND, 58102, United States
| | - Huong Le-Thi-Thu
- School of Medicine and Pharmacy, Vietnam National University, 144 Xuan Thuy, Hanoi, Vietnam
| | - Gerardo M Casañola-Martin
- Department of Coatings and Polymer Materials, North Dakota State University, Fargo, ND, 58102, United States
| |
Collapse
|