1
|
Development of a Subcellular Semimechanism-Based Pharmacokinetic/Pharmacodynamic Model to Characterize Paclitaxel Effects Delivered by Polymeric Micelles. J Pharm Sci 2019; 108:725-731. [DOI: 10.1016/j.xphs.2018.10.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/20/2018] [Accepted: 10/31/2018] [Indexed: 11/21/2022]
|
2
|
Craig M. Towards Quantitative Systems Pharmacology Models of Chemotherapy-Induced Neutropenia. CPT Pharmacometrics Syst Pharmacol 2017; 6:293-304. [PMID: 28418603 PMCID: PMC5445232 DOI: 10.1002/psp4.12191] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 12/22/2022] Open
Abstract
Neutropenia is a serious toxic complication of chemotherapeutic treatment. For years, mathematical models have been developed to better predict hematological outcomes during chemotherapy in both the traditional pharmaceutical sciences and mathematical biology disciplines. An increasing number of quantitative systems pharmacology (QSP) models that combine systems approaches, physiology, and pharmacokinetics/pharmacodynamics have been successfully developed. Here, I detail the shift towards QSP efforts, emphasizing the importance of incorporating systems-level physiological considerations in pharmacometrics.
Collapse
Affiliation(s)
- M Craig
- Program for Evolutionary Dynamics, Harvard UniversityCambridgeMassachusettsUSA
| |
Collapse
|
3
|
Patel M, Palani S, Chakravarty A, Yang J, Shyu WC, Mettetal JT. Dose schedule optimization and the pharmacokinetic driver of neutropenia. PLoS One 2014; 9:e109892. [PMID: 25360756 PMCID: PMC4215876 DOI: 10.1371/journal.pone.0109892] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/05/2014] [Indexed: 11/18/2022] Open
Abstract
Toxicity often limits the utility of oncology drugs, and optimization of dose schedule represents one option for mitigation of this toxicity. Here we explore the schedule-dependency of neutropenia, a common dose-limiting toxicity. To this end, we analyze previously published mathematical models of neutropenia to identify a pharmacokinetic (PK) predictor of the neutrophil nadir, and confirm this PK predictor in an in vivo experimental system. Specifically, we find total AUC and Cmax are poor predictors of the neutrophil nadir, while a PK measure based on the moving average of the drug concentration correlates highly with neutropenia. Further, we confirm this PK parameter for its ability to predict neutropenia in vivo following treatment with different doses and schedules. This work represents an attempt at mechanistically deriving a fundamental understanding of the underlying pharmacokinetic drivers of neutropenia, and provides insights that can be leveraged in a translational setting during schedule selection.
Collapse
Affiliation(s)
- Mayankbhai Patel
- Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, United States of America
| | - Santhosh Palani
- Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, United States of America
| | - Arijit Chakravarty
- Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, United States of America
| | - Johnny Yang
- Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, United States of America
| | - Wen Chyi Shyu
- Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, United States of America
| | - Jerome T. Mettetal
- Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
4
|
Krzyzanski W, Perez Ruixo JJ. Lifespan based indirect response models. J Pharmacokinet Pharmacodyn 2012; 39:109-23. [PMID: 22212685 PMCID: PMC3684441 DOI: 10.1007/s10928-011-9236-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 12/15/2011] [Indexed: 01/18/2023]
Abstract
In the field of hematology, several mechanism-based pharmacokinetic-pharmacodynamic models have been developed to understand the dynamics of several blood cell populations under different clinical conditions while accounting for the essential underlying principles of pharmacology, physiology and pathology. In general, a population of blood cells is basically controlled by two processes: the cell production and cell loss. The assumption that each cell exits the population when its lifespan expires implies that the cell loss rate is equal to the cell production rate delayed by the lifespan and justifies the use of delayed differential equations for compartmental modeling. This review is focused on lifespan models based on delayed differential equations and presents the structure and properties of the basic lifespan indirect response (LIDR) models for drugs affecting cell production or cell lifespan distribution. The LIDR models for drugs affecting the precursor cell production or decreasing the precursor cell population are also presented and their properties are discussed. The interpretation of transit compartment models as LIDR models is reviewed as the basis for introducing a new LIDR for drugs affecting the cell lifespan distribution. Finally, the applications and limitations of the LIDR models are discussed.
Collapse
Affiliation(s)
- Wojciech Krzyzanski
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA.
| | | |
Collapse
|
5
|
Lin H, de Stanchina E, Zhou XK, Hong F, Seidman A, Fornier M, Xiao WL, Kennelly EJ, Wesa K, Cassileth BR, Cunningham-Rundles S. Maitake beta-glucan promotes recovery of leukocytes and myeloid cell function in peripheral blood from paclitaxel hematotoxicity. Cancer Immunol Immunother 2010; 59:885-97. [PMID: 20140432 DOI: 10.1007/s00262-009-0815-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 12/30/2009] [Indexed: 12/14/2022]
Abstract
Bone marrow myelotoxicity is a major limitation of chemotherapy. While granulocyte colony stimulating factor (G-CSF) treatment is effective, alternative approaches to support hematopoietic recovery are sought. We previously found that a beta-glucan extract from maitake mushroom Grifola frondosa (MBG) enhanced colony forming unit-granulocyte monocyte (CFU-GM) activity of mouse bone marrow and human hematopoietic progenitor cells (HPC), stimulated G-CSF production and spared HPC from doxorubicin toxicity in vitro. This investigation assessed the effects of MBG on leukocyte recovery and granulocyte/monocyte function in vivo after dose intensive paclitaxel (Ptx) in a normal mouse. After a cumulative dose of Ptx (90-120 mg/kg) given to B6D2F1mice, daily oral MBG (4 or 6 mg/kg), intravenous G-CSF (80 microg/kg) or Ptx alone were compared for effects on the dynamics of leukocyte recovery in blood, CFU-GM activity in bone marrow and spleen, and granulocyte/monocyte production of reactive oxygen species (ROS). Leukocyte counts declined less in Ptx + MBG mice compared to Ptx-alone (p = 0.024) or Ptx + G-CSF treatment (p = 0.031). Lymphocyte levels were higher after Ptx + MBG but not Ptx + G-CSF treatment compared to Ptx alone (p < 0.01). MBG increased CFU-GM activity in bone marrow and spleen (p < 0.001, p = 0.002) 2 days after Ptx. After two additional days (Ptx post-day 4), MBG restored granulocyte/monocyte ROS response to normal levels compared to Ptx-alone and increased ROS response compared to Ptx-alone or Ptx + G-CSF (p < 0.01, both). The studies indicate that oral MBG promoted maturation of HPC to become functionally active myeloid cells and enhanced peripheral blood leukocyte recovery after chemotoxic bone marrow injury.
Collapse
Affiliation(s)
- Hong Lin
- Cellular Immunology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Christian DA, Cai S, Garbuzenko OB, Harada T, Zajac AL, Minko T, Discher DE. Flexible filaments for in vivo imaging and delivery: persistent circulation of filomicelles opens the dosage window for sustained tumor shrinkage. Mol Pharm 2009; 6:1343-52. [PMID: 19249859 DOI: 10.1021/mp900022m] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Shape effects of synthetic carriers are largely unexplored in vivo, although recent findings suggest that flexible filaments can persist in the circulation even if microns in length. Here, to better assess biodistribution, a near-infrared fluorophore (NIRF) was incorporated into such block copolymer "filomicelles", and both in vivo and ex vivo imaging show that the majority of these wormlike micelles remain in the circulation for at least a day after intravenous injection. NIRF imaging further suggests that filomicelles convect into a tumor and some fragments can penetrate into the tumor stroma. To assess a functional effect, the hydrophobic drug paclitaxel (tax) was loaded into both filomicelles and sonication-generated spherical micelles of the same copolymer. Intravenous injection of tax-loaded filomicelles nearly doubles the maximum tolerated dose of tax in normal mice compared to tax-loaded spherical micelles. In tumor-bearing mice, the higher dose of tax produces greater and more sustained tumor shrinkage and tumor cell apoptosis. These results thus begin to address mechanisms for how nonspherical carriers deliver both imaging agents and anticancer therapeutics to solid tumors.
Collapse
Affiliation(s)
- David A Christian
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Yano Y, Kodawara T, Hongo H, Yano I, Kishi Y, Takahashi J, Inui KI. Population analysis of myelosuppression profiles using routine clinical data after the ICE (ifosfamide/carboplatin/etoposide) regimen for malignant gliomas. J Pharm Sci 2009; 98:4402-12. [DOI: 10.1002/jps.21731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Zhou R, Mazurchuk RV, Tamburlin JH, Harrold JM, Mager DE, Straubinger RM. Differential pharmacodynamic effects of paclitaxel formulations in an intracranial rat brain tumor model. J Pharmacol Exp Ther 2009; 332:479-88. [PMID: 19861574 DOI: 10.1124/jpet.109.160044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Nano- and microparticulate carriers can exert a beneficial impact on the pharmacodynamics of anticancer agents. To investigate the relationships between carrier and antitumor pharmacodynamics, paclitaxel incorporated in liposomes (L-pac) was compared with the clinical standard formulated in Cremophor-EL/ethanol (Cre-pac) in a rat model of advanced primary brain cancer. Three maximum-tolerated-dose regimens given by intravenous administration were investigated: 50 mg/kg on day 8 (d8) after implantation of 9L gliosarcoma tumors; 40 mg/kg on d8 and d15; 20 mg/kg on d8, d11, and d15. Body weight change and neutropenia were assessed as pharmacodynamic markers of toxicity. The pharmacodynamic markers of antitumor efficacy were increase in lifespan (ILS) and tumor volume progression, measured noninvasively by magnetic resonance imaging. At equivalent doses, neutropenia was similar for both formulations, but weight loss was more severe for Cre-pac. No regimen of Cre-pac extended survival, whereas L-pac at 40 mg/kg x2 doses was well tolerated and mediated 26% ILS (p < 0.0002) compared with controls. L-pac at a lower cumulative dose (20 mg/kg x3) was even more effective (40% ILS; p < 0.0001). In striking contrast, the identical regimen of Cre-pac was lethal. Development of a novel semimechanistic pharmacodynamic model permitted quantitative hypothesis testing with the tumor volume progression data, and suggested the existence of a transient treatment effect that was consistent with sensitization or "priming" of tumors by more frequent L-pac dosing schedules. Therefore, improved antitumor responses of carrier-based paclitaxel formulations can arise both from dose escalation, because of reduced toxicity, and from novel carrier-mediated alterations of antitumor pharmacodynamic effects.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, NY 14260-1200, USA
| | | | | | | | | | | |
Collapse
|
9
|
Fetterly GJ, Grasela TH, Sherman JW, Dul JL, Grahn A, Lecomte D, Fiedler-Kelly J, Damjanov N, Fishman M, Kane MP, Rubin EH, Tan AR. Pharmacokinetic/pharmacodynamic modeling and simulation of neutropenia during phase I development of liposome-entrapped paclitaxel. Clin Cancer Res 2008; 14:5856-63. [PMID: 18794097 DOI: 10.1158/1078-0432.ccr-08-1046] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To evaluate the maximum tolerated dose (MTD), dose-limiting toxicities (DLT), and pharmacokinetics of liposome-entrapped paclitaxel easy-to-use (LEP-ETU) and to characterize the relationship between LEP-ETU concentrations and the time course of neutropenia in cancer patients. EXPERIMENTAL DESIGN LEP-ETU was administered to 88 patients and 63 were evaluable for pharmacokinetic/pharmacodynamic (PK/PD) analysis following 1.5- and 3-h infusions every 3 weeks (q3w; dose range, 135-375 mg/m(2)). MTD was identified using a 3 + 3, up-and-down dose-finding algorithm. PK/PD modeling was done to describe the temporal relationship between paclitaxel concentrations and neutrophil count. Simulations assessed the influence of dose and schedule on neutropenia severity to help guide dose selection. RESULTS The MTD of LEP-ETU was identified as 325 mg/m(2). DLTs occurring at 375 mg/m(2) consisted of febrile neutropenia and neuropathy. The C(max) and area under the plasma concentration-time curve of LEP-ETU were less than proportional with increasing dose. The PK/PD model showed that LEP-ETU inhibition of neutrophil proliferation was 9.1% per 10 mug/mL of total paclitaxel concentration. The incidence of grade 4 neutropenia increased from 33% to 42% across the dose range of 275 to 325 mg/m(2) q3w. For a dose of 110 mg/m(2) given weekly, grade 4 neutropenia was estimated to be 16% compared with 42% for the same total dose administered q3w. CONCLUSIONS LEP-ETU can be administered safely at higher doses than Taxol. Modeling and simulation studies predict that 325 mg/m(2) LEP-ETU q3w provides acceptable neutropenic events relative to those observed at 175 mg/m(2) Taxol q3w. A 275 mg/m(2) dose may offer an improved therapeutic index.
Collapse
|
10
|
Testart-Paillet D, Girard P, You B, Freyer G, Pobel C, Tranchand B. Contribution of modelling chemotherapy-induced hematological toxicity for clinical practice. Crit Rev Oncol Hematol 2007; 63:1-11. [PMID: 17418588 DOI: 10.1016/j.critrevonc.2007.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 12/28/2006] [Accepted: 01/25/2007] [Indexed: 11/28/2022] Open
Abstract
Anticancer chemotherapies are responsible for numerous adverse events. Among these, hematological toxicity is one of the main causes for ending treatment. These toxicities decrease production of red blood cells (anemia), production of white blood cells (neutropenia or granulocytopenia), and production of platelets (thrombocytopenia), which may be life-threatening to the patient. Preventing such discontinuation would be valuable for treating patients more effectively. In order to achieve this goal, numerous mathematical and physiological or semiphysiological models have been developed. The complexity of models has increased over the years, from empiric E(max) models to mechanistic models including physiological mechanisms such as feedback control. This review discusses several approaches of modelling hematological toxicities illustrated with some examples: pharmacodynamic models for the hematological toxicity of 5-fluorouracil, epirubicin, melphalan, paclitaxel, topotecan, and indisulam.
Collapse
|
11
|
Joerger M, Huitema ADR, van den Bongard DHJG, Schellens JHM, Beijnen JH. Quantitative effect of gender, age, liver function, and body size on the population pharmacokinetics of Paclitaxel in patients with solid tumors. Clin Cancer Res 2006; 12:2150-7. [PMID: 16609028 DOI: 10.1158/1078-0432.ccr-05-2069] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The aim of this study was to quantitatively assess the effect of anthropometric and biochemical variables and third-space effusions on paclitaxel pharmacokinetics in solid tumor patients. MATERIALS AND METHODS Plasma concentration-time data of paclitaxel were collected in patients with non-small cell lung cancer (n = 84), ovarian cancer (n = 40), and various solid tumors (n = 44), totaling 168 patients. Paclitaxel was given as a 3-hour infusion (n = 163) at doses ranging from 100 to 250 mg/m(2), or as a 24-hour infusion (n = 5) at a dose of 135 or 175 mg/m(2). Data were analyzed using nonlinear mixed-effect modeling. RESULTS A three-compartment model with saturable elimination and distribution was used to describe concentration-time data. Male gender and body surface area were positively correlated with maximal elimination capacity of paclitaxel (VM(EL)); patient age and total bilirubin were negatively correlated with VM(EL) (P < 0.005 for all correlations). Typically, male patients had a 20% higher VM(EL); a 0.2 m(2) increase of body surface area led to a 9% increase of VM(EL); a 10-year increase of patient age led to a 5% decrease of VM(EL); and a 10-micromol increase of total bilirubin led to a 14% decrease of VM(EL). Third-space effusions were not correlated with paclitaxel pharmacokinetics. CONCLUSIONS This extended retrospective population analysis showed patient gender to significantly and independently affect paclitaxel distribution and elimination. Body surface area, total bilirubin, and patient age were confirmed to affect paclitaxel elimination. This pharmacokinetic model allowed quantification of the covariate effects on the elimination of paclitaxel and may be used for covariate-adapted paclitaxel dosing.
Collapse
Affiliation(s)
- Markus Joerger
- Department of Pharmacy and Pharmacology, Slotervaart Hospital, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
12
|
Sparreboom A, Verweij J. Paclitaxel pharmacokinetics, threshold models, and dosing strategies. J Clin Oncol 2003; 21:2803-4; author reply 2805-6. [PMID: 12860961 DOI: 10.1200/jco.2003.99.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
13
|
Krzyzanski W, Jusko WJ. Multiple-pool cell lifespan model of hematologic effects of anticancer agents. J Pharmacokinet Pharmacodyn 2002; 29:311-37. [PMID: 12518707 DOI: 10.1023/a:1020984823092] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The leukopenic effects of anticancer agents are described using a semi-physiologic multiple-pool cell lifespan model. The time course of myelosuppression in relation to the drug concentration vs. time profile was characterized using a three pool indirect model. The proliferation and maturation stages of myeloid cells in the bone marrow and cell removal from the circulation were quantitated with a cell life-span concept. Drug effects were assumed to take place in the bone marrow based on irreversible linear or capacity-limited cytotoxicity. Mathematical derivations and computer simulations (Adapt II) were used to examine the properties of the model. Data from the literature were also analyzed. Cell response profiles after therapy typically exhibit a lag period, reduction to a nadir, and return to baseline. The predicted values of the time periods of granulopoiesis were 10-14 days for proliferation, and 1-6 days for maturation of progenitor cells in the bone marrow. The proposed irreversible mechanism of cell killing by anticancer drugs explains previously observed relationships between leukocyte nadir counts and exposure to the drug and/or duration of drug concentrations above some threshold level. The model was applied to literature data for paclitaxel and etoposide effects on leukocyte counts. The predicted value of KC50 for paclitaxel ranged from 0.004 to 0.2 microgram/mL and for etoposide 2 micrograms/mL. The present model accounts for drug-induced leukopenia using a physiologic cell production and loss model and irreversible cytotoxicity in a precursor pool.
Collapse
Affiliation(s)
- Wojciech Krzyzanski
- Department of Pharmaceutical Sciences, 565 Hochstetter Hall, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | | |
Collapse
|