1
|
Fainsod A, Vadigepalli R. Rethinking retinoic acid self-regulation: A signaling robustness network approach. Curr Top Dev Biol 2024; 161:113-141. [PMID: 39870431 DOI: 10.1016/bs.ctdb.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
All-trans retinoic acid (ATRA) signaling is a major pathway regulating numerous differentiation, proliferation, and patterning processes throughout life. ATRA biosynthesis depends on the nutritional availability of vitamin A and other retinoids and carotenoids, while it is sensitive to dietary and environmental toxicants. This nutritional and environmental influence requires a robustness response that constantly fine-tunes the ATRA metabolism to maintain a context-specific, physiological range of signaling levels. The ATRA metabolic and signaling network is characterized by the existence of multiple enzymes, transcription factors, and binding proteins capable of performing the same activity. The partial spatiotemporal expression overlap of these enzymes and proteins yields different network compositions in the cells and tissues where this pathway is active. Genetic polymorphisms affecting the activity of individual network components further impact the network composition variability and the self-regulatory feedback response to ATRA fluctuations. Experiments directly challenging the robustness response uncovered a Pareto optimality in the ATRA network, such that some genetic backgrounds efficiently deal with excess ATRA but are very limited in their robustness response to reduced ATRA and vice versa. We discuss a network-focused framework to describe the robustness response and the Pareto optimality of the ATRA metabolic and signaling network.
Collapse
Affiliation(s)
- Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
2
|
McKay L, Petrelli B, Pind M, Reynolds JN, Wintle RF, Chudley AE, Drögemöller B, Fainsod A, Scherer SW, Hanlon-Dearman A, Hicks GG. Risk and Resilience Variants in the Retinoic Acid Metabolic and Developmental Pathways Associated with Risk of FASD Outcomes. Biomolecules 2024; 14:569. [PMID: 38785976 PMCID: PMC11117505 DOI: 10.3390/biom14050569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Fetal Alcohol Spectrum Disorder (FASD) is a common neurodevelopmental disorder that affects an estimated 2-5% of North Americans. FASD is induced by prenatal alcohol exposure (PAE) during pregnancy and while there is a clear genetic contribution, few genetic factors are currently identified or understood. In this study, using a candidate gene approach, we performed a genetic variant analysis of retinoic acid (RA) metabolic and developmental signaling pathway genes on whole exome sequencing data of 23 FASD-diagnosed individuals. We found risk and resilience alleles in ADH and ALDH genes known to normally be involved in alcohol detoxification at the expense of RA production, causing RA deficiency, following PAE. Risk and resilience variants were also identified in RA-regulated developmental pathway genes, especially in SHH and WNT pathways. Notably, we also identified significant variants in the causative genes of rare neurodevelopmental disorders sharing comorbidities with FASD, including STRA6 (Matthew-Wood), SOX9 (Campomelic Dysplasia), FDG1 (Aarskog), and 22q11.2 deletion syndrome (TBX1). Although this is a small exploratory study, the findings support PAE-induced RA deficiency as a major etiology underlying FASD and suggest risk and resilience variants may be suitable biomarkers to determine the risk of FASD outcomes following PAE.
Collapse
Affiliation(s)
- Leo McKay
- Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Berardino Petrelli
- Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Molly Pind
- Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - James N. Reynolds
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 2V7, Canada
| | - Richard F. Wintle
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Albert E. Chudley
- Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Pediatrics and Child Health, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1S1, Canada
| | - Britt Drögemöller
- Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Centre on Aging, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, P.O. Box 12271, Jerusalem 9112102, Israel
| | - Stephen W. Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics and McLaughlin Centre, University of Toronto, Toronto, ON M5G 1L7, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Ana Hanlon-Dearman
- Department of Pediatrics and Child Health, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1S1, Canada
| | - Geoffrey G. Hicks
- Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
3
|
Wang W, Ji Y, Dong Z, Liu Z, Chen S, Dai L, Su X, Jiang Q, Deng H. Characterizing neuroinflammation and identifying prenatal diagnostic markers for neural tube defects through integrated multi-omics analysis. J Transl Med 2024; 22:257. [PMID: 38461288 PMCID: PMC10924416 DOI: 10.1186/s12967-024-05051-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/29/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Neural Tube Defects (NTDs) are congenital malformations of the central nervous system resulting from the incomplete closure of the neural tube during early embryonic development. Neuroinflammation refers to the inflammatory response in the nervous system, typically resulting from damage to neural tissue. Immune-related processes have been identified in NTDs, however, the detailed relationship and underlying mechanisms between neuroinflammation and NTDs remain largely unclear. In this study, we utilized integrated multi-omics analysis to explore the role of neuroinflammation in NTDs and identify potential prenatal diagnostic markers using a murine model. METHODS Nine public datasets from Gene Expression Omnibus (GEO) and ArrayExpress were mined using integrated multi-omics analysis to characterize the molecular landscape associated with neuroinflammation in NTDs. Special attention was given to the involvement of macrophages in neuroinflammation within amniotic fluid, as well as the dynamics of macrophage polarization and their interactions with neural cells at single-cell resolution. We also used qPCR assay to validate the key TFs and candidate prenatal diagnostic genes identified through the integrated analysis in a retinoic acid-induced NTDs mouse model. RESULTS Our analysis indicated that neuroinflammation is a critical pathological feature of NTDs, regulated both transcriptionally and epigenetically within central nervous system tissues. Key alterations in gene expression and pathways highlighted the crucial role of STATs molecules in the JAK-STAT signaling pathway in regulating NTDs-associated neuroinflammation. Furthermore, single-cell resolution analysis revealed significant polarization of macrophages and their interaction with neural cells in amniotic fluid, underscoring their central role in mediating neuroinflammation associated with NTDs. Finally, we identified a set of six potential prenatal diagnostic genes, including FABP7, CRMP1, SCG3, SLC16A10, RNASE6 and RNASE1, which were subsequently validated in a murine NTDs model, indicating their promise as prospective markers for prenatal diagnosis of NTDs. CONCLUSIONS Our study emphasizes the pivotal role of neuroinflammation in the progression of NTDs and underlines the potential of specific inflammatory and neural markers as novel prenatal diagnostic tools. These findings provide important clues for further understanding the underlying mechanisms between neuroinflammation and NTDs, and offer valuable insights for the future development of prenatal diagnostics.
Collapse
Affiliation(s)
- Wenshuang Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yanhong Ji
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhexu Dong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zheran Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shuang Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Dai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaolan Su
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qingyuan Jiang
- Department of Obstetrics, Sichuan Provincial Hospital for Women and Children, Chengdu, China.
| | - Hongxin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Edri T, Cohen D, Shabtai Y, Fainsod A. Alcohol induces neural tube defects by reducing retinoic acid signaling and promoting neural plate expansion. Front Cell Dev Biol 2023; 11:1282273. [PMID: 38116205 PMCID: PMC10728305 DOI: 10.3389/fcell.2023.1282273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
Introduction: Neural tube defects (NTDs) are among the most debilitating and common developmental defects in humans. The induction of NTDs has been attributed to abnormal folic acid (vitamin B9) metabolism, Wnt and BMP signaling, excess retinoic acid (RA), dietary components, environmental factors, and many others. In the present study we show that reduced RA signaling, including alcohol exposure, induces NTDs. Methods: Xenopus embryos were exposed to pharmacological RA biosynthesis inhibitors to study the induction of NTDs. Embryos were treated with DEAB, citral, or ethanol, all of which inhibit the biosynthesis of RA, or injected to overexpress Cyp26a1 to reduce RA. NTD induction was studied using neural plate and notochord markers together with morphological analysis. Expression of the neuroectodermal regulatory network and cell proliferation were analyzed to understand the morphological malformations of the neural plate. Results: Reducing RA signaling levels using retinaldehyde dehydrogenase inhibitors (ethanol, DEAB, and citral) or Cyp26a1-driven degradation efficiently induce NTDs. These NTDs can be rescued by providing precursors of RA. We mapped this RA requirement to early gastrula stages during the induction of neural plate precursors. This reduced RA signaling results in abnormal expression of neural network genes, including the neural plate stem cell maintenance genes, geminin, and foxd4l1.1. This abnormal expression of neural network genes results in increased proliferation of neural precursors giving rise to an expanded neural plate. Conclusion: We show that RA signaling is required for neural tube closure during embryogenesis. RA signaling plays a very early role in the regulation of proliferation and differentiation of the neural plate soon after the induction of neural progenitors during gastrulation. RA signaling disruption leads to the induction of NTDs through the mis regulation of the early neuroectodermal network, leading to increased proliferation resulting in the expansion of the neural plate. Ethanol exposure induces NTDs through this mechanism involving reduced RA levels.
Collapse
Affiliation(s)
| | | | | | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
5
|
Cardeña-Núñez S, Callejas-Marín A, Villa-Carballar S, Rodríguez-Gallardo L, Sánchez-Guardado LÓ, Hidalgo-Sánchez M. CRABP-I Expression Patterns in the Developing Chick Inner Ear. BIOLOGY 2023; 12:biology12010104. [PMID: 36671796 PMCID: PMC9855850 DOI: 10.3390/biology12010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
The vertebrate inner ear is a complex three-dimensional sensorial structure with auditory and vestibular functions, regarded as an excellent system for analyzing events that occur during development, such as patterning, morphogenesis, and cell specification. Retinoic acid (RA) is involved in all these development processes. Cellular retinoic acid-binding proteins (CRABPs) bind RA with high affinity, buffering cellular free RA concentrations and consequently regulating the activation of precise specification programs mediated by particular regulatory genes. In the otic vesicle, strong CRABP-I expression was detected in the otic wall's dorsomedial aspect, where the endolymphatic apparatus develops, whereas this expression was lower in the ventrolateral aspect, where part of the auditory system forms. Thus, CRABP-I proteins may play a role in the specification of the dorsal-to-ventral and lateral-to-medial axe of the otic anlagen. Regarding the developing sensory patches, a process partly involving the subdivision of a ventromedial pro-sensory domain, the CRABP-I gene displayed different levels of expression in the presumptive territory of each sensory patch, which was maintained throughout development. CRABP-I was also relevant in the acoustic-vestibular ganglion and in the periotic mesenchyme. Therefore, CRABP-I could protect RA-sensitive cells in accordance with its dissimilar concentration in specific areas of the developing chick inner ear.
Collapse
|
6
|
Luo L, You W, DelBello MP, Gong Q, Li F. Recent advances in psychoradiology. Phys Med Biol 2022; 67. [PMID: 36279868 DOI: 10.1088/1361-6560/ac9d1e] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022]
Abstract
Abstract
Psychiatry, as a field, lacks objective markers for diagnosis, progression, treatment planning, and prognosis, in part due to difficulties studying the brain in vivo, and diagnoses are based on self-reported symptoms and observation of patient behavior and cognition. Rapid advances in brain imaging techniques allow clinical investigators to noninvasively quantify brain features at the structural, functional, and molecular levels. Psychoradiology is an emerging discipline at the intersection of psychiatry and radiology. Psychoradiology applies medical imaging technologies to psychiatry and promises not only to improve insight into structural and functional brain abnormalities in patients with psychiatric disorders but also to have potential clinical utility. We searched for representative studies related to recent advances in psychoradiology through May 1, 2022, and conducted a selective review of 165 references, including 75 research articles. We summarize the novel dynamic imaging processing methods to model brain networks and present imaging genetics studies that reveal the relationship between various neuroimaging endophenotypes and genetic markers in psychiatric disorders. Furthermore, we survey recent advances in psychoradiology, with a focus on future psychiatric diagnostic approaches with dimensional analysis and a shift from group-level to individualized analysis. Finally, we examine the application of machine learning in psychoradiology studies and the potential of a novel option for brain stimulation treatment based on psychoradiological findings in precision medicine. Here, we provide a summary of recent advances in psychoradiology research, and we hope this review will help guide the practice of psychoradiology in the scientific and clinical fields.
Collapse
|
7
|
Shortall K, Djeghader A, Magner E, Soulimane T. Insights into Aldehyde Dehydrogenase Enzymes: A Structural Perspective. Front Mol Biosci 2021; 8:659550. [PMID: 34055881 PMCID: PMC8160307 DOI: 10.3389/fmolb.2021.659550] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/28/2021] [Indexed: 12/30/2022] Open
Abstract
Aldehyde dehydrogenases engage in many cellular functions, however their dysfunction resulting in accumulation of their substrates can be cytotoxic. ALDHs are responsible for the NAD(P)-dependent oxidation of aldehydes to carboxylic acids, participating in detoxification, biosynthesis, antioxidant and regulatory functions. Severe diseases, including alcohol intolerance, cancer, cardiovascular and neurological diseases, were linked to dysfunctional ALDH enzymes, relating back to key enzyme structure. An in-depth understanding of the ALDH structure-function relationship and mechanism of action is key to the understanding of associated diseases. Principal structural features 1) cofactor binding domain, 2) active site and 3) oligomerization mechanism proved critical in maintaining ALDH normal activity. Emerging research based on the combination of structural, functional and biophysical studies of bacterial and eukaryotic ALDHs contributed to the appreciation of diversity within the superfamily. Herewith, we discuss these studies and provide our interpretation for a global understanding of ALDH structure and its purpose–including correct function and role in disease. Our analysis provides a synopsis of a common structure-function relationship to bridge the gap between the highly studied human ALDHs and lesser so prokaryotic models.
Collapse
Affiliation(s)
- Kim Shortall
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Ahmed Djeghader
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Edmond Magner
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Tewfik Soulimane
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
8
|
Tamkeen N, AlOmar SY, Alqahtani SAM, Al-Jurayyan A, Farooqui A, Tazyeen S, Ahmad N, Ishrat R. Identification of the Key Regulators of Spina Bifida Through Graph-Theoretical Approach. Front Genet 2021; 12:597983. [PMID: 33889172 PMCID: PMC8056047 DOI: 10.3389/fgene.2021.597983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/19/2021] [Indexed: 11/23/2022] Open
Abstract
Spina Bifida (SB) is a congenital spinal cord malformation. Efforts to discern the key regulators (KRs) of the SB protein-protein interaction (PPI) network are requisite for developing its successful interventions. The architecture of the SB network, constructed from 117 manually curated genes was found to self-organize into a scale-free fractal state having a weak hierarchical organization. We identified three modules/motifs consisting of ten KRs, namely, TNIP1, TNF, TRAF1, TNRC6B, KMT2C, KMT2D, NCOA3, TRDMT1, DICER1, and HDAC1. These KRs serve as the backbone of the network, they propagate signals through the different hierarchical levels of the network to conserve the network’s stability while maintaining low popularity in the network. We also observed that the SB network exhibits a rich-club organization, the formation of which is attributed to our key regulators also except for TNIP1 and TRDMT1. The KRs that were found to ally with each other and emerge in the same motif, open up a new dimension of research of studying these KRs together. Owing to the multiple etiology and mechanisms of SB, a combination of several biomarkers is expected to have higher diagnostic accuracy for SB as compared to using a single biomarker. So, if all the KRs present in a single module/motif are targetted together, they can serve as biomarkers for the diagnosis of SB. Our study puts forward some novel SB-related genes that need further experimental validation to be considered as reliable future biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Naaila Tamkeen
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India.,Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Suliman Yousef AlOmar
- Doping Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Abdullah Al-Jurayyan
- Immunology and HLA Section, Pathology and Clinical Laboratory Medicine, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Anam Farooqui
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Safia Tazyeen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Nadeem Ahmad
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Romana Ishrat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
9
|
Adolfi MC, Herpin A, Martinez-Bengochea A, Kneitz S, Regensburger M, Grunwald DJ, Schartl M. Crosstalk Between Retinoic Acid and Sex-Related Genes Controls Germ Cell Fate and Gametogenesis in Medaka. Front Cell Dev Biol 2021; 8:613497. [PMID: 33537305 PMCID: PMC7848095 DOI: 10.3389/fcell.2020.613497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
Sex determination (SD) is a highly diverse and complex mechanism. In vertebrates, one of the first morphological differences between the sexes is the timing of initiation of the first meiosis, where its initiation occurs first in female and later in male. Thus, SD is intimately related to the responsiveness of the germ cells to undergo meiosis in a sex-specific manner. In some vertebrates, it has been reported that the timing for meiosis entry would be under control of retinoic acid (RA), through activation of Stra8. In this study, we used a fish model species for sex determination and lacking the stra8 gene, the Japanese medaka (Oryzias latipes), to investigate the connection between RA and the sex determination pathway. Exogenous RA treatments act as a stress factor inhibiting germ cell differentiation probably by activation of dmrt1a and amh. Disruption of the RA degrading enzyme gene cyp26a1 induced precocious meiosis and oogenesis in embryos/hatchlings of female and even some males. Transcriptome analyzes of cyp26a1–/–adult gonads revealed upregulation of genes related to germ cell differentiation and meiosis, in both ovaries and testes. Our findings show that germ cells respond to RA in a stra8 independent model species. The responsiveness to RA is conferred by sex-related genes, restricting its action to the sex differentiation period in both sexes.
Collapse
Affiliation(s)
- Mateus C Adolfi
- University of Wuerzburg, Developmental Biochemistry, Biocenter, Wuerzburg, Germany
| | - Amaury Herpin
- INRA, UR1037, Fish Physiology and Genomics, Rennes, France.,State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Anabel Martinez-Bengochea
- University of Wuerzburg, Developmental Biochemistry, Biocenter, Wuerzburg, Germany.,Reproductive and Molecular Biology Group, Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, Brazil
| | - Susanne Kneitz
- University of Wuerzburg, Developmental Biochemistry, Biocenter, Wuerzburg, Germany
| | - Martina Regensburger
- University of Wuerzburg, Developmental Biochemistry, Biocenter, Wuerzburg, Germany
| | - David J Grunwald
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States
| | - Manfred Schartl
- University of Wuerzburg, Developmental Biochemistry, Biocenter, Wuerzburg, Germany.,University of Wuerzburg, Developmental Biochemistry, Biocenter, Wuerzburg, Germany
| |
Collapse
|
10
|
Puvabanditsin S, Negroponte E, Jang P, Hedges A, Kased R, Mehta R. Multiple Congenital Anomalies in a Patient with Interstitial 6q26 Deletion. Mol Syndromol 2020; 10:276-280. [PMID: 32021599 DOI: 10.1159/000503698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2019] [Indexed: 11/19/2022] Open
Abstract
We report a preterm male neonate presenting with a lumbosacral meningomyelocele, type II Arnold Chiari malformation, hypoplasia of the aortic arch, bicuspid aortic valve, ventricular septal defect, secundum atrial septal defect, multicystic dysplastic kidney, and hydronephrosis. Analysis with whole genome SNP microarray revealed an interstitial deletion of about 237 kb in chromosome 6q26. Long contiguous stretches of homozygosity (>3 Mb) were seen in 18 chromosomes with a total genomic size of 219 Mb. The phenotype seen in our patient has not been reported in association with the genes in the homozygous regions. However, our patient shares many phenotypic features with other reported cases that have shown a deletion in the same region of chromosome 6.
Collapse
Affiliation(s)
- Surasak Puvabanditsin
- Department of Pediatrics, Rutgers Robert Wood Johnson (RWJ) Medical School, New Brunswick, NJ, USA
| | - Emily Negroponte
- Department of Pediatrics, Rutgers Robert Wood Johnson (RWJ) Medical School, New Brunswick, NJ, USA
| | - Peter Jang
- Department of Pediatrics, Rutgers Robert Wood Johnson (RWJ) Medical School, New Brunswick, NJ, USA
| | - Amanda Hedges
- Department of Pediatrics, Rutgers Robert Wood Johnson (RWJ) Medical School, New Brunswick, NJ, USA
| | - Ramnan Kased
- Department of Pediatrics, Rutgers Robert Wood Johnson (RWJ) Medical School, New Brunswick, NJ, USA
| | - Rajeev Mehta
- Department of Pediatrics, Rutgers Robert Wood Johnson (RWJ) Medical School, New Brunswick, NJ, USA
| |
Collapse
|
11
|
Sirbu IO, Chiş AR, Moise AR. Role of carotenoids and retinoids during heart development. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158636. [PMID: 31978553 DOI: 10.1016/j.bbalip.2020.158636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 02/08/2023]
Abstract
The nutritional requirements of the developing embryo are complex. In the case of dietary vitamin A (retinol, retinyl esters and provitamin A carotenoids), maternal derived nutrients serve as precursors to signaling molecules such as retinoic acid, which is required for embryonic patterning and organogenesis. Despite variations in the composition and levels of maternal vitamin A, embryonic tissues need to generate a precise amount of retinoic acid to avoid congenital malformations. Here, we summarize recent findings regarding the role and metabolism of vitamin A during heart development and we survey the association of genes known to affect retinoid metabolism or signaling with various inherited disorders. A better understanding of the roles of vitamin A in the heart and of the factors that affect retinoid metabolism and signaling can help design strategies to meet nutritional needs and to prevent birth defects and disorders associated with altered retinoid metabolism. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Ioan Ovidiu Sirbu
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, 300041 Timisoara, Romania; Timisoara Institute of Complex Systems, V. Lucaciu 18, 300044 Timisoara, Romania.
| | - Aimée Rodica Chiş
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| | - Alexander Radu Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; Department of Chemistry and Biochemistry, Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON P3E 2C6, Canada.
| |
Collapse
|
12
|
Isoherranen N, Zhong G. Biochemical and physiological importance of the CYP26 retinoic acid hydroxylases. Pharmacol Ther 2019; 204:107400. [PMID: 31419517 PMCID: PMC6881548 DOI: 10.1016/j.pharmthera.2019.107400] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/06/2019] [Indexed: 12/19/2022]
Abstract
The Cytochrome P450 (CYP) family 26 enzymes contribute to retinoic acid (RA) metabolism and homeostasis in humans, mammals and other chordates. The three CYP26 family enzymes, CYP26A1, CYP26B1 and CYP26C1 have all been shown to metabolize all-trans-retinoic acid (atRA) it's 9-cisRA and 13-cisRA isomers and primary metabolites 4-OH-RA and 4-oxo-RA with high efficiency. While no crystal structures of CYP26 enzymes are available, the binding of various ligands has been extensively explored via homology modeling. All three CYP26 enzymes are inducible by treatment with atRA in various prenatal and postnatal tissues and cell types. However, current literature shows that in addition to regulation by atRA, CYP26 enzyme expression is also regulated by other endogenous processes and inflammatory cytokines. In humans and in animal models the expression patterns of CYP26 enzymes have been shown to be tissue and cell type specific, and the expression of the CYP26 enzymes is believed to regulate the formation of critical atRA concentration gradients in various tissue types. Yet, very little data exists on direct disease associations of altered CYP26 expression or activity. Nevertheless, data is emerging describing a variety of human genetic variations in the CYP26 enzymes that are associated with different pathologies. Interestingly, some of these genetic variants result in increased activity of the CYP26 enzymes potentially leading to complex gene-environment interactions due to variability in dietary intake of retinoids. This review highlights the current knowledge of structure-function of CYP26 enzymes and focuses on their role in human retinoid metabolism in different tissues.
Collapse
Affiliation(s)
- Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA.
| | - Guo Zhong
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA
| |
Collapse
|
13
|
Nedelec B, Rozet JM, Fares Taie L. Genetic architecture of retinoic-acid signaling-associated ocular developmental defects. Hum Genet 2019; 138:937-955. [DOI: 10.1007/s00439-019-02052-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 07/23/2019] [Indexed: 12/14/2022]
|
14
|
Elliott LT, Sharp K, Alfaro-Almagro F, Shi S, Miller KL, Douaud G, Marchini J, Smith SM. Genome-wide association studies of brain imaging phenotypes in UK Biobank. Nature 2018; 562:210-216. [PMID: 30305740 PMCID: PMC6786974 DOI: 10.1038/s41586-018-0571-7] [Citation(s) in RCA: 446] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 09/04/2018] [Indexed: 12/16/2022]
Abstract
The genetic architecture of brain structure and function is largely unknown. To investigate this, we carried out genome-wide association studies of 3,144 functional and structural brain imaging phenotypes from UK Biobank (discovery dataset 8,428 subjects). Here we show that many of these phenotypes are heritable. We identify 148 clusters of associations between single nucleotide polymorphisms and imaging phenotypes that replicate at P < 0.05, when we would expect 21 to replicate by chance. Notable significant, interpretable associations include: iron transport and storage genes, related to magnetic susceptibility of subcortical brain tissue; extracellular matrix and epidermal growth factor genes, associated with white matter micro-structure and lesions; genes that regulate mid-line axon development, associated with organization of the pontine crossing tract; and overall 17 genes involved in development, pathway signalling and plasticity. Our results provide insights into the genetic architecture of the brain that are relevant to neurological and psychiatric disorders, brain development and ageing.
Collapse
Affiliation(s)
| | - Kevin Sharp
- Department of Statistics, University of Oxford, Oxford, UK
| | - Fidel Alfaro-Almagro
- Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Sinan Shi
- Department of Statistics, University of Oxford, Oxford, UK
| | - Karla L Miller
- Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Gwenaëlle Douaud
- Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Jonathan Marchini
- Department of Statistics, University of Oxford, Oxford, UK.
- The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| | - Stephen M Smith
- Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
| |
Collapse
|
15
|
Li H, Zhang J, Chen S, Wang F, Zhang T, Niswander L. Genetic contribution of retinoid-related genes to neural tube defects. Hum Mutat 2018; 39:550-562. [PMID: 29297599 PMCID: PMC5839987 DOI: 10.1002/humu.23397] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/27/2017] [Accepted: 12/28/2017] [Indexed: 12/21/2022]
Abstract
Rare variants are considered underlying causes of complex diseases. The complex and severe group of disorders called neural tube defects (NTDs) results from failure of the neural tube to close during early embryogenesis. Neural tube closure requires the coordination of numerous signaling pathways, including the precise regulation of retinoic acid (RA) concentration, which is controlled by enzymes involved in RA synthesis and degradation. Here, we used a case-control mutation screen study to reveal rare variants in retinoid-related genes in a Han Chinese NTD population by sequencing six genes in 355 NTD cases and 225 controls. More specific rare variants were found in exonic and upstream regions in NTD cases. The RA-responsive genes CYP26A1, CRABP1, and ALDH1A2 harbored NTD-specific rare variants in their upstream regions. Unexpectedly, the majority of missense variants in NTD cases were found in CYP26B1, which encodes a RA degradation enzyme, whereas no missense variants in this gene were found in controls. Functional analysis indicated that the CYP26B1 NTD variants were inefficient in the degradation of RA using assays of RA-induced transcription and RA-initiated neuronal differentiation. Our study supports the contribution of rare variants in RA-related genes to the etiology of human NTDs.
Collapse
Affiliation(s)
- Huili Li
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children’s Hospital Colorado, Aurora, Colorado 80045
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Jing Zhang
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children’s Hospital Colorado, Aurora, Colorado 80045
| | - Shuyuan Chen
- Department of Pediatrics, XiangYa Hospital of Central South University, Changsha 410008, China
| | - Fang Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Lee Niswander
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children’s Hospital Colorado, Aurora, Colorado 80045
| |
Collapse
|
16
|
Chu M, Zhu X, Wang C, Rong J, Wang Y, Wang S, Xing B, Tao Y, Zhuang X, Jiang L. The rs4238326 polymorphism in ALDH1A2 gene potentially associated with non-post traumatic knee osteoarthritis susceptibility: a two-stage population-based study. Osteoarthritis Cartilage 2017; 25:1062-1067. [PMID: 28089900 DOI: 10.1016/j.joca.2017.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 12/27/2016] [Accepted: 01/06/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE A recent genome-wide association study reported significant associations of genetic variants within the ALDH1A2 gene with osteoarthritis (OA) of the hand in European populations. However, these findings have not been well generalized to other joints, or to other populations. METHODS We performed a two-stage population-based case-control study including 196 non-post traumatic knee OA cases and 442 controls in the first stage and independent 143 non-post traumatic knee OA cases and 238 controls in the second stage in a Chinese population by genotyping eight tagging polymorphisms in ALDH1A2. RESULTS In the first stage, the single nucleotide polymorphism (SNP) rs4238326 was found to be potentially associated with knee OA risk (additive model: odds ratio [OR] = 0.70; 95% confidence interval [95% CI] = 0.49-1.01; P = 0.055), which was further confirmed in the second stage with similar effect (additive model: OR = 0.60; 95% CI = 0.38-0.95; P = 0.029). After combining the two stages, we found that the variant C allele of rs4238326 was probably associated with decreased risk of knee OA (additive model: OR = 0.65; 95% CI = 0.49-0.86; P = 0.003). Furthermore, interaction analyses showed that rs4238326 interacted multiplicatively with age to contribute to knee OA risk (interaction P = 0.041). CONCLUSIONS These findings indicate that the SNP rs4238326 in ALDH1A2 gene may potentially modify individual susceptibility to knee OA in the Chinese population. Beyond that, further studies are warranted to validate and extend our findings, and future functional studies are required to clarify the possible mechanisms.
Collapse
Affiliation(s)
- M Chu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu Province, PR China
| | - X Zhu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu Province, PR China
| | - C Wang
- College of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu Province, PR China
| | - J Rong
- Second Department of Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Y Wang
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu Province, PR China
| | - S Wang
- Second Department of Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - B Xing
- Hongqi Community Health Service Center, Xiangfang District, Harbin, Heilongjiang Province, PR China
| | - Y Tao
- Department of Health Education, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - X Zhuang
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu Province, PR China
| | - L Jiang
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu Province, PR China.
| |
Collapse
|
17
|
Liang H, Wu C, Deng Y, Zhu L, Zhang J, Gan W, Tang C, Xu R. Aldehyde Dehydrogenases 1A2 Expression and Distribution are Potentially Associated with Neuron Death in Spinal Cord of Tg(SOD1*G93A)1Gur Mice. Int J Biol Sci 2017; 13:574-587. [PMID: 28539831 PMCID: PMC5441175 DOI: 10.7150/ijbs.19150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/20/2017] [Indexed: 12/11/2022] Open
Abstract
The pathogenesis of amyotrophic lateral sclerosis (ALS) has not been unclear yet, it might be associated with the abnormal expression and distribution of certain proteins. Aldehyde dehydrogenases 1A2 (ALDH1A2) was thought to be one of potential candidates. Therefore, in this study we observed and analyzed the alteration of the expression and distribution of ALDH1A2 in the spinal cord of wild-type (WT) and Tg(SOD1*G93A)1Gur mice. We compared the expression and distribution of ALDH1A2 in the different segments, anatomic regions and neural cells of spinal cord at the different stages of WT and Tg(SOD1*G93A)1Gur mice applied the methods of fluorescent immunohistochemistry and western blot. Results revealed that ALDH1A2 extensively expressed and distributed in the spinal cord of adult WT and Tg(SOD1*G93A)1Gur mice. The expression and distribution of ALDH1A2 in the white matter including the anterior, posterior and lateral funiculus were more than that in the gray matter including the central canal, the anterior and dorsal horn. ALDH1A2 majorly expressed and distributed in the astrocyte, microglial, oligodendrocyte and neuron cells. The ALDH1A2 expression significantly decreased and redistributed in some anatomic regions of spinal cord at the onset and progression stages of Tg(SOD1*G93A)1Gur mice. The expression decrease of ALDH1A2 followed with the increase of neuron cells death. This study suggested that the alteration of expression and distribution of ALDH1A2 was potentially associated with the pathogenesis of ALS.
Collapse
Affiliation(s)
- Huiting Liang
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Chengsi Wu
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Youqing Deng
- Department of Neurology, Third Affiliated Hospital of Nanchang University, Nanchang 330008, Jiangxi, China
| | - Lei Zhu
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Jie Zhang
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Weiming Gan
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Chunyan Tang
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Renshi Xu
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| |
Collapse
|
18
|
Lee LMY, Leung MBW, Kwok RCY, Leung YC, Wang CC, McCaffery PJ, Copp AJ, Shum ASW. Perturbation of Retinoid Homeostasis Increases Malformation Risk in Embryos Exposed to Pregestational Diabetes. Diabetes 2017; 66:1041-1051. [PMID: 28087565 PMCID: PMC5365142 DOI: 10.2337/db15-1570] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/10/2017] [Indexed: 01/07/2023]
Abstract
Pregestational diabetes is highly associated with an increased risk of birth defects. However, factors that can increase or reduce the expressivity and penetrance of malformations in pregnancies in women with diabetes remain poorly identified. All-trans retinoic acid (RA) plays crucial roles in embryogenesis. Here, we find that Cyp26a1, which encodes a key enzyme for catabolic inactivation of RA required for tight control of local RA concentrations, is significantly downregulated in embryos of diabetic mice. Embryonic tissues expressing Cyp26a1 show reduced efficiency of RA clearance. Embryos exposed to diabetes are thus sensitized to RA and more vulnerable to the deleterious effects of increased RA signaling. Susceptibility to RA teratogenesis is further potentiated in embryos with a preexisting genetic defect of RA metabolism. Increasing RA clearance efficiency using a preconditioning approach can counteract the increased susceptibility to RA teratogenesis in embryos of diabetic mice. Our findings provide new insight into gene-environment interactions that influence individual risk in the manifestation of diabetes-related birth defects and shed light on environmental risk factors and genetic variants for a stratified medicine approach to screening women with diabetes who are of childbearing age and assessing the risk of birth defects during pregnancy.
Collapse
Affiliation(s)
- Leo M Y Lee
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Maran B W Leung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Rachel C Y Kwok
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Yun Chung Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Chi Chiu Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Peter J McCaffery
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, U.K
| | - Andrew J Copp
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, London, U.K
| | - Alisa S W Shum
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
19
|
Mohd-Zin SW, Marwan AI, Abou Chaar MK, Ahmad-Annuar A, Abdul-Aziz NM. Spina Bifida: Pathogenesis, Mechanisms, and Genes in Mice and Humans. SCIENTIFICA 2017; 2017:5364827. [PMID: 28286691 PMCID: PMC5327787 DOI: 10.1155/2017/5364827] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/14/2016] [Accepted: 12/01/2016] [Indexed: 05/26/2023]
Abstract
Spina bifida is among the phenotypes of the larger condition known as neural tube defects (NTDs). It is the most common central nervous system malformation compatible with life and the second leading cause of birth defects after congenital heart defects. In this review paper, we define spina bifida and discuss the phenotypes seen in humans as described by both surgeons and embryologists in order to compare and ultimately contrast it to the leading animal model, the mouse. Our understanding of spina bifida is currently limited to the observations we make in mouse models, which reflect complete or targeted knockouts of genes, which perturb the whole gene(s) without taking into account the issue of haploinsufficiency, which is most prominent in the human spina bifida condition. We thus conclude that the need to study spina bifida in all its forms, both aperta and occulta, is more indicative of the spina bifida in surviving humans and that the measure of deterioration arising from caudal neural tube defects, more commonly known as spina bifida, must be determined by the level of the lesion both in mouse and in man.
Collapse
Affiliation(s)
- Siti W. Mohd-Zin
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ahmed I. Marwan
- Laboratory for Fetal and Regenerative Biology, Colorado Fetal Care Center, Division of Pediatric Surgery, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, 12700 E 17th Ave, Aurora, CO 80045, USA
| | | | - Azlina Ahmad-Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Noraishah M. Abdul-Aziz
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Mammadova A, Zhou H, Carels CE, Von den Hoff JW. Retinoic acid signalling in the development of the epidermis, the limbs and the secondary palate. Differentiation 2016; 92:326-335. [DOI: 10.1016/j.diff.2016.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/20/2016] [Accepted: 05/02/2016] [Indexed: 01/06/2023]
|
21
|
Mazul AL, Siega-Riz AM, Weinberg CR, Engel SM, Zou F, Carrier KS, Basta PV, Vaksman Z, Maris JM, Diskin SJ, Maxen C, Naranjo A, Olshan AF. A family-based study of gene variants and maternal folate and choline in neuroblastoma: a report from the Children's Oncology Group. Cancer Causes Control 2016; 27:1209-18. [PMID: 27541142 PMCID: PMC5025391 DOI: 10.1007/s10552-016-0799-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/11/2016] [Indexed: 12/18/2022]
Abstract
PURPOSE Neuroblastoma is a childhood cancer of the sympathetic nervous system with embryonic origins. Previous epidemiologic studies suggest maternal vitamin supplementation during pregnancy reduces the risk of neuroblastoma. We hypothesized offspring and maternal genetic variants in folate-related and choline-related genes are associated with neuroblastoma and modify the effects of maternal intake of folate, choline, and folic acid. METHODS The Neuroblastoma Epidemiology in North America (NENA) study recruited 563 affected children and their parents through the Children's Oncology Group's Childhood Cancer Research Network. We used questionnaires to ascertain pre-pregnancy supplementation and estimate usual maternal dietary intake of folate, choline, and folic acid. We genotyped 955 genetic variants related to folate or choline using DNA extracted from saliva samples and used a log-linear model to estimate both child and maternal risk ratios and stratum-specific risk ratios for gene-environment interactions. RESULTS Overall, no maternal or offspring genotypic results met criteria for a false discovery rate (FDR) Q-value <0.2. Associations were also null for gene-environment interaction with pre-pregnancy vitamin supplementation, dietary folic acid, and folate. FDR-significant gene-choline interactions were found for offspring SNPs rs10489810 and rs9966612 located in MTHFD1L and TYMS, respectively, with maternal choline dietary intake dichotomized at the first quartile. CONCLUSION These results suggest that variants related to one-carbon metabolism are not strongly associated with neuroblastoma. Choline-related variants may play a role; however, the functional consequences of the interacting variants are unknown and require independent replication.
Collapse
Affiliation(s)
- Angela L Mazul
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Campus Box 7435, 2106 McGavran-Greenberg Hall, Chapel Hill, NC, 27599-7435, USA.
| | - Anna Maria Siega-Riz
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Campus Box 7435, 2106 McGavran-Greenberg Hall, Chapel Hill, NC, 27599-7435, USA
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Clarice R Weinberg
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Stephanie M Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Campus Box 7435, 2106 McGavran-Greenberg Hall, Chapel Hill, NC, 27599-7435, USA
| | - Fei Zou
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Kathryn S Carrier
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Campus Box 7435, 2106 McGavran-Greenberg Hall, Chapel Hill, NC, 27599-7435, USA
| | - Patricia V Basta
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Campus Box 7435, 2106 McGavran-Greenberg Hall, Chapel Hill, NC, 27599-7435, USA
- Biospecimen Processing Center, University of North Carolina, Chapel Hill, NC, USA
| | - Zalman Vaksman
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sharon J Diskin
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charlene Maxen
- Showers Center for Childhood Cancer and Blood Disorder, Akron Children's Hospital, Akron, OH, USA
| | - Arlene Naranjo
- Department of Biostatistics, Colleges of Medicine and Public Health & Health Professions, University of Florida, Gainesville, FL, USA
| | - Andrew F Olshan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Campus Box 7435, 2106 McGavran-Greenberg Hall, Chapel Hill, NC, 27599-7435, USA
| |
Collapse
|
22
|
Kinetic characterization and regulation of the human retinaldehyde dehydrogenase 2 enzyme during production of retinoic acid. Biochem J 2016; 473:1423-31. [PMID: 27001866 DOI: 10.1042/bcj20160101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 03/21/2016] [Indexed: 11/17/2022]
Abstract
Retinoic acid (RA) is an important regulator of embryogenesis and tissue homoeostasis. Perturbation of RA signalling causes developmental disorders, osteoarthritis, schizophrenia and several types of tumours. RA is produced by oxidation of retinaldehyde from vitamin A. The main enzyme producing RA in the early embryo is retinaldehyde dehydrogenase 2 (RALDH2, ALDH1A2). In the present study we describe in depth the kinetic properties and regulation of the human RALDH2 (hRALDH2) enzyme. We show that this enzyme produces RA using in vivo and in vitro assays. We studied the naturally occurring all-trans-, 9-cis- and 13-cis-retinaldehyde isomers as substrates of hRALDH2. Based on the values measured for the Michaelis-Menten constant Km and the maximal rate Vmax, in vitro hRALDH2 displays the same catalytic efficiency for their oxidation. We characterized two known inhibitors of the vertebrate RALDH2 and determined their kinetic parameters on hRALDH2. In addition, RA was studied as a possible inhibitor of hRALDH2 and a regulator of its activity. We show that hRALDH2 is not inhibited by its oxidation product, all-trans-RA, suggesting the absence of a negative feedback regulatory loop. Expression of the Raldh2 gene is known to be regulated by RA itself, suggesting that the main regulation of the hRALDH2 activity level is transcriptional.
Collapse
|
23
|
Hartomo TB, Van Huyen Pham T, Yamamoto N, Hirase S, Hasegawa D, Kosaka Y, Matsuo M, Hayakawa A, Takeshima Y, Iijima K, Nishio H, Nishimura N. Involvement of aldehyde dehydrogenase 1A2 in the regulation of cancer stem cell properties in neuroblastoma. Int J Oncol 2014; 46:1089-98. [PMID: 25524880 DOI: 10.3892/ijo.2014.2801] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 11/11/2014] [Indexed: 11/06/2022] Open
Abstract
Despite the introduction of 13-cis-retinoic acid (13-cis-RA) into the current chemotherapy, more than half of high-risk neuroblastoma patients have experienced tumor relapses driven by chemoresistant cancer stem cells (CSCs) that can be isolated by their ability to grow as spheres. Although aldehyde dehydrogenase (ALDH) has been used to characterize CSCs in certain cancers, ALDH remains elusive in neuroblastoma. In the present study, we determined ALDH activity and expression of its 19 isoforms in spheres and parental cells of neuroblastoma. ALDH activity and several ALDH isoforms were consistently induced in spheres of different neuroblastoma cells. While ALDH1A2, ALDH1L1 and ALDH3B2 expression was consistently induced in spheres and associated with the sphere and colony formation, only ALDH1A2 expression was significantly correlated with the poor prognosis of neuroblastoma patients. ALDH1A2 expression was further associated with the growth and undifferentiation of neuroblastoma xenografts and the resistance of neuroblastoma cells to 13-cis-RA. These results suggest that ALDH1A2 is involved in the regulation of CSC properties in neuroblastoma.
Collapse
Affiliation(s)
- Tri Budi Hartomo
- Department of Epidemiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Thi Van Huyen Pham
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Nobuyuki Yamamoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Satoshi Hirase
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Daiichiro Hasegawa
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe 654-0081, Japan
| | - Yoshiyuki Kosaka
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe 654-0081, Japan
| | - Masafumi Matsuo
- Department of Medical Rehabilitation, Kobe Gakuin University, Kobe 651-2180, Japan
| | - Akira Hayakawa
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yasuhiro Takeshima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Hisahide Nishio
- Department of Epidemiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Noriyuki Nishimura
- Department of Epidemiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| |
Collapse
|
24
|
Human ALDH1B1 polymorphisms may affect the metabolism of acetaldehyde and all-trans retinaldehyde--in vitro studies and computational modeling. Pharm Res 2014; 32:1648-62. [PMID: 25413692 DOI: 10.1007/s11095-014-1564-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 10/28/2014] [Indexed: 01/08/2023]
Abstract
PURPOSE To elucidate additional substrate specificities of ALDH1B1 and determine the effect that human ALDH1B1 polymorphisms will have on substrate specificity. METHODS Computational-based molecular modeling was used to predict the binding of the substrates propionaldehyde, 4-hydroxynonenal, nitroglycerin, and all-trans retinaldehyde to ALDH1B1. Based on positive in silico results, the capacity of purified human recombinant ALDH1B1 to metabolize nitroglycerin and all-trans retinaldehyde was explored. Additionally, metabolism of 4-HNE by ALDH1B1 was revisited. Databases queried to find human polymorphisms of ALDH1B1 identified three major variants: ALDH1B1*2 (A86V), ALDH1B1*3 (L107R), and ALDH1B1*5 (M253V). Computational modeling was used to predict the binding of substrates and of cofactor (NAD(+)) to the variants. These human polymorphisms were created and expressed in a bacterial system and specific activity was determined. RESULTS ALDH1B1 metabolizes (and appears to be inhibited by) nitroglycerin and has favorable kinetics for the metabolism of all-trans retinaldehyde. ALDH1B1 metabolizes 4-HNE with higher apparent affinity than previously described, but with low throughput. Recombinant ALDH1B1*2 is catalytically inactive, whereas both ALDH1B1*3 and ALDH1B1*5 are catalytically active. Modeling indicated that the lack of activity in ALDH1B1*2 is likely due to poor NAD(+) binding. Modeling also suggests that ALDH1B1*3 may be less able to metabolize all-trans retinaldehyde and that ALDH1B1*5 may bind NAD(+) poorly. CONCLUSIONS ALDH1B1 metabolizes nitroglycerin and all-trans-retinaldehyde. One of the three human polymorphisms, ALDH1B1*2, is catalytically inactive, likely due to poor NAD(+) binding. Expression of this variant may affect ALDH1B1-dependent metabolic functions in stem cells and ethanol metabolism.
Collapse
|
25
|
Vasiliou V, Thompson DC, Smith C, Fujita M, Chen Y. Aldehyde dehydrogenases: from eye crystallins to metabolic disease and cancer stem cells. Chem Biol Interact 2013; 202:2-10. [PMID: 23159885 PMCID: PMC4128326 DOI: 10.1016/j.cbi.2012.10.026] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 10/12/2012] [Accepted: 10/29/2012] [Indexed: 12/20/2022]
Abstract
The aldehyde dehydrogenase (ALDH) superfamily is composed of nicotinamide adenine dinucleotide (phosphate) (NAD(P)(+))-dependent enzymes that catalyze the oxidation of aldehydes to their corresponding carboxylic acids. To date, 24 ALDH gene families have been identified in the eukaryotic genome. In addition to aldehyde metabolizing capacity, ALDHs have additional catalytic (e.g. esterase and reductase) and non-catalytic activities. The latter include functioning as structural elements in the eye (crystallins) and as binding molecules to endobiotics and xenobiotics. Mutations in human ALDH genes and subsequent inborn errors in aldehyde metabolism are the molecular basis of several diseases. Most recently ALDH polymorphisms have been associated with gout and osteoporosis. Aldehyde dehydrogenase enzymes also play important roles in embryogenesis and development, neurotransmission, oxidative stress and cancer. This article serves as a comprehensive review of the current state of knowledge regarding the ALDH superfamily and the contribution of ALDHs to various physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Vasilis Vasiliou
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80445, USA.
| | | | | | | | | |
Collapse
|
26
|
Gu H, Li H, Zhang L, Luan H, Huang T, Wang L, Fan Y, Zhang Y, Liu X, Wang W, Yuan Z. Diagnostic role of microRNA expression profile in the serum of pregnant women with fetuses with neural tube defects. J Neurochem 2012; 122:641-9. [PMID: 22642222 DOI: 10.1111/j.1471-4159.2012.07812.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The discovery of placental microRNAs (miRNAs) in maternal serum has opened up new possibilities for non-invasive prenatal diagnosis. However, the expression of miRNAs in the serum of pregnant women with fetuses with neural tube defects (NTDs) has not been characterized. In this article, we explored serum miRNAs as potential biomarkers in the serum of pregnant women with NTD fetuses. By using a miRNA microarray that covers 887 human miRNAs, we revealed 17 miRNAs with significant change in expression in serum of pregnant women with NTD fetuses and women with normal pregnancies. Quantitative reverse-transcription PCR (qRT-PCR) analysis validated that the expression for six miRNAs (miR-142-3p, miR-144, miR-720, miR-575, miR-765, and miR-1182) was up-regulated and that for miR-1275 was down-regulated. To determine whether these miRNAs were related to pregnancy, we compared the miRNA levels in pre- and post-delivery maternal serum samples. Six of these miRNAs were rapidly reduced in post-delivery serum (p < 0.05). Moreover, by receiver operating characteristic (ROC) curve analysis, the area under the ROC curve (AUC) of combining these six miRNAs was 0.803 (p < 0.001). Thus, we reveal six pregnancy-associated miRNAs that are deregulated in the serum of pregnant women with NTD fetuses and highlight the clinical potential of serum miRNAs as biomarkers for diagnosis and prognostication of fetal NTDs.
Collapse
Affiliation(s)
- Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chung RH, Martin ER. Single-marker family-based association analysis conditional on parental information. Methods Mol Biol 2012; 850:359-70. [PMID: 22307708 DOI: 10.1007/978-1-61779-555-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Family-based designs have been commonly used in association studies. Different family structures such as extended pedigrees and nuclear families, including parent-offspring triads and families with multiple affected siblings (multiplex families), can be ascertained for family-based association analysis. Flexible association tests that can accommodate different family structures have been proposed. The pedigree disequilibrium test (PDT) (Am J Hum Genet 67:146-154, 2000) can use full genotype information from general (possibly extended) pedigrees with one or multiple affected siblings but requires parental genotypes or genotypes of unaffected siblings. On the other hand, the association in the presence of linkage (APL) test (Am J Hum Genet 73:1016-1026, 2003) is restricted to nuclear families with one or more affected siblings but can infer missing parental genotypes properly by accounting for identity-by-descent (IBD) parameters. Both the PDT and APL are powerful association tests in the presence of linkage and can be used as complementary tools for association analysis. This chapter introduces these two tests and compares their properties. Recommendations and notes for performing the tests in practice are provided.
Collapse
Affiliation(s)
- Ren-Hua Chung
- John P. Hussman Institute for Human Genomics, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | | |
Collapse
|
28
|
Ma I, Allan AL. The role of human aldehyde dehydrogenase in normal and cancer stem cells. Stem Cell Rev Rep 2011; 7:292-306. [PMID: 21103958 DOI: 10.1007/s12015-010-9208-4] [Citation(s) in RCA: 397] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Normal stem cells and cancer stem cells (CSCs) share similar properties, in that both have the capacity to self-renew and differentiate into multiple cell types. In both the normal stem cell and cancer stem cell fields, there has been a great need for a universal marker that can effectively identify and isolate these rare populations of cells in order to characterize them and use this information for research and therapeutic purposes. Currently, it would appear that certain isoenzymes of the aldehyde dehydrogenase (ALDH) superfamily may be able to fulfill this role as a marker for both normal and cancer stem cells. ALDH has been identified as an important enzyme in the protection of normal hematopoietic stem cells, and is now also widely used as a marker to identify and isolate various types of normal stem cells and CSCs. In addition, emerging evidence suggests that ALDH1 is not only a marker for stem cells, but may also play important functional roles related to self-protection, differentiation, and expansion. This comprehensive review discusses the role that ALDH plays in normal stem cells and CSCs, with focus on ALDH1 and ALDH3A1. Discrepancies in the functional themes between cell types and future perspectives for therapeutic applications will also be discussed.
Collapse
Affiliation(s)
- Irene Ma
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
29
|
Gongal PA, March LD, Holly VL, Pillay LM, Berry-Wynne KM, Kagechika H, Waskiewicz AJ. Hmx4 regulates Sonic hedgehog signaling through control of retinoic acid synthesis during forebrain patterning. Dev Biol 2011; 355:55-64. [DOI: 10.1016/j.ydbio.2011.04.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Revised: 04/12/2011] [Accepted: 04/14/2011] [Indexed: 02/01/2023]
|
30
|
Carter TC, Pangilinan F, Troendle JF, Molloy AM, VanderMeer J, Mitchell A, Kirke PN, Conley MR, Shane B, Scott JM, Brody LC, Mills JL. Evaluation of 64 candidate single nucleotide polymorphisms as risk factors for neural tube defects in a large Irish study population. Am J Med Genet A 2011; 155A:14-21. [PMID: 21204206 PMCID: PMC3503244 DOI: 10.1002/ajmg.a.33755] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 09/06/2010] [Indexed: 12/20/2022]
Abstract
Individual studies of the genetics of neural tube defects (NTDs) contain results on a small number of genes in each report. To identify genetic risk factors for NTDs, we evaluated potentially functional single nucleotide polymorphisms (SNPs) that are biologically plausible risk factors for NTDs but that have never been investigated for an association with NTDs, examined SNPs that previously showed no association with NTDs in published studies, and tried to confirm previously reported associations in folate-related and non-folate-related genes. We investigated 64 SNPs in 34 genes for association with spina bifida in up to 558 case families (520 cases, 507 mothers, 457 fathers) and 994 controls in Ireland. Case-control and mother-control comparisons of genotype frequencies, tests of transmission disequilibrium, and log-linear regression models were used to calculate effect estimates. Spina bifida was associated with over-transmission of the LEPR (leptin receptor) rs1805134 minor C allele [genotype relative risk (GRR): 1.5; 95% confidence interval (CI): 1.0-2.1; P = 0.0264] and the COMT (catechol-O-methyltransferase) rs737865 major T allele (GRR: 1.4; 95% CI: 1.1-2.0; P = 0.0206). After correcting for multiple comparisons, these individual test P-values exceeded 0.05. Consistent with previous reports, spina bifida was associated with MTHFR 677C>T, T (Brachyury) rs3127334, LEPR K109R, and PDGFRA promoter haplotype combinations. The associations between LEPR SNPs and spina bifida suggest a possible mechanism for the finding that obesity is a NTD risk factor. The association between a variant in COMT and spina bifida implicates methylation and epigenetics in NTDs.
Collapse
Affiliation(s)
- Tonia C Carter
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892-7510, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zohn IE, Sarkar AA. The visceral yolk sac endoderm provides for absorption of nutrients to the embryo during neurulation. ACTA ACUST UNITED AC 2010; 88:593-600. [DOI: 10.1002/bdra.20705] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
32
|
Abstract
Neural tube defects (NTDs) are common, severe congenital malformations whose causation involves multiple genes and environmental factors. Although more than 200 genes are known to cause NTDs in mice, there has been rather limited progress in delineating the molecular basis underlying most human NTDs. Numerous genetic studies have been carried out to investigate candidate genes in cohorts of patients, with particular reference to those that participate in folate one-carbon metabolism. Although the homocysteine remethylation gene MTHFR has emerged as a risk factor in some human populations, few other consistent findings have resulted from this approach. Similarly, attention focused on the human homologues of mouse NTD genes has contributed only limited positive findings to date, although an emerging association between genes of the non-canonical Wnt (planar cell polarity) pathway and NTDs provides candidates for future studies. Priorities for the next phase of this research include: (i) larger studies that are sufficiently powered to detect significant associations with relatively minor risk factors; (ii) analysis of multiple candidate genes in groups of well-genotyped individuals to detect possible gene-gene interactions; (iii) use of high throughput genomic technology to evaluate the role of copy number variants and to detect 'private' and regulatory mutations, neither of which have been studied to date; (iv) detailed analysis of patient samples stratified by phenotype to enable, for example, hypothesis-driven testing of candidates genes in groups of NTDs with specific defects of folate metabolism, or in groups of fetuses with well-defined phenotypes such as craniorachischisis.
Collapse
|
33
|
Pavan M, Ruiz VF, Silva FA, Sobreira TJ, Cravo RM, Vasconcelos M, Marques LP, Mesquita SMF, Krieger JE, Lopes AAB, Oliveira PS, Pereira AC, Xavier-Neto J. ALDH1A2 (RALDH2) genetic variation in human congenital heart disease. BMC MEDICAL GENETICS 2009; 10:113. [PMID: 19886994 PMCID: PMC2779186 DOI: 10.1186/1471-2350-10-113] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 11/03/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND Signaling by the vitamin A-derived morphogen retinoic acid (RA) is required at multiple steps of cardiac development. Since conversion of retinaldehyde to RA by retinaldehyde dehydrogenase type II (ALDH1A2, a.k.a RALDH2) is critical for cardiac development, we screened patients with congenital heart disease (CHDs) for genetic variation at the ALDH1A2 locus. METHODS One-hundred and thirty-three CHD patients were screened for genetic variation at the ALDH1A2 locus through bi-directional sequencing. In addition, six SNPs (rs2704188, rs1441815, rs3784259, rs1530293, rs1899430) at the same locus were studied using a TDT-based association approach in 101 CHD trios. Observed mutations were modeled through molecular mechanics (MM) simulations using the AMBER 9 package, Sander and Pmemd programs. Sequence conservation of observed mutations was evaluated through phylogenetic tree construction from ungapped alignments containing ALDH8 s, ALDH1Ls, ALDH1 s and ALDH2 s. Trees were generated by the Neighbor Joining method. Variations potentially affecting splicing mechanisms were cloned and functional assays were designed to test splicing alterations using the pSPL3 splicing assay. RESULTS We describe in Tetralogy of Fallot (TOF) the mutations Ala151Ser and Ile157Thr that change non-polar to polar residues at exon 4. Exon 4 encodes part of the highly-conserved tetramerization domain, a structural motif required for ALDH oligomerization. Molecular mechanics simulation studies of the two mutations indicate that they hinder tetramerization. We determined that the SNP rs16939660, previously associated with spina bifida and observed in patients with TOF, does not affect splicing. Moreover, association studies performed with classical models and with the transmission disequilibrium test (TDT) design using single marker genotype, or haplotype information do not show differences between cases and controls. CONCLUSION In summary, our screen indicates that ALDH1A2 genetic variation is present in TOF patients, suggesting a possible causal role for this gene in rare cases of human CHD, but does not support the hypothesis that variation at the ALDH1A2 locus is a significant modifier of the risk for CHD in humans.
Collapse
|
34
|
Abstract
Neural tube defects (NTDs) represent a common group of severe congenital malformations of the central nervous system. They result from failure of neural tube closure during early embryonic life. Their etiology is complex, involving environmental and genetic factors that interact to modulate the incidence and severity of the developing phenotype. Despite a long history of etiologic studies, the molecular and cellular pathogenic mechanisms underlining NTDs remain poorly understood. The major epidemiologic finding in NTDs is the protective effect of perinatal folic acid supplementation that reduces their risk by 60%-70%. Genetic studies in NTDs have focused mainly on folate-related genes and identified a few significant associations between variants in these genes and an increased risk for NTDs. The candidate gene approach investigating genes involved in neurulation and inferred from animal models has faced limited success in identifying major causative genes predisposing to NTDs. However, we are witnessing a rapid and impressive progress in understanding the genetic basis of NTDs, based mainly on the development of whole genome innovative technologies and the powerful tool of animal models.
Collapse
|
35
|
Hanna MC, Blackstone C. Interaction of the SPG21 protein ACP33/maspardin with the aldehyde dehydrogenase ALDH16A1. Neurogenetics 2009; 10:217-28. [PMID: 19184135 DOI: 10.1007/s10048-009-0172-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 01/08/2009] [Indexed: 11/27/2022]
Abstract
Mast syndrome (SPG21) is an autosomal-recessive complicated form of hereditary spastic paraplegia characterized by dementia, thin corpus callosum, white matter abnormalities, and cerebellar and extrapyramidal signs in addition to spastic paraparesis. A nucleotide insertion resulting in premature truncation of the SPG21 gene product acidic cluster protein 33 (ACP33)/maspardin underlies this disorder, likely causing loss of protein function. However, little is known about the function of maspardin. Here, we report that maspardin localizes prominently to cytoplasm as well as to membranes, possibly at trans-Golgi network/late endosomal compartments. Immunoprecipitation of maspardin with identification of coprecipitating proteins by mass spectrometry revealed the aldehyde dehydrogenase ALDH16A1 as an interacting protein. This interaction was confirmed using overexpressed proteins as well as by fusion protein pull down experiments, and these proteins colocalized in cells. Further studies of the function of ALDH16A1 and the role of the maspardin-ALDH16A1 interaction in neuronal cells may clarify the cellular pathogenesis of Mast syndrome.
Collapse
Affiliation(s)
- Michael C Hanna
- Department of Biological and Environmental Sciences, Texas A & M University-Commerce, Commerce, TX 75428, USA.
| | | |
Collapse
|
36
|
Marchitti SA, Brocker C, Stagos D, Vasiliou V. Non-P450 aldehyde oxidizing enzymes: the aldehyde dehydrogenase superfamily. Expert Opin Drug Metab Toxicol 2008; 4:697-720. [PMID: 18611112 DOI: 10.1517/17425255.4.6.697] [Citation(s) in RCA: 588] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Aldehydes are highly reactive molecules. While several non-P450 enzyme systems participate in their metabolism, one of the most important is the aldehyde dehydrogenase (ALDH) superfamily, composed of NAD(P)+-dependent enzymes that catalyze aldehyde oxidation. OBJECTIVE This article presents a review of what is currently known about each member of the human ALDH superfamily including the pathophysiological significance of these enzymes. METHODS Relevant literature involving all members of the human ALDH family was extensively reviewed, with the primary focus on recent and novel findings. CONCLUSION To date, 19 ALDH genes have been identified in the human genome and mutations in these genes and subsequent inborn errors in aldehyde metabolism are the molecular basis of several diseases, including Sjögren-Larsson syndrome, type II hyperprolinemia, gamma-hydroxybutyric aciduria and pyridoxine-dependent seizures. ALDH enzymes also play important roles in embryogenesis and development, neurotransmission, oxidative stress and cancer. Finally, ALDH enzymes display multiple catalytic and non-catalytic functions including ester hydrolysis, antioxidant properties, xenobiotic bioactivation and UV light absorption.
Collapse
Affiliation(s)
- Satori A Marchitti
- University of Colorado Health Sciences Center, Molecular Toxicology & Environmental Health Sciences Program, Department of Pharmaceutical Sciences, 4200 East Ninth Avenue, C238, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|
37
|
Saitsu H, Shiota K. Involvement of the axially condensed tail bud mesenchyme in normal and abnormal human posterior neural tube development. Congenit Anom (Kyoto) 2008; 48:1-6. [PMID: 18230116 DOI: 10.1111/j.1741-4520.2007.00178.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Development of the posterior neural tube (PNT) in human embryos is a complicated process which involves both primary and secondary neurulation. Normal development of the human PNT should be understood to elucidate the pathogenesis of spinal neural tube defects, but there have been some discrepancies among previous reports. We examined histologically 20 human embryos around the stage of the posterior neuropore closure and found that the developing PNT can be divided into three parts: (1) the most rostral region which corresponds to the posterior part of the primary neural tube; (2) the junctional region of the primary and secondary neural tubes; and (3) the caudal region which emerges from the neural cord. In the junctional region, the axially condensed mesenchyme (AM) intervened between the neural plate/tube and the notochord. The AM appeared to be incorporated into the most ventral part of the primary neural tube, and no cavity was observed in the AM. Interestingly, we found three cases of human embryos with lumbosacral myeloschisis in which the open primary neural tube and the closed secondary neural tube overlapped dorso-ventrally. The open and closed neural tubes appeared to be part of the primary and the AM-derived secondary neural tubes, respectively. Thus, these findings suggest that in embryos with lumbosacral myeloschisis, the AM may not be incorporated into the ventral part of the primary neural tube but aberrantly differentiate into the secondary neural tube containing cavities, leading to dorso-ventral overlapping of the primary and secondary neural tubes. These findings suggest that the AM in human embryos plays some role in normal and abnormal development of the human posterior neural tube.
Collapse
Affiliation(s)
- Hirotomo Saitsu
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Fukuura, Kanazawa-ku, Yokohama, Japan.
| | | |
Collapse
|
38
|
Davidson CE, Li Q, Churchill GA, Osborne LR, McDermid HE. Modifier locus for exencephaly inCecr2mutant mice is syntenic to the 10q25.3 region associated with neural tube defects in humans. Physiol Genomics 2007; 31:244-51. [PMID: 17623803 DOI: 10.1152/physiolgenomics.00062.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neural tube defects (NTDs), the second most common birth defect in humans, are multifactorial with complex genetic and environmental causes, although the genetic factors are almost completely unknown. In mice, >100 single gene mutations cause NTDs; however, the penetrance in many of these single gene mutant lines is highly dependent on the genetic background. We previously reported that a homozygous Cecr2 mutation on a BALB/c background causes exencephaly at a frequency of 74% compared with 0% on an FVB/N background. We now report that a major genetic modifier on chromosome 19, mapped using whole genome linkage analysis, increases the relative risk of exencephaly by 3.74 times in homozygous BALB embryos vs. BALB/FVB heterozygotes. Scanning electron microscopy revealed that the modifier does not affect the location of neural tube closure site 2, a known murine susceptibility factor for exencephaly. Crossing the Sp ( Splotch) mutation in the Pax3 gene onto the FVB/N background for two generations indicated that this resistant strain also decreases the penetrance of spina bifida. The chromosome 19 modifier region corresponds to a linkage region on human chromosome 10q25.3 mapped in a whole genome scan of human NTD families. Since the FVB/N genetic background affects susceptibility to both exencephaly and spina bifida, the human homolog of the chromosome 19 modifier locus may be a better candidate for human NTD susceptibility factors than genes that when mutated actually cause NTDs in mice.
Collapse
Affiliation(s)
- Courtney E Davidson
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
39
|
Abstract
Neural tube defects (NTDs) represent a common group of severe congenital malformations that result from failure of neural tube closure during early development. Their etiology is quite complex involving environmental and genetic factors and their underlying molecular and cellular pathogenic mechanisms remain poorly understood. Animal studies have recently demonstrated an essential role for the planar cell polarity pathway (PCP) in mediating a morphogenetic process called convergent extension during neural tube formation. Alterations in members of this pathway lead to NTDs in vertebrate models, representing novel and exciting candidates for human NTDs. Genetic studies in NTDs have focused mainly on folate-related genes based on the finding that perinatal folic acid supplementation reduces the risk of NTDs by 60-70%. A few variants in these genes have been found to be significantly associated with an increased risk for NTDs. The candidate gene approach investigating genes involved in neurulation has failed to identify major causative genes in the etiology of NTDs. Despite this history of generally negative findings, we are achieving a rapid and impressive progress in understanding the genetic basis of NTDs, based mainly on the powerful tool of animal models.
Collapse
Affiliation(s)
- Z Kibar
- CHU Sainte-Justine Research Center and Department of Obstetrics and Gynecology, University of Montreal, Montreal, QC, Canada.
| | | | | |
Collapse
|
40
|
Oppenheimer O, Cheung NK, Gerald WL. TheREToncogene is a critical component of transcriptional programs associated with retinoic acid–induced differentiation in neuroblastoma. Mol Cancer Ther 2007; 6:1300-9. [PMID: 17431108 DOI: 10.1158/1535-7163.mct-06-0587] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Differentiation is a key feature in pathologic classification and prognosis of neuroblastic tumors, although the underlying molecular mechanisms are not well defined. To identify key differentiation-related molecules and pathways, we evaluated gene expression during retinoic acid (RA)-induced differentiation of seven neuroblastic tumor cell lines. Transcriptional response to RA was highly variable among cell lines despite the fact that six of seven showed similar morphologic changes. RA consistently altered expression of a small set of genes, some of which are known to play a role in neurogenesis and differentiation. Expression of genes that were regulated by RA was associated with important clinical subgroups of neuroblastic tumors and were differentially expressed by stroma-rich and stroma-poor subtypes. RET, a receptor tyrosine kinase involved with differentiation, was consistently up-regulated throughout the time course of RA treatment in the majority of neuroblastic tumor cell lines. Interference with RET activation abrogated RA-induced transcriptional programs and differentiation, suggesting a key role of RET in this process. The core set of RA-regulated genes includes critical molecular components of pathways necessary for neuroblastic tumor differentiation and have potential as therapeutic targets and molecular markers of response to differentiating agents.
Collapse
Affiliation(s)
- Orit Oppenheimer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | | | | |
Collapse
|
41
|
Marchitti SA, Deitrich RA, Vasiliou V. Neurotoxicity and metabolism of the catecholamine-derived 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde: the role of aldehyde dehydrogenase. Pharmacol Rev 2007; 59:125-50. [PMID: 17379813 DOI: 10.1124/pr.59.2.1] [Citation(s) in RCA: 207] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aldehydes are highly reactive molecules formed during the biotransformation of numerous endogenous and exogenous compounds, including biogenic amines. 3,4-Dihydroxyphenylacetaldehyde is the aldehyde metabolite of dopamine, and 3,4-dihydroxyphenylglycolaldehyde is the aldehyde metabolite of both norepinephrine and epinephrine. There is an increasing body of evidence suggesting that these compounds are neurotoxic, and it has been recently hypothesized that neurodegenerative disorders may be associated with increased levels of these biogenic aldehydes. Aldehyde dehydrogenases are a group of NAD(P)+ -dependent enzymes that catalyze the oxidation of aldehydes, such as those derived from catecholamines, to their corresponding carboxylic acids. To date, 19 aldehyde dehydrogenase genes have been identified in the human genome. Mutations in these genes and subsequent inborn errors in aldehyde metabolism are the molecular basis of several diseases, including Sjögren-Larsson syndrome, type II hyperprolinemia, gamma-hydroxybutyric aciduria, and pyridoxine-dependent seizures, most of which are characterized by neurological abnormalities. Several pharmaceutical agents and environmental toxins are also known to disrupt or inhibit aldehyde dehydrogenase function. It is, therefore, possible to speculate that reduced detoxification of 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde from impaired or deficient aldehyde dehydrogenase function may be a contributing factor in the suggested neurotoxicity of these compounds. This article presents a comprehensive review of what is currently known of both the neurotoxicity and respective metabolism pathways of 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde with an emphasis on the role that aldehyde dehydrogenase enzymes play in the detoxification of these two aldehydes.
Collapse
Affiliation(s)
- Satori A Marchitti
- Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | |
Collapse
|
42
|
De Marco P, Merello E, Mascelli S, Capra V. Current perspectives on the genetic causes of neural tube defects. Neurogenetics 2006; 7:201-21. [PMID: 16941185 DOI: 10.1007/s10048-006-0052-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 05/29/2006] [Indexed: 10/24/2022]
Abstract
Neural tube defects (NTDs) are a group of severe congenital abnormalities resulting from the failure of neurulation. The pattern of inheritance of these complex defects is multifactorial, making it difficult to identify the underlying causes. Scientific research has rapidly progressed in experimental embryology and molecular genetics to elucidate the basis of neurulation. Crucial mechanisms of neurulation include the planar cell polarity pathway, which is essential for the initiation of neural tube closure, and the sonic hedgehog signaling pathway, which regulates neural plate bending. Genes influencing neurulation have been investigated for their contribution to human neural tube defects, but only genes with well-established role in convergent extension provide an exciting new set of candidate genes. Biochemical factors such as folic acid appear to be the greatest modifiers of NTDs risk in the human population. Consequently, much research has focused on genes of folate-related metabolic pathways. Variants of several such genes have been found to be significantly associated with the risk of neural tube defects in more studies. In this manuscript, we reviewed the current perspectives on the causes of neural tube defects and highlighted that we are still a long way from understanding the etiology of these complex defects.
Collapse
Affiliation(s)
- Patrizia De Marco
- U.O. Neurochirurgia, Istituto G. Gaslini, Largo G. Gaslini 5, 16148, Genova, Italy
| | | | | | | |
Collapse
|
43
|
Rat E, Billaut-Laden I, Allorge D, Lo-Guidice JM, Tellier M, Cauffiez C, Jonckheere N, van Seuningen I, Lhermitte M, Romano A, Guéant JL, Broly F. Evidence for a functional genetic polymorphism of the human retinoic acid–metabolizing enzyme CYP26A1, an enzyme that may be involved in spina bifida. ACTA ACUST UNITED AC 2006; 76:491-8. [PMID: 16933217 DOI: 10.1002/bdra.20275] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND CYP26A1, together with CYP26B1 and CYP26C1, are key enzymes of all-trans retinoic acid (RA) inactivation and their specific and restricted expression in developing embryos participate in the fine tuning RA levels. As RA is a critical regulator of gene expression during embryonic development, the imbalance between the synthesis and degradation of RA during embryogenesis could contribute to malformations and developmental defects. METHODS A PCR-single strand conformation polymorphism (PCR-SSCP) strategy was developed to screen for CYP26A1 sequence variations that could affect the enzyme expression and/or activity and applied to DNA samples from 80 unrelated Caucasians, comprising 40 French healthy volunteers and 40 Italian patients with spina bifida. The consequence of the 1-bp deletion identified in the coding sequence was investigated by an in vitro functional assay using COS-7 cells. RESULTS A total of 7 polymorphisms were identified, comprising 1 nucleotide deletion in the coding sequence (g.3116delT) that results in a frameshift and consequently in the creation of a premature stop codon. The g.3116delT mutation is of particular interest because it was identified in a patient with spina bifida and likely encodes a truncated protein with no enzymatic activity, as demonstrated by our preliminary in vitro data. CONCLUSIONS Despite the fact that our findings could not show any evidence that the CYP26A1 genetic polymorphism has implications in the pathogenesis of spina bifida, this work represents the first description of a functional genetic polymorphism affecting the coding sequence of the human CYP26A1 gene.
Collapse
Affiliation(s)
- Emmanuel Rat
- Equipe d'accueil EA2679, Faculté de Médecine, Lille Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|