1
|
Puscas M, Martineau G, Bhella G, Bonnen PE, Carr P, Lim R, Mitchell J, Osmond M, Urquieta E, Flamenbaum J, Iaria G, Joly Y, Richer É, Saary J, Saint-Jacques D, Buckley N, Low-Decarie E. Rare diseases and space health: optimizing synergies from scientific questions to care. NPJ Microgravity 2022; 8:58. [PMID: 36550172 PMCID: PMC9780351 DOI: 10.1038/s41526-022-00224-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
Knowledge transfer among research disciplines can lead to substantial research progress. At first glance, astronaut health and rare diseases may be seen as having little common ground for such an exchange. However, deleterious health conditions linked to human space exploration may well be considered as a narrow sub-category of rare diseases. Here, we compare and contrast research and healthcare in the contexts of rare diseases and space health and identify common barriers and avenues of improvement. The prevalent genetic basis of most rare disorders contrasts sharply with the occupational considerations required to sustain human health in space. Nevertheless small sample sizes and large knowledge gaps in natural history are examples of the parallel challenges for research and clinical care in the context of both rare diseases and space health. The two areas also face the simultaneous challenges of evidence scarcity and the pressure to deliver therapeutic solutions, mandating expeditious translation of research knowledge into clinical care. Sharing best practices between these fields, including increasing participant involvement in all stages of research and ethical sharing of standardized data, has the potential to contribute to humankind's efforts to explore ever further into space while caring for people on Earth in a more inclusive fashion.
Collapse
Affiliation(s)
- Maria Puscas
- Astronauts, Life Sciences and Space Medicine Canadian Space Agency, Government of Canada, Longueil, Canada
- The School of Health Sciences, University of Western Ontario, London, Canada
| | - Gabrielle Martineau
- Astronauts, Life Sciences and Space Medicine Canadian Space Agency, Government of Canada, Longueil, Canada
- Hawaii Institute of Marine Biology (HIMB), Kaneohe, HI, USA
| | - Gurjot Bhella
- Astronauts, Life Sciences and Space Medicine Canadian Space Agency, Government of Canada, Longueil, Canada
- University of Waterloo, Waterloo, Canada
| | - Penelope E Bonnen
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Phil Carr
- The Strategic Review Group Inc., Ottawa, Canada
| | - Robyn Lim
- Legislative and Regulatory Modernization, Health Canada, Ottawa, Canada
| | - John Mitchell
- Pediatric Endocrinology and Biochemical Genetics, Montreal Children's Hospital-McGill University, Human Genetics and Pediatrics, McGill University, Montreal, Canada
| | - Matthew Osmond
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Emmanuel Urquieta
- Translational Research Institute for Space Health (TRISH) and Department of Emergency Medicine and Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jaime Flamenbaum
- Canadian Institutes of Health Research Ethics Office, Ottawa, Canada
| | - Giuseppe Iaria
- Department of Psychology, Hotchkiss Brain Institute, and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Yann Joly
- Centre of Genomics and Policy, Faculty of Medicine, Human Genetics, McGill University, Montreal, Canada
| | - Étienne Richer
- Canadian Institutes of Health Research Institute of Genetics, Ottawa, Canada
| | - Joan Saary
- Department of Medicine, Division of Occupational Medicine, University of Toronto, Toronto, Canada
| | - David Saint-Jacques
- Astronauts, Life Sciences and Space Medicine Canadian Space Agency, Government of Canada, Longueil, Canada
- Astronauts, Life Sciences and Space Medicine Canadian Space Agency, Government of Canada, Longueil, Canada
| | - Nicole Buckley
- Astronauts, Life Sciences and Space Medicine Canadian Space Agency, Government of Canada, Longueil, Canada.
- Directorate of Human Spaceflight and Robotic Exploration, European Space Agency, Noordwijk, Holland.
| | - Etienne Low-Decarie
- Astronauts, Life Sciences and Space Medicine Canadian Space Agency, Government of Canada, Longueil, Canada.
- Agriculture and Agri-Food Canada, Government of Canada, Montreal, Canada.
| |
Collapse
|
2
|
Johnson BP, Vitek RA, Morgan MM, Fink DM, Beames TG, Geiger PG, Beebe DJ, Lipinski RJ. A Microphysiological Approach to Evaluate Effectors of Intercellular Hedgehog Signaling in Development. Front Cell Dev Biol 2021; 9:621442. [PMID: 33634122 PMCID: PMC7900501 DOI: 10.3389/fcell.2021.621442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
Paracrine signaling in the tissue microenvironment is a central mediator of morphogenesis, and modeling this dynamic intercellular activity in vitro is critical to understanding normal and abnormal development. For example, Sonic Hedgehog (Shh) signaling is a conserved mechanism involved in multiple developmental processes and strongly linked to human birth defects including orofacial clefts of the lip and palate. SHH ligand produced, processed, and secreted from the epithelial ectoderm is shuttled through the extracellular matrix where it binds mesenchymal receptors, establishing a gradient of transcriptional response that drives orofacial morphogenesis. In humans, complex interactions of genetic predispositions and environmental insults acting on diverse molecular targets are thought to underlie orofacial cleft etiology. Consequently, there is a need for tractable in vitro approaches that model this complex cellular and environmental interplay and are sensitive to disruption across the multistep signaling cascade. We developed a microplate-based device that supports an epithelium directly overlaid onto an extracellular matrix-embedded mesenchyme, mimicking the basic tissue architecture of developing orofacial tissues. SHH ligand produced from the epithelium generated a gradient of SHH-driven transcription in the adjacent mesenchyme, recapitulating the gradient of pathway activity observed in vivo. Shh pathway activation was antagonized by small molecule inhibitors of epithelial secretory, extracellular matrix transport, and mesenchymal sensing targets, supporting the use of this approach in high-content chemical screening of the complete Shh pathway. Together, these findings demonstrate a novel and practical microphysiological model with broad utility for investigating epithelial-mesenchymal interactions and environmental signaling disruptions in development.
Collapse
Affiliation(s)
- Brian P Johnson
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States.,Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States.,Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States.,Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI, United States
| | - Ross A Vitek
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States
| | - Molly M Morgan
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States
| | - Dustin M Fink
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States
| | - Tyler G Beames
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI, United States.,Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States
| | - Peter G Geiger
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States
| | - David J Beebe
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States
| | - Robert J Lipinski
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI, United States.,Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
3
|
Everson JL, Batchu R, Eberhart JK. Multifactorial Genetic and Environmental Hedgehog Pathway Disruption Sensitizes Embryos to Alcohol-Induced Craniofacial Defects. Alcohol Clin Exp Res 2020; 44:1988-1996. [PMID: 32767777 PMCID: PMC7692922 DOI: 10.1111/acer.14427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/28/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) is perhaps the most common environmental cause of human birth defects. These exposures cause a range of structural and neurological defects, including facial dysmorphologies, collectively known as fetal alcohol spectrum disorders (FASD). While PAE causes FASD, phenotypic outcomes vary widely. It is thought that multifactorial genetic and environmental interactions modify the effects of PAE. However, little is known of the nature of these modifiers. Disruption of the Hedgehog (Hh) signaling pathway has been suggested as a modifier of ethanol teratogenicity. In addition to regulating the morphogenesis of craniofacial tissues commonly disrupted in FASD, a core member of the Hh pathway, Smoothened, is susceptible to modulation by structurally diverse chemicals. These include environmentally prevalent teratogens like piperonyl butoxide (PBO), a synergist found in thousands of pesticide formulations. METHODS Here, we characterize multifactorial genetic and environmental interactions using a zebrafish model of craniofacial development. RESULTS We show that loss of a single allele of shha sensitized embryos to both alcohol- and PBO-induced facial defects. Co-exposure of PBO and alcohol synergized to cause more frequent and severe defects. The effects of this co-exposure were even more profound in the genetically susceptible shha heterozygotes. CONCLUSIONS Together, these findings shed light on the multifactorial basis of alcohol-induced craniofacial defects. In addition to further implicating genetic disruption of the Hh pathway in alcohol teratogenicity, our findings suggest that co-exposure to environmental chemicals that perturb Hh signaling may be important variables in FASD and related craniofacial disorders.
Collapse
Affiliation(s)
- Joshua L. Everson
- From the Department of Molecular BiosciencesSchool of Natural SciencesUniversity of Texas at AustinAustinTexasUSA
- Waggoner Center for Alcohol and Addiction ResearchSchool of PharmacyUniversity of Texas at AustinAustinTexasUSA
| | - Rithik Batchu
- From the Department of Molecular BiosciencesSchool of Natural SciencesUniversity of Texas at AustinAustinTexasUSA
| | - Johann K. Eberhart
- From the Department of Molecular BiosciencesSchool of Natural SciencesUniversity of Texas at AustinAustinTexasUSA
- Waggoner Center for Alcohol and Addiction ResearchSchool of PharmacyUniversity of Texas at AustinAustinTexasUSA
| |
Collapse
|
4
|
Everson JL, Sun MR, Fink DM, Heyne GW, Melberg CG, Nelson KF, Doroodchi P, Colopy LJ, Ulschmid CM, Martin AA, McLaughlin MT, Lipinski RJ. Developmental Toxicity Assessment of Piperonyl Butoxide Exposure Targeting Sonic Hedgehog Signaling and Forebrain and Face Morphogenesis in the Mouse: An in Vitro and in Vivo Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:107006. [PMID: 31642701 PMCID: PMC6867268 DOI: 10.1289/ehp5260] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
BACKGROUND Piperonyl butoxide (PBO) is a pesticide synergist used in residential, commercial, and agricultural settings. PBO was recently found to inhibit Sonic hedgehog (Shh) signaling, a key developmental regulatory pathway. Disruption of Shh signaling is linked to birth defects, including holoprosencephaly (HPE), a malformation of the forebrain and face thought to result from complex gene-environment interactions. OBJECTIVES The impact of PBO on Shh signaling in vitro and forebrain and face development in vivo was examined. METHODS The influence of PBO on Shh pathway transduction was assayed in mouse and human cell lines. To examine its teratogenic potential, a single dose of PBO (22-1,800mg/kg) was administered by oral gavage to C57BL/6J mice at gestational day 7.75, targeting the critical period for HPE. Gene-environment interactions were investigated using Shh+/- mice, which model human HPE-associated genetic mutations. RESULTS PBO attenuated Shh signaling in vitro through a mechanism similar to that of the known teratogen cyclopamine. In utero PBO exposure caused characteristic HPE facial dysmorphology including dose-dependent midface hypoplasia and hypotelorism, with a lowest observable effect level of 67mg/kg. Median forebrain deficiency characteristic of HPE was observed in severely affected animals, whereas all effective doses disrupted development of Shh-dependent transient forebrain structures that generate cortical interneurons. Normally silent heterozygous Shh null mutations exacerbated PBO teratogenicity at all doses tested, including 33mg/kg. DISCUSSION These findings demonstrate that prenatal PBO exposure can cause overt forebrain and face malformations or neurodevelopmental disruptions with subtle or no craniofacial dysmorphology in mice. By targeting Shh signaling as a sensitive mechanism of action and examining gene-environment interactions, this study defined a lowest observable effect level for PBO developmental toxicity in mice more than 30-fold lower than previously recognized. Human exposure to PBO and its potential contribution to etiologically complex birth defects should be rigorously examined. https://doi.org/10.1289/EHP5260.
Collapse
Affiliation(s)
- Joshua L. Everson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Miranda R. Sun
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Dustin M. Fink
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Galen W. Heyne
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Cal G. Melberg
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kia F. Nelson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Padydeh Doroodchi
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lydia J. Colopy
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Caden M. Ulschmid
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alexander A. Martin
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Matthew T. McLaughlin
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Robert J. Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Everson JL, Fink DM, Chung HM, Sun MR, Lipinski RJ. Identification of sonic hedgehog-regulated genes and biological processes in the cranial neural crest mesenchyme by comparative transcriptomics. BMC Genomics 2018; 19:497. [PMID: 29945554 PMCID: PMC6020285 DOI: 10.1186/s12864-018-4885-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/19/2018] [Indexed: 12/18/2022] Open
Abstract
Background The evolutionarily conserved Sonic Hedgehog (Shh) signaling pathway is essential for embryogenesis and orofacial development. SHH ligand secreted from the surface ectoderm activates pathway activity in the underlying cranial neural crest cell (cNCC)-derived mesenchyme of the developing upper lip and palate. Disruption of Shh signaling causes orofacial clefts, but the biological action of Shh signaling and the full set of Shh target genes that mediate normal and abnormal orofacial morphogenesis have not been described. Results Using comparative transcriptional profiling, we have defined the Shh-regulated genes of the cNCC-derived mesenchyme. Enrichment analysis demonstrated that in cultured cNCCs, Shh-regulated genes are involved in smooth muscle and chondrocyte differentiation, as well as regulation of the Forkhead family of transcription factors, G1/S cell cycle transition, and angiogenesis. Next, this gene set from Shh-activated cNCCs in vitro was compared to the set of genes dysregulated in the facial primordia in vivo during the initial pathogenesis of Shh pathway inhibitor-induced orofacial clefting. Functional gene annotation enrichment analysis of the 112 Shh-regulated genes with concordant expression changes linked Shh signaling to interdependent and unique biological processes including mesenchyme development, cell adhesion, cell proliferation, cell migration, angiogenesis, perivascular cell markers, and orofacial clefting. Conclusions We defined the Shh-regulated transcriptome of the cNCC-derived mesenchyme by comparing the expression signatures of Shh-activated cNCCs in vitro to primordial midfacial tissues exposed to the Shh pathway inhibitor in vivo. In addition to improving our understanding of cNCC biology by determining the identity and possible roles of cNCC-specific Shh target genes, this study presents novel candidate genes whose examination in the context of human orofacial clefting etiology is warranted. Electronic supplementary material The online version of this article (10.1186/s12864-018-4885-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joshua L Everson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Dr., Madison, WI, 53706, USA.,Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Dustin M Fink
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Dr., Madison, WI, 53706, USA
| | - Hannah M Chung
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Dr., Madison, WI, 53706, USA.,Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Miranda R Sun
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Dr., Madison, WI, 53706, USA
| | - Robert J Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Dr., Madison, WI, 53706, USA. .,Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
6
|
Cavero-Carbonell C, Gimeno-Martos S, Páramo-Rodríguez L, Rabanaque-Hernández MJ, Martos-Jiménez C, Zurriaga Ó. Drugs use in pregnancy in the Valencia Region and the risk of congenital anomalies. An Pediatr (Barc) 2017. [DOI: 10.1016/j.anpede.2016.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
7
|
Consumo de medicamentos en el embarazo y riesgo de anomalías congénitas en la Comunitat Valenciana. An Pediatr (Barc) 2017; 87:135-142. [DOI: 10.1016/j.anpedi.2016.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/30/2016] [Accepted: 08/22/2016] [Indexed: 11/20/2022] Open
|
8
|
Lai Y, Xie C, Zhang S, Gan G, Wu D, Chen W. Bone morphogenetic protein type I receptor inhibition induces cleft palate associated with micrognathia and cleft lower lip in mice. ACTA ACUST UNITED AC 2016; 106:612-23. [PMID: 27150428 DOI: 10.1002/bdra.23504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Gain-of- and loss-of-function studies have demonstrated that changes in bone morphogenetic protein (BMP) signaling during embryo development cause craniofacial malformations, including cleft palate. It remains uncertain whether BMP signaling could be targeted pharmacologically to affect craniofacial morphogenesis. METHODS Pregnant C57Bl/6J mice were treated with the BMP type I receptor inhibitor LDN-193189 at the dose of 3, 6, or 9 mg/kg twice a day by intraperitoneal injection from embryonic day 10.5 (E10.5) to E15.5. At E16.5, embryos were investigated by facial measurement analysis and histology to determine the optimal concentration for malformation. Subsequent embryonic phenotypes were analyzed in detail by histology, whole-mount skeletal staining, micro-computed tomography, and palatal organic culture. We further used immunohistochemistry to analyze protein expression of the BMP-mediated canonical and noncanonical signaling components. RESULTS The optimal concentration of LDN-193189 was determined to be 6 mg/kg. In utero, LDN-193189 exposures induced partial clefting of the anterior palate or complete cleft palate, which was attributed to a reduced cell proliferation rate in the secondary palate, and delayed palatal elevation caused by micrognathia. Analysis of signal transduction in palatal shelves at E12.5 and E13.5 identified a significant reduction of BMP/Smad signaling (p-Smad1/5/8) and unchanged BMP noncanonical signaling (p-p38, p-Erk1/2) after treatment with LDN-193189. CONCLUSION The results of this study indicate that LDN-193189 can be used to manipulate BMP signaling by selectively targeting the BMP/Smad signaling pathway to affect palatal morphogenesis and produce phenotypes mimicking those caused by genetic mutations. This work established a novel mouse model for teratogen-induced cleft palate. Birth Defects Research (Part A) 106:612-623, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yongzhen Lai
- Department of Oral and Maxillofacial Surgery, Union Hospital, Fujian Medical University, Fuzhou, P. R. China
| | - Changfu Xie
- Department of Oral and Maxillofacial Surgery, Union Hospital, Fujian Medical University, Fuzhou, P. R. China
| | - Shixian Zhang
- Department of Oral and Maxillofacial Surgery, Union Hospital, Fujian Medical University, Fuzhou, P. R. China
| | - Guowu Gan
- Department of Oral and Maxillofacial Surgery, Union Hospital, Fujian Medical University, Fuzhou, P. R. China
| | - Di Wu
- Department of Oral and Maxillofacial Surgery, Union Hospital, Fujian Medical University, Fuzhou, P. R. China
| | - Weihui Chen
- Department of Oral and Maxillofacial Surgery, Union Hospital, Fujian Medical University, Fuzhou, P. R. China.,Stomatological Research Institute, Fujian Medical University, Fuzhou, Fujian Province, P. R. China
| |
Collapse
|
9
|
Wu T, Fallin MD, Shi M, Ruczinski I, Liang KY, Hetmanski JB, Wang H, Ingersoll RG, Huang S, Ye X, Wu-Chou YH, Chen PK, Jabs EW, Shi B, Redett R, Scott AF, Murray JC, Marazita ML, Munger RG, Beaty TH. Evidence of gene-environment interaction for the RUNX2 gene and environmental tobacco smoke in controlling the risk of cleft lip with/without cleft palate. ACTA ACUST UNITED AC 2012; 94:76-83. [PMID: 22241686 DOI: 10.1002/bdra.22885] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 11/09/2011] [Accepted: 11/15/2011] [Indexed: 12/20/2022]
Abstract
This study examined the association between 49 markers in the Runt-related transcription factor 2 (RUNX2) gene and nonsyndromic cleft lip with/without cleft palate (CL/P) among 326 Chinese case-parent trios, while considering gene-environment (GxE) interaction and parent-of-origin effects. Five single-nucleotide polymorphisms (SNPs) showed significant evidence of linkage and association with CL/P and these results were replicated in an independent European sample of 825 case-parent trios. We also report compelling evidence for interaction between markers in RUNX2 and environmental tobacco smoke (ETS). Although most marginal SNP effects (i.e., ignoring maternal exposures) were not statistically significant, eight SNPs were significant when considering possible interaction with ETS when testing for gene (G) and GxE interaction simultaneously or when considering GxE alone. Independent samples from European populations showed consistent evidence of significant GxETS interaction at two SNPs (rs6904353 and rs7748231). Our results suggest genetic variation in RUNX2 may influence susceptibility to CL/P through interacting with ETS.
Collapse
Affiliation(s)
- Tao Wu
- Peking University School of Public Health, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wlodarczyk BJ, Palacios AM, Chapa CJ, Zhu H, George TM, Finnell RH. Genetic basis of susceptibility to teratogen induced birth defects. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2011; 157C:215-26. [PMID: 21766441 DOI: 10.1002/ajmg.c.30314] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Birth defects remain the leading cause of infant death in US. The field of teratology has been focused on the causes and underlying mechanisms of birth defects for decades, yet our understanding of these critical issues remain unacceptably vague. Conclusions from years of animal and human studies made it clear that the vast majority of birth defects have multifactorial origins, with contributions from environmental and genetic factors. The environment comprises not only of the physical, biological, and chemical external environment surrounding the pregnant woman, but it also includes the internal environment of the woman's body that interact with the developing embryo in a complex fashion. The importance of maternal and embryonic genetic factors consisting of countless genetic variants/mutations that exist within every individual contribute to birth defect susceptibility is only now being more fully appreciated. This great complexity of the genome and its diversity within individuals and populations seems to be the principal reason why the same teratogenic exposure can induce severe malformation in one embryo, while fail to do so to other exposed embryos. As the interaction between genetic and environmental factors has long been recognized as the first "Principle of Teratology" by Wilson and Warkany [1965. Teratology: Principles and techniques. Chicago: University of Chicago Press], it is only recently that the appropriate investigative tools have been developed with which to fully investigate this fundamental principle. The introduction of high throughput technologies like whole genome sequencing or genome-wide association studies are promising to deliver an enormous amount of new data that will shed light on the genomic factors that contribute susceptibility to environmental teratogens. In this review, we attempt to summarize the epidemiological and experimental literature concerning birth defects whose phenotypic expression can be clearly related to the interactions between several select environmental factors and those genetic pathways in which they are most likely to have significant modifying effects. © 2011 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Bogdan J Wlodarczyk
- Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Bentham J, Michell AC, Lockstone H, Andrew D, Schneider JE, Brown NA, Bhattacharya S. Maternal high-fat diet interacts with embryonic Cited2 genotype to reduce Pitx2c expression and enhance penetrance of left-right patterning defects. Hum Mol Genet 2010; 19:3394-401. [PMID: 20566713 PMCID: PMC2916708 DOI: 10.1093/hmg/ddq251] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 06/15/2010] [Indexed: 12/27/2022] Open
Abstract
Deficiency of the transcription factor Cited2 in mice results in cardiac malformation, adrenal agenesis, neural tube, placental defects and partially penetrant cardiopulmonary laterality defects resulting from an abnormal Nodal->Pitx2c pathway. Here we show that a maternal high-fat diet more than doubles the penetrance of laterality defects and, surprisingly, induces palatal clefting in Cited2-deficient embryos. Both maternal diet and Cited2 deletion reduce embryo weight and kidney and thymus volume. Expression profiling identified 40 embryonic transcripts including Pitx2 that were significantly affected by embryonic genotype-maternal diet interaction. We show that a high-fat diet reduces Pitx2c levels >2-fold in Cited2-deficient embryos. Taken together, these results define a novel interaction between maternal high-fat diet and embryonic Cited2 deficiency that affects Pitx2c expression and results in abnormal laterality. They suggest that appropriate modifications of maternal diet may prevent such defects in humans.
Collapse
Affiliation(s)
- Jamie Bentham
- Department of Cardiovascular Medicine and
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK and
| | - Anna C. Michell
- Department of Cardiovascular Medicine and
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK and
| | - Helen Lockstone
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK and
| | - Daniel Andrew
- Department of Cardiovascular Medicine and
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK and
| | - Jürgen E. Schneider
- Department of Cardiovascular Medicine and
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK and
| | | | - Shoumo Bhattacharya
- Department of Cardiovascular Medicine and
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK and
| |
Collapse
|
12
|
Lipinski RJ, Song C, Sulik KK, Everson JL, Gipp JJ, Yan D, Bushman W, Rowland IJ. Cleft lip and palate results from Hedgehog signaling antagonism in the mouse: Phenotypic characterization and clinical implications. ACTA ACUST UNITED AC 2010; 88:232-40. [PMID: 20213699 DOI: 10.1002/bdra.20656] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The Hedgehog (Hh) pathway provides inductive signals critical for developmental patterning of the brain and face. In humans and in animal models interference with this pathway yields birth defects, among the most well-studied of which fall within the holoprosencephaly (HPE) spectrum. METHODS Timed-pregnant C57Bl/6J mice were treated with the natural Hh signaling antagonist cyclopamine by subcutaneous infusion from gestational day (GD) 8.25 to 9.5, or with a potent cyclopamine analog, AZ75, administered by oral gavage at GD 8.5. Subsequent embryonic morphogenesis and fetal central nervous system (CNS) phenotype were respectively investigated by scanning electron microscopy and high resolution magnetic resonance imaging (MRI). RESULTS In utero Hh signaling antagonist exposure induced a spectrum of craniofacial and brain malformations. Cyclopamine exposure caused lateral cleft lip and palate (CLP) defects attributable to embryonic deficiency of midline and lower medial nasal prominence tissue. The CLP phenotype was accompanied by olfactory bulb hypoplasia and anterior pituitary aplasia, but otherwise grossly normal brain morphology. AZ75 exposure caused alobar and semilobar HPE with associated median facial deficiencies. An intermediate phenotype of median CLP was produced infrequently by both drug administration regimens. CONCLUSIONS The results of this study suggest that interference with Hh signaling should be considered in the CLP differential and highlight the occurrence of CNS defects that are expected to be present in a cohort of patients having CLP. This work also illustrates the utility of fetal MRI-based analyses and establishes a novel mouse model for teratogen-induced CLP.
Collapse
Affiliation(s)
- Robert J Lipinski
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Lipinski RJ, Bushman W. Identification of Hedgehog signaling inhibitors with relevant human exposure by small molecule screening. Toxicol In Vitro 2010; 24:1404-9. [PMID: 20434536 DOI: 10.1016/j.tiv.2010.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 02/25/2010] [Accepted: 04/24/2010] [Indexed: 01/10/2023]
Abstract
In animal models, chemical disruption of the Hedgehog (Hh) signaling pathway during embryonic development causes severe birth defects including holoprosencephaly and cleft lip and palate. The exact etiological basis of correlate human birth defects remains uncertain but is likely multifactorial, involving the interaction of genetic and environmental or chemical influences. The Hh transduction mechanism relies upon endogenous small molecule regulation, conferring remarkable pathway sensitivity to inhibition by a structurally diverse set of exogenous small molecules. Here, we employed small molecule screening to identify human exposure-relevant Hh signaling inhibitors. From a library of 4240 compounds, including pharmaceuticals, natural products, and pesticides, three putative Hh pathway inhibitors were identified: tolnaftate, an antifungal agent; ipriflavone, a dietary supplement; and 17-beta-estradiol, a human hormone and pharmaceutical agent. Each compound inhibited Hh signaling in both mouse and human cells. Dose-response assays determined the three compounds to be 8- to 30-fold less potent than the index Hh pathway inhibitor cyclopamine. Despite current limitations in chemical library availability, which narrowed the scope of this study to only a small fraction of all human exposure-relevant small molecules, three structurally diverse environmental Hh signaling inhibitors were identified, highlighting an inherent pathway vulnerability to teratogenic influences.
Collapse
Affiliation(s)
- Robert J Lipinski
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 27599, USA.
| | | |
Collapse
|
14
|
Zhu H, Kartiko S, Finnell RH. Importance of gene-environment interactions in the etiology of selected birth defects. Clin Genet 2009; 75:409-23. [PMID: 19459879 DOI: 10.1111/j.1399-0004.2009.01174.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It is generally understood that both genetic and environmental factors contribute to the highly complex etiology of structural birth defects, including neural tube defects, oral clefts and congenital heart defects, by disrupting highly regulated embryonic developmental processes. The intrauterine environment of the developing embryo/fetus is determined by maternal factors such as health/disease status, lifestyle, medication, exposure to environmental teratogens, as well as the maternal genotype. Certain genetic characteristics of the embryo/fetus also predispose it to developmental abnormalities. Epidemiologic and animal studies conducted over the last few decades have suggested that the interplay between genes and environmental factors underlies the etiological heterogeneity of these defects. It is now widely believed that the study of gene-environment interactions will lead to better understanding of the biological mechanisms and pathological processes that contribute to the development of complex birth defects. It is only through such an understanding that more efficient measures will be developed to prevent these severe, costly and often deadly defects. In this review, we attempt to summarize the complex clinical and experimental literature on current hypotheses of interactions between several select environmental factors and those genetic pathways in which they are most likely to have significant modifying effects. These include maternal folate nutritional status, maternal diabetes/obesity-related conditions, and maternal exposure to selected medications and environmental contaminants. Our goal is to highlight the potential gene-environment interactions affecting early embryogenesis that deserve comprehensive study.
Collapse
Affiliation(s)
- H Zhu
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA.
| | | | | |
Collapse
|
15
|
Lipinski RJ, Dengler E, Kiehn M, Peterson RE, Bushman W. Identification and Characterization of Several Dietary Alkaloids as Weak Inhibitors of Hedgehog Signaling. Toxicol Sci 2007; 100:456-63. [PMID: 17728282 DOI: 10.1093/toxsci/kfm222] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Hedgehog (Hh) signaling pathway plays an integral role in the patterning and development of diverse structures in the vertebrate embryo. Aberrations in Hh signaling are associated with a range of developmental defects including failure of interhemispheric division of the embryonic forebrain as well as midline facial dysmorphia including cleft lip/palate and cyclopia, collectively termed holoprosencephaly (HPE). Postnatally, Hh signaling has been postulated to play a pivotal role in healing and repair processes and inappropriate Hh pathway activation has been implicated in several types of cancers. The Veratrum alkaloid cyclopamine is a potent inhibitor of Hh signaling and causes HPE-like defects in diverse species including sheep, hamster, mouse, and zebra fish. Using murine cell-based assays, we have determined that a number of dietary alkaloids similar in structure to cyclopamine also inhibit Hh signaling but with significantly lower potency. We found that these dietary compounds act additively through a mechanism similar to cyclopamine, downstream of Ptc1 and upstream of Gli1. Using an embryonic zebra fish developmental assay, we found that while cyclopamine exposure caused HPE-like defects, exposure to one of these dietary compounds, solanidine, did not.
Collapse
Affiliation(s)
- Robert J Lipinski
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI 53703, USA
| | | | | | | | | |
Collapse
|