1
|
Ayhan A, Efe E, Fidan PA, Efe OE, Ates EG, Sahinturk F, Ayhan S. The influence of different sugammadex doses on neural tube development in early-stage chick embryos. Birth Defects Res 2023; 115:1598-1607. [PMID: 37565787 DOI: 10.1002/bdr2.2237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Sugammadex is a modified gamma-cyclodextrin that has been developed with the goal of reversing the steroidal neuromuscular blocking agents. The aim of the present study is to investigate the effects of different sugammadex doses on embryologic and neural tube development in an early-stage chick embryo model. METHODS A total of 100 specific pathogen-free, fertilized domestic chicken eggs were randomly divided into five groups (n = 20, each), and placed in an automatic cycle incubator. The eggs in the "control (C)" group were incubated without administration of any drug till the end of the experiment. Sub-blastodermic administration of 0.9% NaCl as vehicle control (VC) and different doses of sugammadex solutions prepared with the latter [2 mg/mL (LD), 4 mg/mL (MD), 16 mg/mL (HD)] were performed at 30 hr of incubation. All embryos were removed from the eggs at 72 hr when they were expected to reach Hamburger-Hamilton (HH) stages 19-20, then they were fixed, and evaluated histo-morphologically. RESULTS Embryonic development was not observed in 11 eggs (1 in C, 1 in VC; 3 in LD, 3 in MD, and 3 in HD). All the developed embryos were compatible with the HH stages 19-20. A neural tube closure defect was detected in one embryo in the HD group. No statistically significant difference was found between the groups in terms of embryonic and neural tube developments. CONCLUSIONS No significant association was found between the drug and adverse outcomes; however, a trend with dosing was seen. Further studies are required before conclude on safety and extrapolate these results to human beings.
Collapse
Affiliation(s)
- Asude Ayhan
- Department of Anaesthesiology and Reanimation, Baskent University School of Medicine, Ankara, Turkey
| | - Ekin Efe
- Department of Histology and Embryology, Baskent University School of Medicine, Ankara, Turkey
| | - Pinar A Fidan
- Department of Histology and Embryology, Baskent University School of Medicine, Ankara, Turkey
| | - Oguzhan E Efe
- Department of Pharmacology, Baskent University School of Medicine, Ankara, Turkey
| | - Eylem Gul Ates
- Department of Biostatistics, Baskent University School of Medicine, Ankara, Turkey
- Institutional Big Data Management Unit, Middle East Technical University, Ankara, Turkey
| | - Fikret Sahinturk
- Department of Neurological Surgery, Baskent University School of Medicine, Ankara, Turkey
| | - Selim Ayhan
- Department of Neurological Surgery, Baskent University School of Medicine, Ankara, Turkey
| |
Collapse
|
2
|
Bilir A, Aslan E, Horata E, Guzel H, Atay E, Turamanlar O, Ertekin T. Use of AgNOR staining to determine the effect of metoclopramide on neural tube development in early chick embryos. Biotech Histochem 2023:1-8. [PMID: 36843544 DOI: 10.1080/10520295.2023.2182913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023] Open
Abstract
Nausea and vomiting during pregnancy are common problems and prolonged pharmacological treatment often is needed; however, the teratogenic effects of anti-emetic drugs on neural tube (NT) development are not clear. We investigated the effects of different doses of metoclopramide on NT development in 48 and 72 h chick embryos using an argyrophilic nucleolar organizing region (AgNOR) staining method. We used 150 fertile, specific pathogen-free eggs incubated for 28 h, then randomly divided into five equal groups: group A, sham control was administered 0.9% saline; groups B - E were administered 0.15 mg/egg, 0.3 mg/egg, 0.6 mg/egg and 1.2 mg/egg, respectively. Half of the eggs in each group were taken from the incubator at 48 h incubation and the other half at 72 h incubation. After incubation, eggs were opened, embryos were dissected from their membranes, fixed with 10% formalin and examined by light microscopy. The NT status, i.e., open or closed, and somite number, crown-rump length, morphological features and gross developmental abnormalities were recorded. Excised embryos were sectioned and stained using hematoxylin and eosin or the AgNOR procedure and examined for morphology and histopathology. Delayed NT closure was observed in all 48 h drug exposed embryos, but in the 72 h groups, this occurred only in high-dose groups. Somite number was reduced significantly in groups C - E compared to the control group. Crown-rump length was decreased in both 48 and 72 h embryos. We found a decreased total AgNOR area:nuclear area ratio in 48 and 72 h embryos of all experimental groups. We found that metoclopramide delayed NT closure in chick embryos in a dose-dependent manner.
Collapse
Affiliation(s)
- Abdulkadir Bilir
- Department of Anatomy, Medicine Faculty, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Esra Aslan
- Department of Histology and Embryology, Medicine Faculty, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Erdal Horata
- Department of Orthopedic Prosthetic-Orthosis, Atatürk Health Services Vocational School, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Hilal Guzel
- Department of Anatomy, Medicine Faculty, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Emre Atay
- Department of Anatomy, Medicine Faculty, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Ozan Turamanlar
- Department of Anatomy, Medicine Faculty, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Tolga Ertekin
- Department of Anatomy, Medicine Faculty, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| |
Collapse
|
3
|
Al-Ghamdi FAM. Pomegranate peel extracts effects to reduce mono sodium glutamate toxic effects on chicken embryos: Morphological studies. Saudi J Biol Sci 2022; 29:975-983. [PMID: 35197766 PMCID: PMC8847924 DOI: 10.1016/j.sjbs.2021.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/21/2021] [Accepted: 10/04/2021] [Indexed: 11/19/2022] Open
Abstract
Background Monosodium glutamate (MSG) is a flavoring agent added to various foods. This experimental study investigated MSG effects on chicken embryos morphology and the possible ameliorative effects of pomegranate peel extracts (PPE) at different incubation periods. Methods Seven hundred and twenty fertilized chicken eggs were used and divided into six groups: control, PPE, MSG, PPE + MSG, preventive (PPE–MSG) and therapeutic (MSG–PPE) groups. Fertile chicken eggs were injected with MSG (0.1 ml) and/or PPE (0.3 ml) twice before incubation at days 0, 1. Embryos were extracted at days 7, 10, 12, 14 and 16. Effects of MSG and/ or PPE on embryo development during different incubation periods were studied. Results MSG injected into embryos led to congenital anomalies that appeared mainly in MSG and MSG + PPE groups. These anomalies included growth retardation, absent eye, abdominal swelling and hernia. Mortality rate was the highest in MSG, then in MSG + PPE and MSG–PPE groups. PPE treatment reduced MSG toxic effects and these results were better in MSG–PPE and PPE–MSG groups than MSG + PPE group. Conclusions MSG injection affected chicken embryonic development causing growth retardation and decline in total body length, break length, and total body weight in all the treated groups. These harmful actions can be ameliorated with PPE treatment depending on embryo age.
Collapse
|
4
|
Çetin S, Özaydın T. The effects of bisphenol A given in ovo on bursa of Fabricius development and percentage of acid phosphatase positive lymphocyte in chicken. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41688-41697. [PMID: 33791960 DOI: 10.1007/s11356-021-13640-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA), one of the endocrine disrupting chemicals, is the object of great concern because of its widespread use throughout the world. In this study, it was aimed to determine the effects of in ovo administrated BPA on the bursa of Fabricius and percentage of acid phosphatase positive lymphocyte in peripheral blood by means of histological and enzyme histochemical methods. For this purpose, 310 fertile eggs of Isa Brown laying parent stock were used. The eggs were divided into 5 groups as control, vehicle control, 50, 100, and 250μg/egg BPA. At days 13, 18, and 21 of incubation, eggs were opened until 10 living embryos were obtained from each group. Tissue samples were taken from the obtained embryos and processed for enzyme histochemical methods in addition to routine histological techniques. It was observed that, in BPA-treated groups, embryonic development of bursa of Fabricius was retarded. It was also indicated that the percentage of peripheral blood ACP-ase positive lymphocytes was significantly decreased. These results suggested that a limited maternal transfer of BPA into the eggs might be lead to immunosuppression in chicks.
Collapse
Affiliation(s)
- Selvinaz Çetin
- Department of Histology and Embryology, Faculty of Veterinary, Selçuk University, Konya, Turkey
| | - Tuğba Özaydın
- Department of Histology and Embryology, Faculty of Veterinary, Selçuk University, Konya, Turkey.
| |
Collapse
|
5
|
Ertekin A, Atay E, Bozkurt E, Aslan E. Effect of buscopan, a compound that alleviates cramps, on the developing nervous system of the chick embryo. Birth Defects Res 2021; 113:1140-1151. [PMID: 34050726 DOI: 10.1002/bdr2.1929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/30/2021] [Accepted: 05/20/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Buscopan is used to treat stomach cramps including those resulting from irritable bowel syndrome, bladder cramps, and pain related to menstruation. Its pregnancy category is determined as C. It has been shown in experimental animal studies that the drug has a negative effect on the embryo, but sufficient and well-controlled studies have not been conducted in humans. The aim of this study is to investigate effects of buscopan on the development of the neural tube (NT) in chick embryos. METHODS Sixty specific pathogen-free (SPF) fertilized eggs were used. SPF eggs were placed in an incubator and divided into six groups at 28 hr of incubation. Five different doses (low to high) of buscopan were injected sub-blastodermally. At the end of 48 hr, the embryos were evaluated morphologically and histopathologically. The argyrophilic nucleolar-organizing region (AgNOR) method was used in this study to determine the proliferation activity of cells in NT development in chick embryos. AgNOR number and total AgNOR area/nuclear area (TAA/NA) were detected for each embryo. RESULTS Depending on the dose, the embryo's crown-rump length and somite number decreased (p < .05). Significant differences were detected among all groups for mean AgNOR number (p < .05) and TAA/NA ratio (p < .05). CONCLUSIONS Considering the average count of AgNOR cells and TAA/NA ratio, it was found that there was a decrease in cell division depending on the dose. It was determined that buscopan treatment on chick embryos adversely affected early nervous system and NT development.
Collapse
Affiliation(s)
- Ayşe Ertekin
- Department of Emergency Medicine, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Emre Atay
- Department of Anatomy, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Erhan Bozkurt
- Department of Internal Medicine, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Esra Aslan
- Department of Histology Embryology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| |
Collapse
|
6
|
Duess JW, Gosemann JH, Puri P, Thompson J. Teratogenesis in the chick embryo following post-gastrulation exposure to Y-27632 -effect of Y-27632 on embryonic development. Toxicol Appl Pharmacol 2020; 409:115277. [PMID: 33049266 DOI: 10.1016/j.taap.2020.115277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/04/2020] [Accepted: 10/07/2020] [Indexed: 01/08/2023]
Abstract
The pyridine derivative Y-27632 inhibits Rho-associated coiled-coil-containing protein kinase (ROCK) signaling, which is involved in numerous developmental processes during embryogenesis, primarily by controlling actin-cytoskeleton assembly and cell contractility. Somite formation requires rearrangement of the cytoskeleton and assists in major morphological mechanisms, including ventral body wall formation. Administration of Y-27632 impairs cytoskeletal arrangements in post-gastrulation chick embryos leading to ventral body wall defects (VBWD) at later stages of development. The aim of this study was to investigate the effect of Y-27632 on somite development in post-gastrulation chick embryos during early embryogenesis. After 60 h incubation, embryos in shell-less culture were treated with Y-27632 or vehicle for controls. Following administration, abnormality rates were assessed. In treatment groups, embryos showed a kinked longitudinal body axis. Western blot confirmed impaired ROCK downstream signaling by decreased expression of phosphorylated cofilin-2. Histology, Lysotracker studies and RT-PCR demonstrated increased cell death in somites, the neural tube and the ectoderm. RT-PCR and Western blot of factors known to be involved during somitogenesis revealed reduced expression in the treatment group compared to controls. We hypothesize that administration of Y-27632 disrupts somite development causing axial kinking and embryo malformation, which may lead to VBWD.
Collapse
Affiliation(s)
- Johannes W Duess
- Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany; National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland; School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Jan-Hendrik Gosemann
- Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany; National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | - Prem Puri
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland; School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jennifer Thompson
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland; School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
7
|
Urban JD, Wikoff DS, Chappell GA, Harris C, Haws LC. Systematic evaluation of mechanistic data in assessing in utero exposures to trichloroethylene and development of congenital heart defects. Toxicology 2020; 436:152427. [PMID: 32145346 DOI: 10.1016/j.tox.2020.152427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 01/23/2023]
Abstract
The hypothesis that in utero exposures to low levels of trichloroethylene (TCE) may increase the risk of congenital heart defects (CHDs) in offspring remains a subject of substantial controversy within the scientific community due primarily to the reliance on an inconsistent and unreproducible experimental study in rats. To build on previous assessments that have primarily focused on epidemiological and experimental animal studies in developing conclusions, the objective of the current study is to conduct a systematic evaluation of mechanistic data related to in utero exposures to TCE and the development of CHDs. The evidence base was heterogeneous; 79 mechanistic datasets were identified, characterizing endpoints which ranged from molecular to organismal responses in seven species, involving both in vivo and in vitro study designs in mammalian and non-mammalian models. Of these, 24 datasets were considered reliable following critical appraisal using a study quality tool that employs metrics specific to the study type. Subsequent synthesis and integration demonstrated that the available mechanistic data: 1) did not support the potential for CHD hazard in humans, 2) did not support the biological plausibility of a response in humans based on organization via a putative adverse outcome pathway for valvulo-septal cardiac defects, and 3) were not suitable for serving as candidate studies in risk assessment. Findings supportive of an association were generally limited to in ovo chicken studies, in which TCE was administered in high concentration solutions via direct injection. Results of these in ovo studies were difficult to interpret for human health risk assessment given the lack of generalizability of the study models (including dose relevance, species-specific biological differences, variations in the construct of the study design, etc.). When the mechanistic data are integrated with findings from previous evaluations of human and animal evidence streams, the totality of evidence does not support CHDs as a critical effect in TCE human health risk assessment.
Collapse
Affiliation(s)
- Jonathan D Urban
- ToxStrategies, Inc., 9390 Research Blvd, Ste. 100, Austin, TX, 78759, USA.
| | - Daniele S Wikoff
- ToxStrategies, Inc., 31 College Place, Ste. B118, Asheville, NC, 28801, USA
| | - Grace A Chappell
- ToxStrategies, Inc., 31 College Place, Ste. B118, Asheville, NC, 28801, USA
| | - Craig Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Laurie C Haws
- ToxStrategies, Inc., 9390 Research Blvd, Ste. 100, Austin, TX, 78759, USA
| |
Collapse
|
8
|
Gustafsson SB, Jacobsson SOP. Effects of cannabinoids on the development of chick embryos in ovo. Sci Rep 2019; 9:13486. [PMID: 31530885 PMCID: PMC6748917 DOI: 10.1038/s41598-019-50004-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022] Open
Abstract
We have examined the effects of the synthetic cannabinoids HU 210 and HU 211, the plant-derived cannabidiol and the endogenous cannabinoid anandamide on the viability and development of chick embryos. Fertilized White Leghorn chicken eggs were injected with the test compounds or carrier vehicle, via a drilled small hole in the egg, directly into the egg yolk. After nine days of exposure, the embryonal viability, length and wet weight of embryos, and wet weight of brains were measured, and the development stages were assessed according to the Hamburger and Hamilton (HH) scale. The potent synthetic cannabinoid receptor agonist HU 210 and the non-psychotropic cannabidiol were embryotoxic at the highest concentrations examined (10 µM and 50 µM, respectively), with no viable embryos after the HU 210 injection, and 20% viability after the cannabidiol injections. The effects of HU 210 on the chick embryo were attenuated by α-tocopherol and the cannabinoid receptor antagonist AM251, whereas only α-tocopherol gave a statistically significant protection against the embryotoxic effects of cannabidiol. This study shows that exposure to plant-derived or synthetic cannabinoids during early embryonal development decreases embryonal viability. Extrapolation of data across species is of course difficult, but the data would argue against the use of cannabinoids, be it recreationally or therapeutically, during pregnancy.
Collapse
Affiliation(s)
- Sofia B Gustafsson
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87, Umeå, Sweden
| | - Stig O P Jacobsson
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87, Umeå, Sweden.
| |
Collapse
|
9
|
Kohl A, Golan N, Cinnamon Y, Genin O, Chefetz B, Sela-Donenfeld D. A proof of concept study demonstrating that environmental levels of carbamazepine impair early stages of chick embryonic development. ENVIRONMENT INTERNATIONAL 2019; 129:583-594. [PMID: 31174146 DOI: 10.1016/j.envint.2019.03.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 05/20/2023]
Abstract
Carbamazepine (CBZ) is an anticonvulsant drug used for epilepsy and other disorders. Prescription of CBZ during pregnancy increases the risk for congenital malformations. CBZ is ubiquitous in effluents and persistent during wastewater treatment. Thus, it is re-introduced into agricultural ecosystems upon irrigation with reclaimed wastewater. People consuming produce irrigated with reclaimed wastewater were found to be exposed to CBZ. However, environmental concentrations of CBZ (μgL-1) are magnitudes lower than its therapeutic levels (μgml-1), raising the question of whether and how environmental levels of CBZ affect embryonic development. The chick embryo is a powerful and highly sensitive amniotic model system that enables to assess environmental contaminants in the living organism. Since the chick embryonic development is highly similar to mammalians, yet, it develops in an egg, toxic effects can be directly analyzed in a well-controlled system without maternal influences. This research utilized the chick embryo to test whether CBZ is embryo-toxic by using morphological, cellular, molecular and imaging strategies. Three key embryonic stages were monitored: after blastulation (st.1HH), gastrulation/neurulation (st.8HH) and organogenesis (st.15HH). Here we demonstrate that environmental relevant concentrations of CBZ impair morphogenesis in a dose- and stage- dependent manner. Effects on gastrulation, neural tube closure, differentiation and proliferation were exhibited in early stages by exposing embryos to CBZ dose as low as 0.1μgL-1. Quantification of developmental progression revealed a significant difference in the total score obtained by CBZ-treated embryos compared to controls (up to 5-fold difference, p<0.05). Yet, defects were unnoticed as embryos passed gastrulation/neurulation. This study provides the first evidence for teratogenic effect of environmental-relevant concentrations of CBZ in amniotic embryos that impair early but not late stages of development. These findings call for in-depth risk analysis to ensure that the environmental presence of CBZ and other drugs is not causing irreversible ecological and public-health damages.
Collapse
Affiliation(s)
- Ayelet Kohl
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Naama Golan
- Department of Soil and Water Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Yuval Cinnamon
- Department of Poultry and Aquaculture Sciences, Institute of Animal Science, Agricultural Research Organization - The Volcani Center, Rishon LeZiyon 7528809, Israel
| | - Olga Genin
- Department of Poultry and Aquaculture Sciences, Institute of Animal Science, Agricultural Research Organization - The Volcani Center, Rishon LeZiyon 7528809, Israel
| | - Benny Chefetz
- Department of Soil and Water Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel.
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 7610001, Israel.
| |
Collapse
|
10
|
Watson JN, Seagraves NJ. RNA-Seq analysis in an avian model of maternal phenylketonuria. Mol Genet Metab 2019; 126:23-29. [PMID: 30600150 DOI: 10.1016/j.ymgme.2018.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 01/28/2023]
Abstract
Cardiac malformations (CVMs) are a leading cause of infant morbidity and mortality. CVMs are particularly prevalent when the developing fetus is exposed to high levels of phenylalanine in-utero in mothers with Phenylketonuria. Yet, elucidating the underlying molecular mechanism leading to CVMs has proven difficult. In this study we used RNA-Seq to investigate an avian model of MPKU and establish differential gene expression (DEG) characteristics of the early developmental stages HH10, 12, and 14. In total, we identified 633 significantly differentially expressed genes across stages HH10, 12, and 14. As expected, functional annotation of significant DEGs identified associations seen in clinical phenotypes of MPKU including CVMs, congenital heart defects, craniofacial anomalies, central nervous system defects, and growth anomalies. Additionally, there was an overrepresentation of genes involved in cardiac muscle contraction, adrenergic signaling in cardiomyocytes, migration, proliferation, metabolism, and cell survival. Strikingly, we identified significant changes in expression with multiple genes involved in Retinoic Acid (RA) metabolism and downstream targets. Using qRTPCR, we validated these findings and identified a total of 42 genes within the RA pathway that are differentially expressed. Here, we report the first elucidation of the molecular mechanisms of cardiovascular malformations in MPKU conducted at early developmental timepoints. We provide evidence suggesting a link between PHE exposure and the alteration of RA pathway. These results are promising and offer novel findings associated with congenital heart defects in MPKU.
Collapse
Affiliation(s)
- Jamie N Watson
- Department of Biology, University of Central Oklahoma, Edmond, OK, USA.
| | - Nikki J Seagraves
- Department of Biology, University of Central Oklahoma, Edmond, OK, USA.
| |
Collapse
|
11
|
Abstract
An infection by Zika virus (ZIKV), a mosquito-borne flavivirus, broke out in South American regions in 2015, and recently showed a tendency of spreading to North America and even worldwide. ZIKV was first detected in 1947 and only 14 human infection cases were reported until 2007. This virus was previously observed to cause only mild flu-like symptoms. However, recent ZIKV infections might be responsible for the increasing cases of neurological disorders such as Guillain-Barré syndrome and congenital defects, including newborn microcephaly. Therefore, researchers have established several animal models to study ZIKV transmission and pathogenesis, and test therapeutic candidates. This review mainly summarizes the reported animal models of ZIKV infection, including mice and non-human primates.
Collapse
|
12
|
Men J, Jerwick J, Wu P, Chen M, Alex A, Ma Y, Tanzi RE, Li A, Zhou C. Drosophila Preparation and Longitudinal Imaging of Heart Function In Vivo Using Optical Coherence Microscopy (OCM). J Vis Exp 2016. [PMID: 28060288 DOI: 10.3791/55002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Longitudinal study of the heartbeat in small animals contributes to understanding structural and functional changes during heart development. Optical coherence microscopy (OCM) has been demonstrated to be capable of imaging small animal hearts with high spatial resolution and ultrahigh imaging speed. The high image contrast and noninvasive properties make OCM ideal for performing longitudinal studies without requiring tissue dissections or staining. Drosophila has been widely used as a model organism in cardiac developmental studies due to its high number of orthologous human disease genes, its similarity of molecular mechanisms and genetic pathways with vertebrates, its short life cycle, and its low culture cost. Here, the experimental protocols are described for the preparation of Drosophila and optical imaging of the heartbeat with a custom OCM system throughout the life cycle of the specimen. By following the steps provided in this report, transverse M-mode and 3D OCM images can be acquired to conduct longitudinal studies of the Drosophila cardiac morphology and function. The en face and axial sectional OCM images and the heart rate (HR) and cardiac activity period (CAP) histograms, were also shown to analyze the heart structural changes and to quantify the heart dynamics during Drosophila metamorphosis, combined with the videos constructed with M-mode images to trace cardiac activity intuitively. Due to the genetic similarity between Drosophila and vertebrates, longitudinal study of heart morphology and dynamics in fruit flies could help reveal the origins of human heart diseases. The protocol here would provide an effective method to perform a wide range of studies to understand the mechanisms of cardiac diseases in humans.
Collapse
Affiliation(s)
- Jing Men
- Bioengineering Program, Lehigh University; Center for Photonics and Nanoelectronics, Lehigh University
| | - Jason Jerwick
- Center for Photonics and Nanoelectronics, Lehigh University; Department of Electrical and Computer Engineering, Lehigh University
| | - Penghe Wu
- Bioengineering Program, Lehigh University; Center for Photonics and Nanoelectronics, Lehigh University
| | - Mingming Chen
- Department of Electrical and Computer Engineering, Lehigh University; State Key Laboratory of Software Engineering, Wuhan University
| | - Aneesh Alex
- Center for Photonics and Nanoelectronics, Lehigh University; Department of Electrical and Computer Engineering, Lehigh University
| | - Yutao Ma
- State Key Laboratory of Software Engineering, Wuhan University
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School
| | - Airong Li
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School
| | - Chao Zhou
- Bioengineering Program, Lehigh University; Center for Photonics and Nanoelectronics, Lehigh University; Department of Electrical and Computer Engineering, Lehigh University;
| |
Collapse
|
13
|
ElMazoudy RH, Bekhet GA. In ovo toxico-teratological effects of aluminum on embryonic chick heart and vascularization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:21947-21956. [PMID: 27535157 DOI: 10.1007/s11356-016-7461-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 08/10/2016] [Indexed: 06/06/2023]
Abstract
In spite of extensive research and persistent arguments, the mechanism of aluminum (Al) toxicity is still obscure. It is firmly established that aluminum is a potent neurotoxicant. So, the aim based on is aluminum damage chicken heart, as well as the vitelline circulation. In the first 3 days of incubation (D0-D2), 1.0, 2.0, or 4.0 mg aluminum chloride/0.3 ml avian saline was injected into the center of each viable fertilized egg yolk (AL1, AL2, and AL3 groups, respectively). Control eggs were either uninjected (AL0) or injected (ALS, 0.3 ml saline). Crown rump length was significantly decreased, while, embryonic mortalities, growth delay, as well as congenital heart defects were increased in the eggs injected 2.0 or 4.0 mg of Al. Although no relationship is clear about the embryonic mortality induced by Al in chicken embryos to the dose concentration, the higher mortality occurs in early developmental stages in developing chick embryos. Furthermore, chick embryos exposed to 4.0 mg/Al showed a high incidence of defects of ventricular septation and ventricular myocardium. Configuration and density of branched vitelline vessels were also significantly deteriorated after injection with 4.0 mg/Al. It concluded that Al is a cardiac teratogen for a chick in a dose-dependent way. These data highlight a novel approach for aluminum in congenital cardiovascular defects. Therefore, further research is needed to explain the teratogenicity of Al on the embryonic heart development.
Collapse
Affiliation(s)
- Reda H ElMazoudy
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
- Biology Department, College of Science-Girls in Dammam, University of Dammam, Dammam, 31441, Kingdom of Saudi Arabia.
| | - Gamal A Bekhet
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- Department of Biological Sciences, Faculty of Science, King Faisal University, Al Hassa, 31982, Saudi Arabia
| |
Collapse
|
14
|
Goodfellow FT, Tesla B, Simchick G, Zhao Q, Hodge T, Brindley MA, Stice SL. Zika Virus Induced Mortality and Microcephaly in Chicken Embryos. Stem Cells Dev 2016; 25:1691-1697. [PMID: 27627457 DOI: 10.1089/scd.2016.0231] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The explosive spread of the Zika virus (ZIKV) through South and Central America has been linked to an increase in congenital birth defects, specifically microcephaly. Representative rodent models for investigating infections include direct central nervous system (CNS) injections late in pregnancy and transplacental transmission in immunodeficient mice. Microcephaly in humans may be the result of infection occurring early in pregnancy, therefore recapitulating that the human course of ZIKV infection should include normal embryo exposed to ZIKV during the first trimester. In ovo development of the chicken embryo closely mirrors human fetal neurodevelopment and, as a comparative model, could provide key insights into both temporal and pathophysiological effects of ZIKV. Chick embryos were directly infected early and throughout incubation with ZIKV isolated from a Mexican mosquito in January 2016. High doses of virus caused embryonic lethality. In a subset of lower dosed embryos, replicating ZIKV was present in various organs, including the CNS, throughout development. Surviving ZIKV-infected embryos presented a microcephaly-like phenotype. Chick embryos were longitudinally monitored by magnetic resonance imaging that documented CNS structural malformations, including enlarged ventricles (30% increase) and stunted cortical growth (decreased telencephalon by 18%, brain stem by 32%, and total brain volume by 18%), on both embryonic day 15 (E15) and E20 of development. ZIKV-induced microcephaly was observed with inoculations of as few as 2-20 viral particles. The chick embryo model presented ZIKV embryonic lethal effects and progressive CNS damage similar to microcephaly.
Collapse
Affiliation(s)
- Forrest T Goodfellow
- 1 Department of Animal and Dairy Science, Interdisciplinary Toxicology Program, Regenerative Bioscience Center, College of Agriculture and Environmental Science, University of Georgia , Athens, Georgia
| | - Blanka Tesla
- 2 Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia , Athens, Georgia
| | - Gregory Simchick
- 3 Bioimaging Research Center and Department of Physics and Astronomy, University of Georgia , Athens, Georgia
| | - Qun Zhao
- 3 Bioimaging Research Center and Department of Physics and Astronomy, University of Georgia , Athens, Georgia
| | - Thomas Hodge
- 2 Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia , Athens, Georgia
| | - Melinda A Brindley
- 4 Department of Infectious Diseases, Population Health, Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia , Athens, Georgia
| | - Steven L Stice
- 5 Department of Animal and Dairy Science, Regenerative Bioscience Center, College of Agriculture and Environmental Science, University of Georgia , Athens, Georgia
| |
Collapse
|
15
|
Men J, Huang Y, Solanki J, Zeng X, Alex A, Jerwick J, Zhang Z, Tanzi RE, Li A, Zhou C. Optical Coherence Tomography for Brain Imaging and Developmental Biology. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2016; 22:6803213. [PMID: 27721647 PMCID: PMC5049888 DOI: 10.1109/jstqe.2015.2513667] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Optical coherence tomography (OCT) is a promising research tool for brain imaging and developmental biology. Serving as a three-dimensional optical biopsy technique, OCT provides volumetric reconstruction of brain tissues and embryonic structures with micrometer resolution and video rate imaging speed. Functional OCT enables label-free monitoring of hemodynamic and metabolic changes in the brain in vitro and in vivo in animal models. Due to its non-invasiveness nature, OCT enables longitudinal imaging of developing specimens in vivo without potential damage from surgical operation, tissue fixation and processing, and staining with exogenous contrast agents. In this paper, various OCT applications in brain imaging and developmental biology are reviewed, with a particular focus on imaging heart development. In addition, we report findings on the effects of a circadian gene (Clock) and high-fat-diet on heart development in Drosophila melanogaster. These findings contribute to our understanding of the fundamental mechanisms connecting circadian genes and obesity to heart development and cardiac diseases.
Collapse
Affiliation(s)
- Jing Men
- Department of Electrical and Computer Engineering, Center for Photonics and Nanoelectronics, and Bioengineering Program, Lehigh University, Bethlehem, PA, USA, 18015
| | - Yongyang Huang
- Department of Electrical and Computer Engineering, Center for Photonics and Nanoelectronics, and Bioengineering Program, Lehigh University, Bethlehem, PA, USA, 18015
| | - Jitendra Solanki
- Department of Electrical and Computer Engineering, Center for Photonics and Nanoelectronics, and Bioengineering Program, Lehigh University, Bethlehem, PA, USA, 18015
| | - Xianxu Zeng
- Department of Electrical and Computer Engineering, Center for Photonics and Nanoelectronics, and Bioengineering Program, Lehigh University, Bethlehem, PA, USA, 18015
- Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China, 450000
| | - Aneesh Alex
- Department of Electrical and Computer Engineering, Center for Photonics and Nanoelectronics, and Bioengineering Program, Lehigh University, Bethlehem, PA, USA, 18015
| | - Jason Jerwick
- Department of Electrical and Computer Engineering, Center for Photonics and Nanoelectronics, and Bioengineering Program, Lehigh University, Bethlehem, PA, USA, 18015
| | - Zhan Zhang
- Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China, 450000
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA, 02129
| | - Airong Li
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA, 02129
| | - Chao Zhou
- Department of Electrical and Computer Engineering, Center for Photonics and Nanoelectronics, and Bioengineering Program, Lehigh University, Bethlehem, PA, USA, 18015
| |
Collapse
|
16
|
Oberholzer HM, Van Der Schoor C, Taute H, Bester MJ. A descriptive study to provide evidence of the teratogenic and cellular effects of sibutramine and ephedrine on cardiac- and liver-tissue of chick embryos. Microsc Res Tech 2015; 78:737-46. [PMID: 26138360 DOI: 10.1002/jemt.22539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/29/2015] [Accepted: 06/14/2015] [Indexed: 11/07/2022]
Abstract
Exposure to drugs during pregnancy is a major concern, as some teratogenic compounds can influence normal foetal development. Although the use of drugs during pregnancy should generally be avoided, exposure of the developing foetus to teratogens may occur unknowingly since these compounds may be hidden in products that are being marketed as "all natural." The aim of the current study was to investigate the possible teratogenic and cellular effects of sibutramine-a serotonin-norepinephrine reuptake inhibitor used in the treatment of obesity-on the heart and liver tissue of chick embryos. Ephedrine was used as a positive control. The chick embryo model was chosen because it has been used in studying developmental and experimental biology and teratology with great success. The embryos were exposed to three different concentrations of sibutramine and ephedrine respectively. The results obtained revealed that both compounds exhibited embryotoxicity when compared to the control groups. Liver and heart tissue of the exposed embryos was severely affected by these compounds in a dose-related manner. Morphology similar to that of muscle dystrophy was observed in the heart, where the muscle tissue was infiltrated by adipose and connective tissue. Severe liver steatosis was also noted. A more in-depth investigation into the molecular pathways involved might provide more information on the exact mechanism of toxicity of these products influencing embryonic development.
Collapse
Affiliation(s)
| | - Ciska Van Der Schoor
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | - Helena Taute
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | - Megan Jean Bester
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| |
Collapse
|
17
|
Özeren E, Er U, Güvenç Y, Demirci A, Arıkök AT, Şenveli E, Ergün RB. The effect of flurbiprofen on the development of anencephaly in early stage chicken embryos. Br J Neurosurg 2014; 29:265-71. [DOI: 10.3109/02688697.2014.976172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Abstract
Congenital heart disease (CHD) is a highly prevalent problem with mostly unknown origins. Many cases of CHD likely involve an environmental exposure coupled with genetic susceptibility, but practical and ethical considerations make nongenetic causes of CHD difficult to assess in humans. The development of the heart is highly conserved across all vertebrate species, making animal models an excellent option for screening potential cardiac teratogens. This review will discuss exposures known to cause cardiac defects, stages of heart development that are most sensitive to teratogen exposure, benefits and limitations of animal models of cardiac development, and future considerations for cardiac developmental toxicity research.
Collapse
Affiliation(s)
- Gretchen J Mahler
- Department of Bioengineering, Binghamton University, New York 13902, USA
| | | |
Collapse
|
19
|
Cui Y, Han Z, Hu Y, Song G, Hao C, Xia H, Ma X. MicroRNA-181b and microRNA-9 mediate arsenic-induced angiogenesis via NRP1. J Cell Physiol 2012; 227:772-83. [PMID: 21503876 DOI: 10.1002/jcp.22789] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Environmental exposure to inorganic arsenic compounds has been reported to have serious health effects on humans. Recent studies reported that arsenic targets endothelial cells lining blood vessels, and endothelial cell activation or dysfunction, may underlie the pathogenesis of arsenic-induced diseases and developmental toxicity. It has been reported that microRNAs (miRNAs) may act as an angiogenic switch by regulating related genes. The present study was designed to test the hypothesis that arsenite-regulated miRNAs play pivotal roles in arsenic-induced toxicity. Fertilized eggs were injected via the yolk sac with 100 nM sodium arsenite at Hamburger-Hamilton (HH) stages 6, 9, and 12, and harvested at HH stage 18. To identify the individual miRNAs and mRNAs that may regulate the genetic network, the expression profiles of chick embryos were analyzed by microarray analysis. Microarray analyses revealed that the expression of a set of miRNAs changed after arsenite administration, especially miRNA-9, 181b, 124, 10b, and 125b, which exhibited a massive decrease in expression. Integrative analyses of the microarray data revealed that several miRNAs, including miR-9 and miR-181b, might target several key genes involved in arsenic-induced developmental toxicity. A luciferase reporter assay confirmed neuropilin-1 (Nrp1) as a target of mir-9 and mir-181b. Data from the transwell migration assay and the tube-formation assay indicated that miR-9 and mir-181b inhibited the arsenic-induced EA.hy926 cell migration and tube formation by targeting NRP1. Our study demonstrates that the environmental toxin, sodium arsenite, induced angiogenesis by altering the expression of miRNAs and their cognate mRNA targets.
Collapse
Affiliation(s)
- Yi Cui
- Department of Genetics, Graduate School of Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The avian embryo is a long-standing model for developmental biology research. It also has proven utility for toxicology research both in ovo and in explant culture. Like mammals, avian embryos have an allantois and their developmental pathways are highly conserved with those of mammals, thus avian models have biomedical relevance. Fertile eggs are inexpensive and the embryo develops rapidly, allowing for high-throughput. The chick genome is sequenced and significant molecular resources are available for study, including the ability for genetic manipulation. The absence of a placenta permits the direct study of an agent's embryotoxic effects. Here, we present protocols for using avian embryos in toxicology research, including egg husbandry and hatch, toxicant delivery, and assessment of proliferation, apoptosis, and cardiac structure and function.
Collapse
Affiliation(s)
- Susan M Smith
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| | | | | |
Collapse
|
21
|
Kennelly K, Brennan D, Chummun K, Giles S. Histological characterisation of the ethanol-induced microphthalmia phenotype in a chick embryo model system. Reprod Toxicol 2011; 32:227-34. [DOI: 10.1016/j.reprotox.2011.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 05/20/2011] [Accepted: 05/21/2011] [Indexed: 10/18/2022]
|
22
|
Bardai GK, Hales BF, Sunahara GI. Developmental toxicity of glyceryl trinitrate in quail embryos. ACTA ACUST UNITED AC 2011; 91:230-40. [PMID: 21472843 DOI: 10.1002/bdra.20801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 02/02/2011] [Accepted: 02/04/2011] [Indexed: 11/08/2022]
Abstract
BACKGROUND Although glyceryl trinitrate (GTN) is used extensively to treat angina and heart failure, little is known about its effects on the conceptus during organogenesis. The goal of these studies was to investigate the effects of GTN in a model organism, the quail (Coturnix coturnix japonica) embryo. METHODS To identify the effects of GTN on quail embryo development, fertilized quail eggs (n = 10-12 eggs/group) were injected with GTN (0, 4.4, 44, or 440 μM) at Hamburger-Hamilton (HH) stage 0, 9, or 19 and examined 7 days later. Next, HH 9 embryos were injected with GTN (0, 0.88, 4.4, 8.8, 44, 88, and 440 μM, in 20 μL per egg) and examined 24-hours, 48-hours, or 72-hours postinjection. Finally, the developing eye on one side was exposed to GTN (44 μM) ex ovo and the tissue was probed for the presence of nitrated proteins. RESULTS In ovo GTN exposure induced a dose-dependent increase in the number of malformed viable quail embryos with a maximal effect in HH 9 embryos. Microphthalmia, craniofacial, heart, and neural tube defects were elevated in GTN-exposed embryos. An increase in nitrated proteins was observed in the developing eye region of embryos exposed ex ovo to GTN. CONCLUSIONS GTN treatment induced a variety of malformations in quail embryos. The presence of nitrated proteins suggests that organic nitrates, such as GTN, generate reactive nitrogen species. We hypothesize that GTN perturbations in the redox status of the embryo may underlie its developmental toxicity.
Collapse
Affiliation(s)
- Ghalib K Bardai
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
23
|
Caldwell PT, Manziello A, Howard J, Palbykin B, Runyan RB, Selmin O. Gene expression profiling in the fetal cardiac tissue after folate and low-dose trichloroethylene exposure. ACTA ACUST UNITED AC 2010; 88:111-27. [PMID: 19813261 DOI: 10.1002/bdra.20631] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Previous studies show gene expression alterations in rat embryo hearts and cell lines that correspond to the cardio-teratogenic effects of trichloroethylene (TCE) in animal models. One potential mechanism of TCE teratogenicity may be through altered regulation of calcium homeostatic genes with a corresponding inhibition of cardiac function. It has been suggested that TCE may interfere with the folic acid/methylation pathway in liver and kidney and alter gene regulation by epigenetic mechanisms. According to this hypothesis, folate supplementation in the maternal diet should counteract TCE effects on gene expression in the embryonic heart. APPROACH To identify transcriptional targets altered in the embryonic heart after exposure to TCE, and possible protective effects of folate, we used DNA microarray technology to profile gene expression in embryonic mouse hearts with maternal TCE exposure and dietary changes in maternal folate. RESULTS Exposure to low doses of TCE (10 ppb) caused extensive alterations in transcripts encoding proteins involved in transport, ion channel, transcription, differentiation, cytoskeleton, cell cycle, and apoptosis. Exogenous folate did not offset the effects of TCE exposure on normal gene expression, and both high and low levels of folate produced additional significant changes in gene expression. CONCLUSIONS A mechanism by which TCE induces a folate deficiency does not explain altered gene expression patterns in the embryonic mouse heart. The data further suggest that use of folate supplementation, in the presence of this toxin, may be detrimental and not protective of the developing embryo.
Collapse
Affiliation(s)
- Patricia T Caldwell
- Department of Veterinary Science and Microbiology, University of Arizona, Tucson, Arizona 85721-0038, USA
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
The avian embryo has proven utility for studying ethanol's damaging effects upon the embryo. Chicken and quail are long-established models for developmental biology research; much of what we know regarding limb, craniofacial, neural crest, hindbrain, and cardiac morphogenesis was first established with avian models. These models also are for popular mechanistic studies of teratogens, including ethanol. Avian models have been used to explore ethanol's effects on neurogenesis, cardiogenesis, intracellular signaling, neurobehavior, and apoptosis. Presented here are several of these methodologies for adaptation by interested researchers.
Collapse
|
25
|
Mazzullo G, Montalbano G, Augello A, Germanà A, Macrì B. A Case of Conjoined Cephalopagus Twinning in an Ostrich (Struthio camelus). Anat Histol Embryol 2007; 36:263-5. [PMID: 17617102 DOI: 10.1111/j.1439-0264.2006.00748.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conjoined twinnings have been reported in most domestic animal species and in some avian species. Cases of conjoined twins have not been reported in the ostrich so far. A hybrid Blue neck x African black male ostrich conjoined twinning was born at the end of artificial egg incubation and died spontaneously 24 h after the hatching. It was frozen and sent to the Unit of Veterinary Pathology of the University of Messina for gross examination. The most important gross findings involved the external body and most of the internal organs. On the basis of the duplication, the conjoined twins were classified as a cephalopagus. Radiological features included: development of one head containing a single brain, two spinal cords, deviated vertebral columnae with fusion of the two first cervical vertebrae. In one twin, the synsacrum was absent as well as portions of the vertebral column. Grossly, both twins showed two upper and lower limbs each. The gastro-enteric apparatuses of the twins were not completely developed and fused at different levels. One liver and one heart localized in the centre of the conjoined twins were observed. The authors conclude that the possible causes of the malformation could be related to a genetic factor.
Collapse
Affiliation(s)
- G Mazzullo
- Dipartimento di Sanità Pubblica Veterinaria, Sez. Patologia Generale e Anatomia Patologica, Facoltà di Medicina Veterinaria, Università di Messina, Viale Annunziata, 98168 Messina, Italy.
| | | | | | | | | |
Collapse
|
26
|
Liu HCS, Hicks JA. Using Proteomics to Understand Avian Systems Biology and Infectious Disease. Poult Sci 2007; 86:1523-9. [PMID: 17575203 DOI: 10.1093/ps/86.7.1523] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The proteome is defined as the protein complement to the genome. Proteomics is the study of the proteome. Several techniques are frequently used in proteomics; these include 2-hybrid systems, 2-dimensional gel electrophoresis, and mass spectrometry. Systems biology is a scientific approach that takes into account the complex relationships among and between genes and proteins and determines how all of these interactions come together to form a functional organism. Proteomic tools can simultaneously probe the properties of numerous proteins and thus are a great aid to the emerging field of systems biology, in which the functional interactions of numerous proteins are studied instead of studying individual proteins as isolated entities. In the field of avian biology, proteomics has been used to study everything from the development and function of organs and systems to the interactions of infectious agents and the altered states that they induce in their hosts.
Collapse
Affiliation(s)
- H-C S Liu
- Department of Animal Science, North Carolina State University, Raleigh 27695-7621, USA.
| | | |
Collapse
|
27
|
Drake VJ, Koprowski SL, Lough J, Hu N, Smith SM. Trichloroethylene exposure during cardiac valvuloseptal morphogenesis alters cushion formation and cardiac hemodynamics in the avian embryo. ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114:842-7. [PMID: 16759982 PMCID: PMC1480523 DOI: 10.1289/ehp.8781] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
It is controversial whether trichloroethylene (TCE) is a cardiac teratogen. We exposed chick embryos to 0, 0.4, 8, or 400 ppb TCE/egg during the period of cardiac valvuloseptal morphogenesis (2-3.3 days' incubation) . Embryo survival, valvuloseptal cellularity, and cardiac hemodynamics were evaluated at times thereafter. TCE at 8 and 400 ppb/egg reduced embryo survival to day 6.25 incubation by 40-50%. At day 4.25, increased proliferation and hypercellularity were observed within the atrioventricular and outflow tract primordia after 8 and 400 ppb TCE. Doppler ultrasound revealed that the dorsal aortic and atrioventricular blood flows were reduced by 23% and 30%, respectively, after exposure to 8 ppb TCE. Equimolar trichloroacetic acid (TCA) was more potent than TCE with respect to increasing mortality and causing valvuloseptal hypercellularity. These results independently confirm that TCE disrupts cardiac development of the chick embryo and identifies valvuloseptal development as a period of sensitivity. The hypercellular valvuloseptal profile is consistent with valvuloseptal heart defects associated with TCE exposure. This is the first report that TCA is a cardioteratogen for the chick and the first report that TCE exposure depresses cardiac function. Valvuloseptal hypercellularity may narrow the cardiac orifices, which reduces blood flow through the heart, thereby compromising cardiac output and contributing to increased mortality. The altered valvuloseptal formation and reduced hemodynamics seen here are consistent with such an outcome. Notably, these effects were observed at a TCE exposure (8 ppb) that is only slightly higher than the U.S. Environmental Protection Agency maximum containment level for drinking water (5 ppb) .
Collapse
Affiliation(s)
- Victoria J Drake
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|