1
|
Ye QN, Zheng K. Expression and function of patatin-like phospholipase domain-containing 2 in cleft palate induced by retinoic acid. Br J Oral Maxillofac Surg 2023; 61:215-220. [PMID: 36906446 DOI: 10.1016/j.bjoms.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
Cleft palate is a common maxillofacial congenital malformation, and its mechanism still has not been fully illustrated. Recently, lipid metabolic defects have been observed in cleft palate. Patatin-like phospholipase domain-containing 2 (Pnpla2) is an important lipolytic gene. However, its effect on the formation of cleft palate remains unknown. In this research, we explored the expression of Pnpla2 in the palatal shelves of control mice. We also studied mice with cleft palates induced by retinoic acid and its effect on the embryonic palatal mesenchyme (EPM) cells phenotype. We found that Pnpla2 was expressed in the palatal shelves of both the cleft palate and control mice. Pnpla2 expression was lower in cleft palate mice than in the control mice. Experiments with EPM cells showed that knockdown of Pnpla2 inhibited cell proliferation and migration. In conclusion, Pnpla2 is linked to palatal development. We have indicated that low expression of Pnpla2 affects palatogenesis by inhibiting the proliferation and migration of EPM cells.
Collapse
Affiliation(s)
- Q N Ye
- Shantou University, Shantou, Guangdong 515063, China.
| | - K Zheng
- Shantou University, Shantou, Guangdong 515063, China.
| |
Collapse
|
2
|
Krutzen CLJM, Roa LA, Bloemen M, Von den Hoff JW. Excess vitamin a might contribute to submucous clefting by inhibiting WNT-mediated bone formation. Orthod Craniofac Res 2023; 26:132-139. [PMID: 35716278 PMCID: PMC10084165 DOI: 10.1111/ocr.12594] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Cleft lip and/or palate (CLP) is a common craniofacial birth defect caused by genetic as well as environmental factors. The phenotypic spectrum of CLP also includes submucous clefts with a defect in the palatal bone. To elucidate the contribution of vitamin A, we evaluated the effects of the vitamin A metabolite all-trans retinoic acid (ATRA) on the osteogenic differentiation and mineralization of mouse embryonic palatal mesenchymal cells (MEPM). SETTING AND SAMPLE POPULATION MEPM cells were isolated from the prefusion palates of E13 mouse embryos from three different litters. MATERIALS AND METHODS MEPM cells were cultured with and without 0.5 μM ATRA in osteogenic medium. Differentiation was analysed by the expression of osteogenic marker genes and alkaline phosphatase (ALP) activity after 1, 2, and 7 days. The expression of Wnt marker genes was also analysed. Mineralization was assessed by alizarin red staining after 7, 14, 21, and 28 days. RESULTS The bone marker genes Sp7, Runx2, Alpl, and Col1a1 were inhibited 10% ± 2%, 59% ± 7%, 79% ± 12% and 57% ± 20% (P < .05) at day 7. ALP activity was inhibited at days 1 and 7 by 35 ± 0% (P < .05) and 23 ± 6% (P < .001). ATRA also inhibited mineralization at 3 and 4 weeks. Finally, expression of the universal Wnt marker gene Axin2 was strongly reduced, by 31 ± 18% (P < .001), at day 7. CONCLUSION Our data indicate that ATRA (vitamin A) inhibits bone formation by reducing Wnt signalling. This might contribute to the molecular aetiology of submucous clefting.
Collapse
Affiliation(s)
- Charlotte Lucienne Jacqueline Maria Krutzen
- Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Laury A Roa
- Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.,Laury A. Roa, Department of Instructive Biomaterial Engineering (IBE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Marjon Bloemen
- Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Johannes W Von den Hoff
- Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| |
Collapse
|
3
|
The Osteogenic Potential of Falciform Ligament-Derived Stromal Cells-A Comparative Analysis between Two Osteogenic Induction Programs. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120810. [PMID: 36551016 PMCID: PMC9774535 DOI: 10.3390/bioengineering9120810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Mesenchymal stromal cells (MSCs) have gained special relevance in bone tissue regenerative applications. MSCs have been isolated from different depots, with adipose tissue being acknowledged as one of the most convenient sources, given the wide availability, high cellular yield, and obtainability. Recently, the falciform ligament (FL) has been regarded as a potential depot for adipose tissue-derived stromal cells (FL-ADSCs) isolation. Nonetheless, the osteogenic capability of FL-ADSCs has not been previously characterized. Thus, the present study aimed the detailed characterization of FL-ADSCs' functionality upon osteogenic induction through a classic (dexamethasone-based-DEX) or an innovative strategy with retinoic acid (RA) in a comparative approach with ADSCs from a control visceral region. Cultures were characterized for cell proliferation, metabolic activity, cellular morphology, fluorescent cytoskeletal and mitochondrial organization, and osteogenic activity-gene expression analysis and cytochemical staining. FL-derived populations expressed significantly higher levels of osteogenic genes and cytochemical markers, particularly with DEX induction, as compared to control ADSCs that were more responsive to RA. FL-ADSCs were identified as a potential source for bone regenerative applications, given the heightened osteogenic functionality. Furthermore, data highlighted the importance of the selection of the most adequate osteogenic-inducing program concerning the specificities of the basal cell population.
Collapse
|
4
|
Escobar LM, Escobar JD, Bendahan Z, Castellanos JE. Retinoic and ascorbic acids induce osteoblast differentiation from human dental pulp mesenchymal stem cells. J Oral Biol Craniofac Res 2021; 11:143-148. [PMID: 33537186 DOI: 10.1016/j.jobcr.2021.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/01/2021] [Indexed: 10/22/2022] Open
Abstract
Previous studies have suggested an important role of retinoic acid (RA) and ascorbic acid (AA) in the stimulation of osteoblastic differentiation; however, the function of RA and AA in the osteogenic differentiation from human dental pulp (hDPSCs) remains unclear. Objective This in vitro study investigated the effects of RA and AA on the differentiation of osteoblast from hDPSCs. Methods hDPSCs were treated with different doses of RA and AA, separately or in combination (RA + AA). Morphology and cell proliferation were assessed. Osteoblast differentiation was evaluated by alizarin red, alkaline phosphatase staining, and RUNX2 gene expression. Results A significant reduction was observed in the number of cells treated with RA (26%) and RA + AA (30%) after 12 days of treatment. AA treatment alone induced a 12% reduction in the number of cells. Morphologically, the cells treated with RA and RA + AA were larger and more elongated than the control cells. A mesh pattern was observed in cells treated with AA. Numerous calcified nodules were present in cells treated with RA, AA, and RA + AA. This coincided with increased expression of RUNX2 and high alkaline phosphatase staining levels. Conclusions hDPSCs treated with RA and RA + AA showed significant reduction in proliferation, detectable morphological changes, and expression of the key differentiation gene RUNX2, consistent with an osteoblast phenotype. AA induced morphological changes and early formation of calcified nodules. RA had a predominant effect when AA and RA were used together.
Collapse
Affiliation(s)
- Lina M Escobar
- Grupo de Ortodoncia Actualizada en Investigación ORTOACTIV Facultad de Odontología, Universidad Nacional de Colombia, Bogotá, Colombia.,Grupo de Investigaciones Básicas y Aplicadas en Odontología, IBAPO Facultad de Odontología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - José Daniel Escobar
- Grupo de Ortodoncia Actualizada en Investigación ORTOACTIV Facultad de Odontología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Zita Bendahan
- Unidad de Manejo Integral de Malformaciones Craneofaciales UMIMC, Facultad de Odontología, Universidad El Bosque, Bogotá, Colombia
| | - Jaime E Castellanos
- Grupo de Investigaciones Básicas y Aplicadas en Odontología, IBAPO Facultad de Odontología, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
5
|
Zhang W, Shen Z, Xing Y, Zhao H, Liang Y, Chen J, Zhong X, Shi L, Wan X, Zhou J, Tang S. MiR-106a-5p modulates apoptosis and metabonomics changes by TGF-β/Smad signaling pathway in cleft palate. Exp Cell Res 2020; 386:111734. [PMID: 31770533 DOI: 10.1016/j.yexcr.2019.111734] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 11/11/2019] [Accepted: 11/16/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND The molecular mechanisms of abnormal palatogenesis were investigated in this study. A key regulator, miR-106a-5p, and its target pathway were analyzed. OBJECTIVES This research is trying to clarify the underlying mechanism of the modulation of miRNA transcription during the formation of cleft palate by 7T and 9.4T NMR metabolomic platforms. METHOD Differentially expressed miRNAs and mRNAs were analyzed by microarray analysis and verified by qRT-PCR. The protein expression in TGFβ signaling pathways were analyzed by Western Blotting. The relationship between miR-106a-5p and TGFβ were analyzed by luciferase reporter assay. Cell apoptosis were analyzed by flow cytometer. And finally, the metabonomics were analyzed by NMR and multivariate data analysis models (MVDA). RESULTS The expression of miR-106a-5p increased in cleft palatal tissue and negatively correlated with the protein level of Tgfbr2. The luciferase assay further proved that the tgfbr2 was a direct target of miR-106a-5p. In another aspect, miR-106a-5p increased apoptosis level in palatal mesenchymal cells, possibly because its inhibition of TGFβ signaling pathway. Moreover, low cholesterol and choline levels with high citric acid and lipid levels were observed by 7T and 9.4T NMR metabonomic analysis, which inferred the disorder of cell membrane synthesis in cleft palate formation. Furthermore, transformation from choline to phosphatidylcholine regulated by miR-106a-5p was also disrupted, resulting in phosphatidic choline synthesis disorder and reduced cell membrane synthesis. CONCLUSIONS The regulatory mechanism of cleft palate was studied at transcriptional and metabolomics levels, which may provide important information in understanding the primary cause of this abnormality.
Collapse
Affiliation(s)
- Wancong Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Zhiwei Shen
- Department of Medical Imaging, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yue Xing
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Hanxing Zhao
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Yan Liang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China; University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, T6G 2E1, Canada
| | - Jiasheng Chen
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaoping Zhong
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Lungang Shi
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Xinhong Wan
- Shenzhen Longgang District Maternity & Child Healthcare Hospital, Central Laboratory Shenzhen, Guangdong, China
| | - Jianda Zhou
- Central South University Third Xiangya Hospital, Department of Plastic and Reconstructive Surgery Changsha, Hunan, China
| | - Shijie Tang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
6
|
Roa LA, Bloemen M, Carels CEL, Wagener FADTG, Von den Hoff JW. Retinoic acid disrupts osteogenesis in pre-osteoblasts by down-regulating WNT signaling. Int J Biochem Cell Biol 2019; 116:105597. [PMID: 31479736 DOI: 10.1016/j.biocel.2019.105597] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/23/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022]
Abstract
The skull bones are formed by osteoblasts by intramembranous ossification. WNT signaling is a regulator of bone formation. Retinoic Acid (RA) act as a teratogen affecting craniofacial development. We evaluated the effects of RA on the differentiation and mineralization of MC-3T3 cells, and on the expression of WNT components. MC-3T3 were cultured with or without 0.5 μM RA in osteogenic medium and mineralization was assessed by alizarin red staining. The expression of osteogenic marker genes and WNT genes was evaluated at several time points up to 28 days. RA significantly inhibited MC-3T3 mineralization (p < 0.01), without affecting ALP activity or Alp gene expression. Both parameters gradually increased in time. During culture, RA stimulated Runx2 expression at 14 and 28 days compared to the respective controls (p < 0.05). Also, RA significantly reduced Sp7 expression at days 14 and 21 (p < 0.05). Simultaneously, RA significantly reduced the expression of the WNT genes cMyc, Lef1, Lrp5, Lrp6 and Wnt11 compared to the controls (p < 0.05). In contrast, RA increased the expression of the WNT inhibitors Dkk1 at day 21 and Dkk2 at days 14 and 21 (p < 0.01). Our data indicate that RA disrupts osteogenic differentiation and mineralization by inhibiting WNT signaling.
Collapse
Affiliation(s)
- Laury A Roa
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Philips van Leydenlaan 25, Nijmegen, the Netherlands
| | - Marjon Bloemen
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Philips van Leydenlaan 25, Nijmegen, the Netherlands
| | - Carine E L Carels
- Department of Oral Health Sciences, University KU Leuven. Herestraat 49, Leuven, Belgium
| | - Frank A D T G Wagener
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Philips van Leydenlaan 25, Nijmegen, the Netherlands
| | - Johannes W Von den Hoff
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Philips van Leydenlaan 25, Nijmegen, the Netherlands.
| |
Collapse
|
7
|
Ahmed MF, El-Sayed AK, Chen H, Zhao R, Yusuf MS, Zuo Q, Zhang Y, Li B. Comparison between curcumin and all-trans retinoic acid in the osteogenic differentiation of mouse bone marrow mesenchymal stem cells. Exp Ther Med 2019; 17:4154-4166. [PMID: 30988793 PMCID: PMC6447915 DOI: 10.3892/etm.2019.7414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 03/06/2019] [Indexed: 12/18/2022] Open
Abstract
The use of bone marrow mesenchymal stem cells (BMSCs) has great potential in cell therapy, particularly in the orthopedic field. BMSCs represent a valuable renewable cell source that have been successfully utilized to treat damaged skeletal tissue and bone defects. BMSCs can be induced to differentiate into osteogenic lineages via the addition of inducers to the growth medium. The present study examined the effects of all-trans retinoic acid (ATRA) and curcumin on the osteogenic differentiation of mouse BMSCs. Morphological changes, the expression levels of the bone-associated gene markers bone morphogenetic protein 2, runt-related transcription factor and osterix during differentiation, an in vitro mineralization assay, and changes in osteocalcin expression revealed that curcumin supplementation promoted the osteogenic differentiation of BMSCs. By contrast, the application of ATRA increased osteogenic differentiation during the early stages, but during the later stages, it decreased the mineralization of differentiated cells. In addition, to the best of our knowledge, the present study is the first to examine the effect of curcumin on the osteogenic potency of mouse embryonic fibroblasts (MEFs) after reprogramming with human lim mineralization protein (hLMP-3), which is a positive osteogenic regulator. The results revealed that curcumin-supplemented culture medium increased hLMP-3 osteogenic potency compared with that of MEFs cultured in the non-supplemented medium. The present results demonstrate that enrichment of the osteogenic culture medium with curcumin, a natural osteogenic inducer, increased the osteogenic differentiation capacity of BMSCs as well as that of MEFs reprogrammed with hLMP-3.
Collapse
Affiliation(s)
- Mahmoud F Ahmed
- Key Laboratory of Animal Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,College of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | | | - Hao Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Ruifeng Zhao
- Key Laboratory of Animal Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Mohamed S Yusuf
- College of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Qisheng Zuo
- Key Laboratory of Animal Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Yani Zhang
- Key Laboratory of Animal Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Bichun Li
- Key Laboratory of Animal Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| |
Collapse
|
8
|
Liu Y, Ma X, Guo J, Lin Z, Zhou M, Bi W, Liu J, Wang J, Lu H, Wu G. All-trans retinoic acid can antagonize osteoblastogenesis induced by different BMPs irrespective of their dimerization types and dose-efficiencies. Drug Des Devel Ther 2018; 12:3419-3430. [PMID: 30349195 PMCID: PMC6186890 DOI: 10.2147/dddt.s178190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction Alcoholism can lead to low mineral density, compromised regenerative bone capacity and delayed osteointegration of dental implants. This may be partially attributed to the inhibitive effect of all-trans retinoic acid (ATRA), a metabolite of alcohol, on osteoblastogenesis. Our previous studies demonstrated that heterodimeric bone morphogenetic protein 2/7 (BMP2/7) was a more potent BMP than homodimeric BMP2 or BMP7, and could antagonize the inhibitive effect of ATRA to rescue osteoblastogenesis. Materials and methods In this study, we compared the effectiveness of BMP2/7, BMP2 and BMP7 in restoring osteoblastogenesis of murine preosteoblasts upon inhibition with 1 µM ATRA, and we further analyzed the potential mechanisms. We measured the following parameters: cell viability, ALP, OCN, mineralization, the expression of osteogenic differentiation marker genes (Collagen I, ALP and OCN) and the expression of BMP signaling key genes (Dlx5, Runx2, Osterix and Smad1). Results BMP2/7 treatment alone induced significantly higher osteoblastogenesis compared to BMP2 and BMP7. When cells were treated by ATRA, BMP2/7 was superior only in rescuing cell viability and ALP activity, compared to BMP2 or BMP7. However, BMP2/7 was not superior to BMP2 or BMP7 in restoring OCN expression and extracellular mineralized nodules, or in rescuing expression of two key osteogenic genes, Dlx5 and Runx2. Irrespective of their dimeric types or potency, the selected BMPs could antagonize the inhibitory effect of ATRA on osteoblastogenesis. Conclusion The presence of ATRA, BMP2/7 still induced significantly higher cell viability and early differentiation than the homodimers. However, ATRA significantly attenuated the advantages of BMP2/7 in inducing late and final osteoblastogenic differentiation over the homodimers.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510140, China
| | - Xiaoqing Ma
- Shanghai Xuhui District Dental Center, Shanghai 200032, China
| | - Jing Guo
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510140, China
| | - Zhen Lin
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Miao Zhou
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510140, China
| | - Wenjuan Bi
- College of Stomatology, North China University of Science and Technology, Tangshan 063000, China
| | - Jinsong Liu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Jingxiao Wang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Haiping Lu
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou 310053, China,
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081LA Amsterdam, the Netherlands,
| |
Collapse
|
9
|
Chen X, Wang L, Zhao K, Wang H. Osteocytogenesis: Roles of Physicochemical Factors, Collagen Cleavage, and Exogenous Molecules. TISSUE ENGINEERING PART B-REVIEWS 2018; 24:215-225. [PMID: 29304315 DOI: 10.1089/ten.teb.2017.0378] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Osteocytes, the most abundant cell type in mammalian bone, are generally considered as the terminally differentiated cells of osteoblasts that are progressively self-buried or passively embedded in bone matrix. Emerging evidence reveals the essential functions of osteocytes in bone homeostasis and mechanotransduction. However, our knowledge on osteocytes, especially their formation, remains scarce. In this regard, the current review mainly focuses on several key factors that drive the osteocytic differentiation of osteoblasts, that is, osteocytogenesis. Available literature has demonstrated the involvement of physicochemical factors such as matrix composition, oxygen tension, and mechanical stress in the osteoblast-to-osteocyte transition. During cell migration and matrix remodeling, the matrix metalloproteinase-dependent collagen cleavage would play an "active" role in maturation and maintenance of the osteocytes. Besides, some in vitro methodologies are also established to induce the transformation of osteoblastic cell lines and primary mesenchymal cells to preosteocytes through cell transfection or addition of exogenous molecules (e.g., fibroblast growth factor-2, retinoic acid), which could potentiate the effort to form functional bone substitutes through elevated osteocytogenesis. Thus, advances of new technologies would enable comprehensive and in-depth understanding of osteocytes and their development, which in turn help promote the research on osteocyte biology and osteopathology.
Collapse
Affiliation(s)
- Xuening Chen
- 1 National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, China
| | - Lichen Wang
- 2 Department of Biomedical Engineering, Chemistry and Biological Sciences, Stevens Institute of Technology , Hoboken, New Jersey
| | - Kaitao Zhao
- 2 Department of Biomedical Engineering, Chemistry and Biological Sciences, Stevens Institute of Technology , Hoboken, New Jersey
| | - Hongjun Wang
- 2 Department of Biomedical Engineering, Chemistry and Biological Sciences, Stevens Institute of Technology , Hoboken, New Jersey
| |
Collapse
|
10
|
Shao Y, Chen QZ, Zeng YH, Li Y, Ren WY, Zhou LY, Liu RX, Wu K, Yang JQ, Deng ZL, Yu Y, Sun WJ, He BC. All-trans retinoic acid shifts rosiglitazone-induced adipogenic differentiation to osteogenic differentiation in mouse embryonic fibroblasts. Int J Mol Med 2016; 38:1693-1702. [PMID: 27779644 PMCID: PMC5117762 DOI: 10.3892/ijmm.2016.2782] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 10/14/2016] [Indexed: 12/19/2022] Open
Abstract
Rosiglitazone (RSG) is a potent drug used in the treatment of insulin resistance; however, it is associated with marked skeletal toxicity. RSG-induced osteoporosis may contribute to the promotion of adipogenic differentiation at the expense of osteogenic differentiation in bone marrow stromal cells. The aim of this study was to investigate whether RSG-induced bone toxicity can be reversed by combined treatment with all-trans retinoic acid (ATRA). We examined different osteogenic markers in mouse embryonic fibroblasts (MEFs) following treatment with RSG, ATRA, or RSG and ATRA in combination. We examined the effects of RSG and/or ATRA on ectopic bone formation, and dissected the possible molecular mechanisms underlying this process. We found that ATRA or RSG both induced alkaline phosphatase (ALP) activity in the MEFs, and that the ATRA-induced ALP activity was enhanced by RSG and vice versa. However, only the combination of RSG and ATRA increased the expression of osteopontin and osteocalcin, promoted matrix mineralization, and induced ectopic ossification in MEFs. Mechanistically, we found that the osteogenic differentiation induced by the combination of RSG and ATRA may be mediated partly by suppressing RSG-induced adipogenic differentiation and activating bone morphogenetic protein (BMP)/Smad signaling. On the whole, our findings demonstrate that RSG in combination with ATRA promotes the commitment of MEFs to the osteoblast lineage. Thus, the combination of these two agents may prove to be a promising and novel therapeutic regimen for insulin resistance without skeletal toxicity. It may also be a better strategy with which to prevent RSG-induced osteoporosis.
Collapse
Affiliation(s)
- Ying Shao
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, Sichuan 400016, P.R. China
| | - Qian-Zhao Chen
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, Sichuan 400016, P.R. China
| | - Yu-Hua Zeng
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, Sichuan 400016, P.R. China
| | - Yang Li
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, Sichuan 400016, P.R. China
| | - Wen-Yan Ren
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, Sichuan 400016, P.R. China
| | - Lin-Yun Zhou
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, Sichuan 400016, P.R. China
| | - Rong-Xin Liu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, Sichuan 400016, P.R. China
| | - Ke Wu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, Sichuan 400016, P.R. China
| | - Jun-Qing Yang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, Sichuan 400016, P.R. China
| | - Zhong-Liang Deng
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, Sichuan 400016, P.R. China
| | - Yu Yu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, Sichuan 400016, P.R. China
| | - Wen-Juan Sun
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, Sichuan 400016, P.R. China
| | - Bai-Cheng He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, Sichuan 400016, P.R. China
| |
Collapse
|
11
|
Green AC, Martin TJ, Purton LE. The role of vitamin A and retinoic acid receptor signaling in post-natal maintenance of bone. J Steroid Biochem Mol Biol 2016; 155:135-46. [PMID: 26435449 DOI: 10.1016/j.jsbmb.2015.09.036] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/24/2015] [Accepted: 09/26/2015] [Indexed: 12/11/2022]
Abstract
Vitamin A and retinoid derivatives are recognized as morphogens that govern body patterning and skeletogenesis, producing profound defects when in excess. In post-natal bone, both high and low levels of vitamin A are associated with poor bone heath and elevated risk of fractures. Despite this, the precise mechanism of how retinoids induce post-natal bone changes remains elusive. Numerous studies have been performed to discover how retinoids induce these changes, revealing a complex morphogenic regulation of bone through interplay of different cell types. This review will discuss the direct and indirect effects of retinoids on mediators of bone turnover focusing on differentiation and activity of osteoblasts and osteoclasts and explains why some discrepancies in this field have arisen. Importantly, the overall effect of retinoids on the skeleton is highly site-specific, likely due to differential regulation of osteoblasts and osteoclasts at trabecular vs. cortical periosteal and endosteal bone surfaces. Further investigation is required to discover the direct gene targets of retinoic acid receptors (RARs) and molecular mechanisms through which these changes occur. A clear role for RARs in regulating bone is now accepted and the therapeutic potential of retinoids in treating bone diseases has been established.
Collapse
Affiliation(s)
- Alanna C Green
- St Vincent's Institute, Fitzroy, Victoria 3065, Australia; Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Victoria 3065, Australia.
| | - T John Martin
- St Vincent's Institute, Fitzroy, Victoria 3065, Australia; Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Victoria 3065, Australia
| | - Louise E Purton
- St Vincent's Institute, Fitzroy, Victoria 3065, Australia; Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Victoria 3065, Australia
| |
Collapse
|
12
|
All-trans retinoic acid modulates bone morphogenic protein 9-induced osteogenesis and adipogenesis of preadipocytes through BMP/Smad and Wnt/β-catenin signaling pathways. Int J Biochem Cell Biol 2013; 47:47-56. [PMID: 24300824 DOI: 10.1016/j.biocel.2013.11.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 11/08/2013] [Accepted: 11/23/2013] [Indexed: 01/05/2023]
Abstract
It is known that excessive adipogenesis contributes to osteoporosis, suggesting that trans-differentiation of adipogenic committed preadipocytes into osteoblasts may be a potential therapeutical approach for osteoporosis. We explored whether bone morphogenic protein 9 (BMP9) could induce 3T3-L1 preadipocytes to trans-differentiate into osteoblasts. BMP9 effectively increased expression of osteogenic markers and promoted mineralization in preadipocytes. However, BMP9 also led to adipogenic differentiation of preadipocytes, as evidenced by increased lipid accumulation and up-regulation of adipogenic transcription factors. In order to regulate the switch between osetogenesis and adipogenesis, we evaluated the effect of all-trans retinoic acid (ATRA) on BMP9-induced differentiation of preadipocytes. We found that ATRA enhanced BMP9-induced osteogenic differentiation and blocked BMP9-induced adipogenic differentiation both in vitro and in vivo. Mechanistically, ATRA was shown to elevate BMP9 expression and activate BMP/Smad signaling. Additionally, BMP9 and ATRA exerted a synergistic effect on activation of Wnt/β-catenin signaling. Knockdown of β-catenin abolished the stimulatory effect of ATRA on BMP9-induced alkaline phosphatase activity and reversed the inhibitory effect of ATRA on BMP9-induced adipogenesis in preadipocytes. Furthermore, ATRA and BMP9 synergistically repressed glycogen synthase kinase 3β (GSK3β) activity and promoted Akt phosphorylation, and inhibited expression of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) that antagonizes phosphatidylinositol-3-kinase (PI3K) function, suggesting that Wnt/β-catenin signaling was activated at least partly through PI3K/Akt/GSK3β pathway. Collectively, ATRA mediated BMP9-induced osteogenic or adipogenic differentiation of 3T3-L1 preadipocytes by BMP/Smad and Wnt/β-catenin signaling. The combination of BMP9 and ATRA may be explored as an effective therapeutic strategy for osteoporosis.
Collapse
|
13
|
Heterodimeric BMP-2/7 antagonizes the inhibition of all-trans retinoic acid and promotes the osteoblastogenesis. PLoS One 2013; 8:e78198. [PMID: 24205156 PMCID: PMC3813516 DOI: 10.1371/journal.pone.0078198] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/09/2013] [Indexed: 12/31/2022] Open
Abstract
Objectives Hypervitaminosis A and alcoholism can result in a low mineral density and compromised regenerative capacity of bone, thus delaying implant osteointegration. The inhibitory effect of all-trans retinoic acid on osteoblastogenesis is considered to be one of the mechanisms. We hypothesized that heterodimeric bone morphogenetic protein-2/7 could antagonize all-trans retinoic acid and enhance osteoblastogenesis, with an aim to accelerate and enhance bone regeneration and implant osteointegration. Materials and Methods We applied 5 ng/ml or 50 ng/ml bone morphogenetic protein-2/7 to restore the osteoblastogenesis of pre-osteoblasts (MC3T3-E1 cell line) that was inhibited by 1 µM all-trans retinoic acid. We evaluated the efficacy by assessing cell numbers (proliferation), alkaline phosphatase activity (a marker for early differentiation), osteocalcin (a marker for late differentiation), calcium deposition (a marker for final mineralization) and the expression of osteoblastogenic genes (such as Runx2, Collagen Ia, alkaline phosphatase and osteocalcin) at different time points. Results All-trans retinoic acid significantly inhibited the expression of all the tested osteoblastogenic genes and proteins except alkaline phosphatase activity. In the presence of ATRA, 50 ng/ml bone morphogenetic protein-2/7 not only completely restored but also significantly enhanced all the osteoblastogenic genes and proteins. On the 28th day, mineralization was completely inhibited by all-trans retinoic acid. In contrast, 50 ng/ml BMP-2/7 could antagonize ATRA and significantly enhance the mineralization about 2.5 folds in comparison with the control treatment (no ATRA, no BMP2/7). Conclusions Heterodimeric bone morphogenetic protein-2/7 bears a promising application potential to significantly promote bone regeneration and implant osteointegration for the patients with hypervitaminosis A and alcoholism.
Collapse
|
14
|
Bi W, Gu Z, Zheng Y, Wang L, Guo J, Wu G. Antagonistic and synergistic effects of bone morphogenetic protein 2/7 and all-trans retinoic acid on the osteogenic differentiation of rat bone marrow stromal cells. Dev Growth Differ 2013; 55:744-54. [PMID: 24111806 DOI: 10.1111/dgd.12090] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/07/2013] [Accepted: 08/24/2013] [Indexed: 11/29/2022]
Abstract
The osteogenesis of bone marrow stromal cells (BMSCs) is of paramount importance for the repair of large-size bone defects, which may be compromised by the dietary-accumulated all-trans retinoic acid (ATRA). We have shown that heterodimeric bone morphogenetic protein 2/7 (BMP2/7) could induce bone regeneration in a significantly higher dose-efficiency in comparison with homodimeric BMPs. In this study, we evaluated the effects of ATRA and BMP2/7 on the proliferation, differentiation, mineralization and osteogenic genes. ATRA and BMP2/7 exhibited both antagonistic and synergistic effects on the osteogenesis of BMSCs. ATRA significantly inhibited proliferation and expression of osteocalcin but enhanced the activity of alkaline phosphatase of BMSCs. On day 21, 50 ng/mL BMP2/7 could antagonize the inhibitive effects of ATRA and significantly enhance osteogenesis of BMSCs. These findings suggested a promising application potential of heterodimeric BMP2/7 in clinic to promote bone regeneration for the cases with dietary accumulated ATRA.
Collapse
Affiliation(s)
- Wenjuan Bi
- School/Hospital of Stomatology, Zhejiang University, Yan'an St. 395, Hangzhou, Zhejiang, 310006, China
| | - Zhiyuan Gu
- School/Hospital of Stomatology, Zhejiang University, Yan'an St. 395, Hangzhou, Zhejiang, 310006, China.,School of Stomatology, Hangzhou Dental Hospital, Zhejiang Chinese Medical University, 97 Mailbox, Binwen Road 548, Binjiang District, Hangzhou, 310053, China
| | - Yuanna Zheng
- School of Stomatology, Hangzhou Dental Hospital, Zhejiang Chinese Medical University, 97 Mailbox, Binwen Road 548, Binjiang District, Hangzhou, 310053, China
| | - Limin Wang
- Department of Stomatology, No. 117th Hospital of People's Liberation Army, Airport Road 40, Hangzhou, Zhejiang, 310004, China
| | - Jing Guo
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU-University of Amsterdam, Research Institute MOVE, VU University, Gustav Mahlerlaan 3004, Amsterdam, 1018LA, the Netherlands
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU-University of Amsterdam, Research Institute MOVE, VU University, Gustav Mahlerlaan 3004, Amsterdam, 1018LA, the Netherlands
| |
Collapse
|
15
|
Nelson ER, Levi B, Longaker MT. Commentary on role of apoptosis in retinoic Acid-induced cleft palate. J Craniofac Surg 2011; 22:1572-3. [PMID: 21959389 DOI: 10.1097/scs.0b013e31822e5ea6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Emily R Nelson
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, 257 Campus Dr, Stanford, CA 94305, USA
| | | | | |
Collapse
|
16
|
Differences in osteogenic differentiation of adipose-derived stromal cells from murine, canine, and human sources in vitro and in vivo. Plast Reconstr Surg 2011; 128:373-386. [PMID: 21788829 DOI: 10.1097/prs.0b013e31821e6e49] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Given the diversity of species from which adipose-derived stromal cells are derived and studied, the authors set out to delineate the differences in the basic cell biology that may exist across species. Briefly, the authors found that significant differences exist with regard to proliferation and osteogenic potentials of adipose-derived stromal cells across species. METHODS Adipose-derived stromal cells were derived from human, mouse, and canine sources as previously described. Retinoic acid, insulin-like growth factor-1, and bone morphogenetic protein-2 were added to culture medium; proliferation and osteogenic differentiation were assessed by standardized assays. In vivo methods included seeding 150,000 adipose-derived stromal cells on a biomimetic scaffold and analyzing healing by micro-computed tomography and histology. RESULTS Adipose-derived stromal cells from all species had the capability to undergo osteogenic differentiation. Canine adipose-derived stromal cells were the most proliferative, whereas human adipose-derived stromal cells were the most osteogenic (p < 0.05). Human cells, however, had the most significant osteogenic response to osteogenic media. Retinoic acid stimulated osteogenesis in mouse and canine cells but not in human adipose-derived stromal cells. Insulin-like growth factor-1 enhanced osteogenesis across all species, most notably in human- and canine-derived cells. CONCLUSIONS Adipose-derived stromal cells derived from human, mouse, and canine all have the capacity to undergo osteogenic differentiation. Canine adipose-derived stromal cells appear to be the most proliferative, whereas human adipose-derived stromal cells appear to be the most osteogenic. Different cytokines and chemicals can be used to modulate this osteogenic response. These results are promising as attempts are made to optimize tissue-engineered bone using adipose-derived stromal cells.
Collapse
|