1
|
Thielen E, Oria M, Watanabe-Chailland M, Lampe K, Romick-Rosendale L, Peiro JL. Non-Targeted Metabolic Profiling of Cerebellum in Spina Bifida Fetal Rats. Metabolites 2023; 13:metabo13050670. [PMID: 37233711 DOI: 10.3390/metabo13050670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Spina bifida, known more commonly as myelomeningocele, is a neural tube defect that results in herniation of the cerebellum through the foramen magnum into the central canal as part of the Chiari II malformation. Effects stemming from the herniated cerebellum and its metabolic profile have not been extensively studied. The objective of this study is to examine the metabolic effects of this disease on the cerebellum in utero through the utilization of a retinoid acid-induced Spina bifida rat model. Analysis of this model at mid-late (day 15) and term (day 20) of gestation in comparison to both non-exposed and retinoic acid-exposed non-myelomeningocele controls, the observed metabolic changes suggest that mechanisms of oxidative stress and energy depletion are at play in this neuro tissue. These notable mechanisms are likely to result in further damage to neural tissue as the fetus grows and the compressed cerebellum develops and herniates more due to myelomeningocele.
Collapse
Affiliation(s)
- Evan Thielen
- The Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
| | - Marc Oria
- The Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
- Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Miki Watanabe-Chailland
- NMR-Based Metabolomics Core, Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kristin Lampe
- The Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
| | - Lindsey Romick-Rosendale
- NMR-Based Metabolomics Core, Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jose L Peiro
- The Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
- Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
2
|
Vaughn A, DeHoog RJ, Eberlin LS, Appling DR. Metabotype analysis of Mthfd1l-null mouse embryos using desorption electrospray ionization mass spectrometry imaging. Anal Bioanal Chem 2021; 413:3573-3582. [PMID: 33829277 DOI: 10.1007/s00216-021-03308-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 01/07/2023]
Abstract
Mammalian folate-dependent one-carbon (1C) metabolism provides the building blocks essential during development via amino acid interconversion, methyl-donor production, regeneration of redox factors, and de novo purine and thymidylate synthesis. Folate supplementation prevents many neural tube defects (NTDs) that occur during the embryonic process of neurulation. The mechanism by which folate functions during neurulation is not well understood, and not all NTDs are preventable by folate supplementation. Mthfd1l is a mitochondrial 1C metabolism enzyme that produces formate, a 1C donor that fuels biosynthesis and the methyl cycle in the cytoplasm. Homozygous deletion of the Mthfd1l gene in mice (Mthfd1lz/z) causes embryonic lethality, developmental delay, and folate-resistant NTDs. These mice also have defects in cranial mesenchyme formation. In this work, mass spectrometry imaging was used to obtain ion maps of the cranial mesenchyme that identified the spatial distribution and relative abundance of metabolites in wild-type and Mthfd1lz/z embryos. The relative abundances of purine and thymidylate derivatives, as well as amino acids, were diminished in the cranial mesenchyme of Mthfd1lz/z embryos. Loss of Mthfd1l activity in this region also led to abnormal levels of methionine and dysregulated energy metabolism. These alterations in metabolism suggest possible approaches to preventing NTDs in humans.
Collapse
Affiliation(s)
- Amanda Vaughn
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Rachel J DeHoog
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Livia S Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Dean R Appling
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
3
|
Lin Y, Yu J, Wu J, Wang S, Zhang T. Abnormal level of CUL4B-mediated histone H2A ubiquitination causes disruptive HOX gene expression. Epigenetics Chromatin 2019; 12:22. [PMID: 30992047 PMCID: PMC6466687 DOI: 10.1186/s13072-019-0268-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/04/2019] [Indexed: 12/17/2022] Open
Abstract
Background Neural tube defects (NTDs) are common birth defects involving the central nervous system. Recent studies on the etiology of human NTDs have raised the possibility that epigenetic regulation could be involved in determining susceptibility to them. Results Here, we show that the H2AK119ub1 E3 ligase CUL4B is required for the activation of retinoic acid (RA)-inducible developmentally critical homeobox (HOX) genes in NT2/D1 embryonal carcinoma cells. RA treatment led to attenuation of H2AK119ub1 due to decrease in CUL4B, further affecting HOX gene regulation. Furthermore, we found that CUL4B interacted directly with RORγ and negatively regulated its transcriptional activity. Interestingly, knockdown of RORγ decreased the expression of HOX genes along with increased H2AK119ub1 occupancy levels, at HOX gene sites in N2/D1 cells. In addition, upregulation of HOX genes was observed along with lower levels of CUL4B-mediated H2AK119ub1 in both mouse and human anencephaly NTD cases. Notably, the expression of HOXA10 genes was negatively correlated with CUL4B levels in human anencephaly NTD cases. Conclusions Our results indicate that abnormal HOX gene expression induced by aberrant CUL4B-mediated H2AK119ub1 levels may be a risk factor for NTDs, and highlight the need for further analysis of genome-wide epigenetic modifications in NTDs. Electronic supplementary material The online version of this article (10.1186/s13072-019-0268-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ye Lin
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.,Graduate Schools of Peking Union Medical College, Beijing, 100730, China
| | - Juan Yu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jianxin Wu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.,Graduate Schools of Peking Union Medical College, Beijing, 100730, China
| | - Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China. .,Institute of Basic Medical Sciences, Chinese Academy of Medical Science, Beijing, 100730, China.
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China. .,Graduate Schools of Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
4
|
Untargeted Metabolite Profiling of Cerebrospinal Fluid Uncovers Biomarkers for Severity of Late Infantile Neuronal Ceroid Lipofuscinosis (CLN2, Batten Disease). Sci Rep 2018; 8:15229. [PMID: 30323181 PMCID: PMC6189193 DOI: 10.1038/s41598-018-33449-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022] Open
Abstract
Late infantile neuronal ceroid lipofuscinosis (CLN2 disease) is a rare lysosomal storage disorder caused by a monogenetic deficiency of tripeptidyl peptidase-1 (TPP1). Despite knowledge that lipofuscin is the hallmark disease product, the relevant TPP1 substrate and its role in neuronal physiology/pathology is unknown. We hypothesized that untargeted metabolite profiling of cerebrospinal fluid (CSF) could be used as an effective tool to identify disease-associated metabolic disruptions in CLN2 disease, offering the potential to identify biomarkers that inform on disease severity and progression. Accordingly, a mass spectrometry-based untargeted metabolite profiling approach was employed to differentiate CSF from normal vs. CLN2 deficient individuals. Of 1,433 metabolite features surveyed, 29 linearly correlated with currently employed disease severity scores. With tandem mass spectrometry 8 distinct metabolite identities were structurally confirmed based on retention time and fragmentation pattern matches, vs. standards. These putative CLN2 biomarkers include 7 acetylated species - all attenuated in CLN2 compared to controls. Because acetate is the major bioenergetic fuel for support of mitochondrial respiration, deficient acetylated species in CSF suggests a brain energy defect that may drive neurodegeneration. Targeted analysis of these metabolites in CSF of CLN2 patients offers a powerful new approach for monitoring CLN2 disease progression and response to therapy.
Collapse
|
5
|
Akimova D, Wlodarczyk BJ, Lin Y, Ross ME, Finnell RH, Chen Q, Gross SS. Metabolite profiling of whole murine embryos reveals metabolic perturbations associated with maternal valproate-induced neural tube closure defects. Birth Defects Res 2018; 109:106-119. [PMID: 27860192 DOI: 10.1002/bdra.23583] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 11/07/2022]
Abstract
BACKGROUND Valproic acid (VPA) is prescribed therapeutically for multiple conditions, including epilepsy. When taken during pregnancy, VPA is teratogenic, increasing the risk of several birth and developmental defects including neural tube defects (NTDs). The mechanism by which VPA causes NTDs remains controversial and how VPA interacts with folic acid (FA), a vitamin commonly recommended for the prevention of NTDs, remains uncertain. We sought to address both questions by applying untargeted metabolite profiling analysis to neural tube closure (NTC) stage mouse embryos. METHODS Pregnant SWV dams on either a 2 ppm or 10 ppm FA supplemented diet were injected with a single dose of VPA on gestational day E8.5. On day E9.5, the mouse embryos were collected and evaluated for NTC status. Liquid chromatography coupled to mass spectrometry metabolomics analysis was performed to compare metabolite profiles of NTD-affected VPA-exposed whole mouse embryos with profiles from embryos that underwent normal NTC from control dams. RESULTS NTDs were observed in all embryos from VPA-treated dams and penetrance was not diminished by dietary FA supplementation. The most profound metabolic perturbations were found in the 10ppm FA VPA-exposed mouse embryos, compared with the other three treatment groups. Affected metabolites included amino acids, nucleobases and related phosphorylated nucleotides, lipids, and carnitines. CONCLUSION Maternal VPA treatment markedly perturbed purine and pyrimidine metabolism in E9.5 embryos. In combination with a high FA diet, VPA treatment resulted in gross metabolic changes, likely caused by a multiplicity of mechanisms, including an apparent disruption of mitochondrial beta-oxidation. Birth Defects Research 109:106-119, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Darya Akimova
- Department of Pharmacology, Weill Cornell Medical College, New York, New York.,Program in Pharmacology, Weill Cornell Medical College, New York, New York
| | - Bogdan J Wlodarczyk
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas
| | - Ying Lin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York
| | - M Elizabeth Ross
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York
| | - Richard H Finnell
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medical College, New York, New York
| | - Steven S Gross
- Department of Pharmacology, Weill Cornell Medical College, New York, New York
| |
Collapse
|
6
|
Wan C, Liu X, Bai B, Cao H, Li H, Zhang Q. Regulation of the expression of tumor necrosis factor‑related genes by abnormal histone H3K27 acetylation: Implications for neural tube defects. Mol Med Rep 2018; 17:8031-8038. [PMID: 29693124 PMCID: PMC5983976 DOI: 10.3892/mmr.2018.8900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 06/20/2017] [Indexed: 11/20/2022] Open
Abstract
The association between apoptosis and neural tube defects (NTDs) is recognized as important, however, the precise link remains to be elucidated. Epigenetic modifications in human NTDs have been detected previously. In the present study, the occurrence of epigenetic modifications in apoptosis-related genes was investigated in a retinoic acid (RA)-induced mouse NTD model. Among 84 key genes involved in programmed cell death, 13 genes, including tumor necrosis factor (Tnf), annexin A5, apoptosis inhibitor 5, Bcl2-associated athanogene 3, baculoviral IAP repeat-containing 3, caspase (Casp)12, Casp4, Casp8, lymphotoxin β receptor, NLR family, apoptosis inhibitory protein 2, TNF receptor superfamily (Tnfrsf)1a, TNF superfamily (Tnfs)f10 and Tnfsf12, were downregulated, whereas nucleolar protein 3 was upregulated in the RA-induced NTD mice. Chromatin immunoprecipitation assays revealed that the regulatory regions of these differentially expressed TNF-related genes showed reduced histone H3K27 acetylation in NTDs, compared with control mice without NTDs. Reverse transcription-quantitative polymerase chain reaction revealed that H3K27ac-binding to the differentially regulated genes was markedly decreased in the NTD mice, whereas binding to the unchanged genes Casp3 and Nfkb1 was unaffected. In conclusion, certain TNF-related genes appeared to be downregulated in NTDs, possibly as a result of abnormal histone H3K27 acetylation. These results shed new light on the epigenetic dysregulation of apoptosis-related genes in NTDs.
Collapse
Affiliation(s)
- Chunlei Wan
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Peking University Teaching Hospital, Beijing 100020, P.R. China
| | - Xiaozhen Liu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Peking University Teaching Hospital, Beijing 100020, P.R. China
| | - Baoling Bai
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Peking University Teaching Hospital, Beijing 100020, P.R. China
| | - Haiyan Cao
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Peking University Teaching Hospital, Beijing 100020, P.R. China
| | - Huili Li
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Peking University Teaching Hospital, Beijing 100020, P.R. China
| | - Qin Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Peking University Teaching Hospital, Beijing 100020, P.R. China
| |
Collapse
|
7
|
Bryant JD, Sweeney SR, Sentandreu E, Shin M, Ipas H, Xhemalce B, Momb J, Tiziani S, Appling DR. Deletion of the neural tube defect-associated gene Mthfd1l disrupts one-carbon and central energy metabolism in mouse embryos. J Biol Chem 2018; 293:5821-5833. [PMID: 29483189 DOI: 10.1074/jbc.ra118.002180] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/23/2018] [Indexed: 11/06/2022] Open
Abstract
One-carbon (1C) metabolism is a universal folate-dependent pathway essential for de novo purine and thymidylate synthesis, amino acid interconversion, universal methyl-donor production, and regeneration of redox cofactors. Homozygous deletion of the 1C pathway gene Mthfd1l encoding methylenetetrahydrofolate dehydrogenase (NADP+-dependent) 1-like, which catalyzes mitochondrial formate production from 10-formyltetrahydrofolate, results in 100% penetrant embryonic neural tube defects (NTDs), underscoring the central role of mitochondrially derived formate in embryonic development and providing a mechanistic link between folate and NTDs. However, the specific metabolic processes that are perturbed by Mthfd1l deletion are not known. Here, we performed untargeted metabolomics on whole Mthfd1l-null and wildtype mouse embryos in combination with isotope tracer analysis in mouse embryonic fibroblast (MEF) cell lines to identify Mthfd1l deletion-induced disruptions in 1C metabolism, glycolysis, and the TCA cycle. We found that maternal formate supplementation largely corrects these disruptions in Mthfd1l-null embryos. Serine tracer experiments revealed that Mthfd1l-null MEFs have altered methionine synthesis, indicating that Mthfd1l deletion impairs the methyl cycle. Supplementation of Mthfd1l-null MEFs with formate, hypoxanthine, or combined hypoxanthine and thymidine restored their growth to wildtype levels. Thymidine addition alone was ineffective, suggesting a purine synthesis defect in Mthfd1l-null MEFs. Tracer experiments also revealed lower proportions of labeled hypoxanthine and inosine monophosphate in Mthfd1l-null than in wildtype MEFs, suggesting that Mthfd1l deletion results in increased reliance on the purine salvage pathway. These results indicate that disruptions of mitochondrial 1C metabolism have wide-ranging consequences for many metabolic processes, including those that may not directly interact with 1C metabolism.
Collapse
Affiliation(s)
| | - Shannon R Sweeney
- Nutritional Sciences and the Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas 78712
| | - Enrique Sentandreu
- Nutritional Sciences and the Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas 78712
| | - Minhye Shin
- From the Departments of Molecular Biosciences and
| | - Hélène Ipas
- From the Departments of Molecular Biosciences and
| | | | - Jessica Momb
- From the Departments of Molecular Biosciences and
| | - Stefano Tiziani
- Nutritional Sciences and the Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas 78712
| | | |
Collapse
|
8
|
Yamaguchi Y, Miyazawa H, Miura M. Neural tube closure and embryonic metabolism. Congenit Anom (Kyoto) 2017; 57:134-137. [PMID: 28295633 DOI: 10.1111/cga.12219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/04/2017] [Accepted: 03/09/2017] [Indexed: 12/15/2022]
Abstract
Neural tube closure (NTC) is an embryonic process during formation of the mammalian central nervous system. Disruption of the dynamic, sequential events of NTC can cause neural tube defects (NTD) leading to spina bifida and anencephaly in the newborn. NTC is affected by inherent factors such as genetic mutation or if the mother is exposed to certain environmental factors such as intake of harmful chemicals, maternal infection, irradiation, malnutrition, and inadequate or excessive intake of specific nutrients. Although effects of these stress factors on NTC have been intensively studied, the metabolic state of a normally developing embryo remains unclear. State-of-the art mass spectrometry techniques have enabled detailed study of embryonic metabolite profiles and their distribution within tissues. This approach has demonstrated that glucose metabolism is altered during NTC stages involving chorioallantoic branching. An understanding of embryonic metabolic rewiring would help reveal the etiology of NTD caused by environmental factors.
Collapse
Affiliation(s)
- Yoshifumi Yamaguchi
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Agency for Medical Research and Development-Core Research for Evolutional Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Hidenobu Miyazawa
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Agency for Medical Research and Development-Core Research for Evolutional Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
9
|
Han M, Evsikov AV, Zhang L, Lastra-Vicente R, Linask KK. Embryonic exposures of lithium and homocysteine and folate protection affect lipid metabolism during mouse cardiogenesis and placentation. Reprod Toxicol 2016; 61:82-96. [DOI: 10.1016/j.reprotox.2016.03.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 02/09/2023]
|
10
|
Yun J, Mullarky E, Lu C, Bosch KN, Kavalier A, Rivera K, Roper J, Chio IIC, Giannopoulou EG, Rago C, Muley A, Asara JM, Paik J, Elemento O, Chen Z, Pappin DJ, Dow LE, Papadopoulos N, Gross SS, Cantley LC. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science 2015; 350:1391-6. [PMID: 26541605 DOI: 10.1126/science.aaa5004] [Citation(s) in RCA: 658] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 10/16/2015] [Indexed: 12/16/2022]
Abstract
More than half of human colorectal cancers (CRCs) carry either KRAS or BRAF mutations and are often refractory to approved targeted therapies. We found that cultured human CRC cells harboring KRAS or BRAF mutations are selectively killed when exposed to high levels of vitamin C. This effect is due to increased uptake of the oxidized form of vitamin C, dehydroascorbate (DHA), via the GLUT1 glucose transporter. Increased DHA uptake causes oxidative stress as intracellular DHA is reduced to vitamin C, depleting glutathione. Thus, reactive oxygen species accumulate and inactivate glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Inhibition of GAPDH in highly glycolytic KRAS or BRAF mutant cells leads to an energetic crisis and cell death not seen in KRAS and BRAF wild-type cells. High-dose vitamin C impairs tumor growth in Apc/Kras(G12D) mutant mice. These results provide a mechanistic rationale for exploring the therapeutic use of vitamin C for CRCs with KRAS or BRAF mutations.
Collapse
Affiliation(s)
- Jihye Yun
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Edouard Mullarky
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA. Biological and Biomedical Sciences Graduate Program, Harvard Medical School, Boston, MA 02115, USA
| | - Changyuan Lu
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Kaitlyn N Bosch
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Adam Kavalier
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Keith Rivera
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jatin Roper
- Molecular Oncology Research Institute and Division of Gastroenterology, Tufts Medical Center, Boston, MA 02111, USA
| | | | - Eugenia G Giannopoulou
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Carlo Rago
- Ludwig Center for Cancer Genetics and Therapeutics and Howard Hughes Medical Institute, Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231, USA
| | - Ashlesha Muley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jihye Paik
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Zhengming Chen
- Department of Biostatistics and Epidemiology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Darryl J Pappin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Lukas E Dow
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Nickolas Papadopoulos
- Ludwig Center for Cancer Genetics and Therapeutics and Howard Hughes Medical Institute, Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231, USA
| | - Steven S Gross
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
11
|
Pelizzo G, Ballico M, Mimmi MC, Peirò JL, Marotta M, Federico C, Andreatta E, Nakib G, Sampaolesi M, Zambaiti E, Calcaterra V. Metabolomic profile of amniotic fluid to evaluate lung maturity: the diaphragmatic hernia lamb model. Multidiscip Respir Med 2014; 9:54. [PMID: 25419460 PMCID: PMC4239313 DOI: 10.1186/2049-6958-9-54] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 09/23/2014] [Indexed: 12/20/2022] Open
Abstract
Background Tracheal occlusion (TO) stimulates lung growth in fetuses affected with congenital diaphragmatic hernia (CDH) although the processes involved in lung maturation still remain unknown. The objective of this study was to evaluate the metabolomic profile of amniotic fluid (AF) following TO in fetal lamb model in order to obtain an indirect view of mechanisms involved in pulmonary reversal hypoplasia and biochemical maturity in response to fetal TO. Methods Liquid Chromatography Mass Spectrometry was performed on lamb AF samples at: age I (70 days’ gestation); age II (102 days’ gestation); age III (136 days’ gestation). CDH was induced at age I and TO at age II. Results Betaine, choline, creatinine were found significantly increased during gestation in the control group. The CDH group showed choline (p =0.007) and creatinine (p =0.004) decreases during pregnancy. In the TO group choline and creatinine profiles were restored. Conclusions Alveolar tissue and fetal global growth ameliorated after TO. Metabolomics provided useful information on biochemical details during lung maturation. Metabolomic profiling would help to identify the best time to perform TO, in order to increase survival of CDH affected patients.
Collapse
Affiliation(s)
- Gloria Pelizzo
- Department of the Mother and Child Health, Pediatric Surgery Unit, Fondazione IRCCS Policlinico San Matteo, Pavia and University of Pavia, Piazzale Golgi 2, 27100 Pavia, Italy
| | - Maurizio Ballico
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | - Maria Chiara Mimmi
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | - José Louis Peirò
- Cincinnati Fetal Center. Pediatric Surgery Division, CCHMC, Cincinnati, OH USA
| | - Mario Marotta
- Fetal Surgery Program, Congenital Malformations Research Group, Research Institute of Hospital Universitari Vall d'Hebron, Edifici Infantil, Barcelona, Spain
| | - Costanzo Federico
- Department of the Mother and Child Health, Pediatric Surgery Unit, Fondazione IRCCS Policlinico San Matteo, Pavia and University of Pavia, Piazzale Golgi 2, 27100 Pavia, Italy
| | - Erika Andreatta
- Department of the Mother and Child Health, Pediatric Surgery Unit, Fondazione IRCCS Policlinico San Matteo, Pavia and University of Pavia, Piazzale Golgi 2, 27100 Pavia, Italy
| | - Ghassan Nakib
- Department of the Mother and Child Health, Pediatric Surgery Unit, Fondazione IRCCS Policlinico San Matteo, Pavia and University of Pavia, Piazzale Golgi 2, 27100 Pavia, Italy
| | - Maurilio Sampaolesi
- Laboratory of Translational Cardiomyology, Stem Cell Interdepartmental Institute, KU Leuven and Human Anatomy, University of Pavia, Pavia, Italy
| | - Elisa Zambaiti
- Department of the Mother and Child Health, Pediatric Surgery Unit, Fondazione IRCCS Policlinico San Matteo, Pavia and University of Pavia, Piazzale Golgi 2, 27100 Pavia, Italy
| | - Valeria Calcaterra
- Department of the Mother and Child Health, Pediatric Surgery Unit, Fondazione IRCCS Policlinico San Matteo, Pavia and University of Pavia, Piazzale Golgi 2, 27100 Pavia, Italy ; Department of Internal Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
12
|
Mitchell LE, Finnell RH. Papers from the Eighth International Neural Tube Defects Conference. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2014; 100:561-562. [PMID: 25155952 DOI: 10.1002/bdra.23289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 06/03/2023]
|