1
|
Perl AJ, Schuh MP, Kopan R. Regulation of nephron progenitor cell lifespan and nephron endowment. Nat Rev Nephrol 2022; 18:683-695. [PMID: 36104510 PMCID: PMC11078284 DOI: 10.1038/s41581-022-00620-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 11/08/2022]
Abstract
Low nephron number - resulting, for example, from prematurity or developmental anomalies - is a risk factor for the development of hypertension, chronic kidney disease and kidney failure. Considerable interest therefore exists in the mechanisms that regulate nephron endowment and contribute to the premature cessation of nephrogenesis following preterm birth. The cessation of nephrogenesis in utero or shortly after birth is synchronized across multiple niches in all mammals, and is coupled with the exhaustion of nephron progenitor cells. Consequently, no nephrons are formed after the cessation of developmental nephrogenesis, and lifelong renal function therefore depends on the complement of nephrons generated during gestation. In humans, a tenfold variation in nephron endowment between individuals contributes to differences in susceptibility to kidney disease; however, the mechanisms underlying this variation are not yet clear. Salient advances in our understanding of environmental inputs, and of intrinsic molecular mechanisms that contribute to the regulation of cessation timing or nephron progenitor cell exhaustion, have the potential to inform interventions to enhance nephron endowment and improve lifelong kidney health for susceptible individuals.
Collapse
Affiliation(s)
- Alison J Perl
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Meredith P Schuh
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Raphael Kopan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Christoforou ER, Sferruzzi-Perri AN. Molecular mechanisms governing offspring metabolic programming in rodent models of in utero stress. Cell Mol Life Sci 2020; 77:4861-4898. [PMID: 32494846 PMCID: PMC7658077 DOI: 10.1007/s00018-020-03566-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022]
Abstract
The results of different human epidemiological datasets provided the impetus to introduce the now commonly accepted theory coined as 'developmental programming', whereby the presence of a stressor during gestation predisposes the growing fetus to develop diseases, such as metabolic dysfunction in later postnatal life. However, in a clinical setting, human lifespan and inaccessibility to tissue for analysis are major limitations to study the molecular mechanisms governing developmental programming. Subsequently, studies using animal models have proved indispensable to the identification of key molecular pathways and epigenetic mechanisms that are dysregulated in metabolic organs of the fetus and adult programmed due to an adverse gestational environment. Rodents such as mice and rats are the most used experimental animals in the study of developmental programming. This review summarises the molecular pathways and epigenetic mechanisms influencing alterations in metabolic tissues of rodent offspring exposed to in utero stress and subsequently programmed for metabolic dysfunction. By comparing molecular mechanisms in a variety of rodent models of in utero stress, we hope to summarise common themes and pathways governing later metabolic dysfunction in the offspring whilst identifying reasons for incongruencies between models so to inform future work. With the continued use and refinement of such models of developmental programming, the scientific community may gain the knowledge required for the targeted treatment of metabolic diseases that have intrauterine origins.
Collapse
Affiliation(s)
- Efthimia R Christoforou
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge, UK
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge, UK.
| |
Collapse
|
3
|
Early-Life Programming and Reprogramming of Adult Kidney Disease and Hypertension: The Interplay between Maternal Nutrition and Oxidative Stress. Int J Mol Sci 2020; 21:ijms21103572. [PMID: 32443635 PMCID: PMC7278949 DOI: 10.3390/ijms21103572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023] Open
Abstract
Kidney disease and hypertension both have attained the status of a global pandemic. Altered renal programming resulting in kidney disease and hypertension can begin in utero. Maternal suboptimal nutrition and oxidative stress have important implications in renal programming, while specific antioxidant nutrient supplementations may serve as reprogramming strategies to prevent kidney disease and hypertension of developmental origins. This review aims to summarize current knowledge on the interplay of maternal nutrition and oxidative stress in response to early-life insults and its impact on developmental programming of kidney disease and hypertension, covering two aspects. Firstly, we present the evidence from animal models supporting the implication of oxidative stress on adult kidney disease and hypertension programmed by suboptimal maternal nutrition. In the second part, we document data on specific antioxidant nutrients as reprogramming strategies to protect adult offspring against kidney disease and hypertension from developmental origins. Research into the prevention of kidney disease and hypertension that begin early in life will have profound implications for future health.
Collapse
|
4
|
Lee YQ, Beckett EL, Sculley DV, Rae KM, Collins CE, Pringle KG. Relationship between maternal global nutrient restriction during pregnancy and offspring kidney structure and function: a systematic review of animal studies. Am J Physiol Renal Physiol 2019; 316:F1227-F1235. [DOI: 10.1152/ajprenal.00082.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Maternal undernutrition during pregnancy is prevalent across the globe, and the origins of many chronic diseases can be traced back to in utero conditions. This systematic review considers the current evidence in animal models regarding the relationship between maternal global nutrient restriction during pregnancy and offspring kidney structure and function. CINAHL, Cochrane, EMBASE, MEDLINE, and Scopus were searched to November 2017. Preferred Reporting Items for Systematic Reviews and Meta-analysis guidelines were followed, and articles were screened by two independent reviewers. Twenty-eight studies met the inclusion criteria: 16 studies were on rats, 9 on sheep, 2 on baboons, and 1 on goats. The majority of the rat studies had maternal global nutrient restriction during pregnancy at 50% of ad libitum while restriction for sheep and baboon studies ranged from 50% to 75%. Because of the heterogeneity of outcome measures and the large variation in the age of offspring at followup, no meta-analysis was possible. Common outcome measures included kidney weight, nephron number, glomerular size, glomerular filtration rate, and creatinine clearance. To date, there have been no studies assessing kidney function in large animal models. Most studies were rated as having a high or unknown risk of bias. The current body of evidence in animals suggests that exposure to maternal global nutrient restriction during pregnancy has detrimental effects on offspring kidney structure and function, such as lower kidney weight, lower nephron endowment, larger glomerular size, and lower glomerular filtration rate. Further long-term followup of studies in large animal models investigating kidney function through to adulthood are warranted.
Collapse
Affiliation(s)
- Yu Qi Lee
- Priority Research Centre for Reproductive Sciences, University of Newcastle, Newcastle, New South Wales, Australia
- Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - Emma L. Beckett
- Faculty of Health and Medicine, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - Dean V. Sculley
- Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Newcastle, New South Wales, Australia
| | - Kym M. Rae
- Priority Research Centre for Reproductive Sciences, University of Newcastle, Newcastle, New South Wales, Australia
- Faculty of Health and Medicine, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
- Faculty of Health and Medicine, Gomeroi Gaaynggal Center, University of Newcastle, Tamworth, New South Wales, Australia
- Department of Rural Health, University of Newcastle, Tamworth, New South Wales, Australia
- Priority Research Center for Generational Health and Aging, University of Newcastle, Newcastle, New South Wales, Australia
| | - Clare E. Collins
- Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Newcastle, New South Wales, Australia
- Faculty of Health and Medicine, School of Health Sciences, University of Newcastle, Newcastle, New South Wales, Australia
| | - Kirsty G. Pringle
- Priority Research Centre for Reproductive Sciences, University of Newcastle, Newcastle, New South Wales, Australia
- Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Faculty of Health and Medicine, Gomeroi Gaaynggal Center, University of Newcastle, Tamworth, New South Wales, Australia
| |
Collapse
|
5
|
DeSesso JM, Scialli AR. Bone development in laboratory mammals used in developmental toxicity studies. Birth Defects Res 2018; 110:1157-1187. [PMID: 29921029 DOI: 10.1002/bdr2.1350] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/19/2018] [Accepted: 04/25/2018] [Indexed: 01/12/2023]
Abstract
Evaluation of the skeleton in laboratory animals is a standard component of developmental toxicology testing. Standard methods of performing the evaluation have been established, and modification of the evaluation using imaging technologies is under development. The embryology of the rodent, rabbit, and primate skeleton has been characterized in detail and summarized herein. The rich literature on variations and malformations in skeletal development that can occur in the offspring of normal animals and animals exposed to test articles in toxicology studies is reviewed. These perturbations of skeletal development include ossification delays, alterations in number, shape, and size of ossification centers, and alterations in numbers of ribs and vertebrae. Because the skeleton is undergoing developmental changes at the time fetuses are evaluated in most study designs, transient delays in development can produce apparent findings of abnormal skeletal structure. The determination of whether a finding represents a permanent change in embryo development with adverse consequences for the organism is important in study interpretation. Knowledge of embryological processes and schedules can assist in interpretation of skeletal findings.
Collapse
|
6
|
Effects of a maternal high-fat diet on offspring behavioral and metabolic parameters in a rodent model. J Dev Orig Health Dis 2016; 8:75-88. [DOI: 10.1017/s2040174416000490] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Maternal diet-induced obesity can cause detrimental developmental origins of health and disease in offspring. Perinatal exposure to a high-fat diet (HFD) can lead to later behavioral and metabolic disturbances, but it is not clear which behaviors and metabolic parameters are most vulnerable. To address this critical gap, biparental and monogamous oldfield mice (Peromyscus polionotus), which may better replicate most human societies, were used in the current study. About 2 weeks before breeding, adult females were placed on a control or HFD and maintained on the diets throughout gestation and lactation. F1 offspring were placed at weaning (30 days of age) on the control diet and spatial learning and memory, anxiety, exploratory, voluntary physical activity, and metabolic parameters were tested when they reached adulthood (90 days of age). Surprisingly, maternal HFD caused decreased latency in initial and reverse Barnes maze trials in male, but not female, offspring. Both male and female HFD-fed offspring showed increased anxiogenic behaviors, but decreased exploratory and voluntary physical activity. Moreover, HFD offspring demonstrated lower resting energy expenditure (EE) compared with controls. Accordingly, HFD offspring weighed more at adulthood than those from control fed dams, likely the result of reduced physical activity and EE. Current findings indicate a maternal HFD may increase obesity susceptibility in offspring due to prenatal programming resulting in reduced physical activity and EE later in life. Further work is needed to determine the underpinning neural and metabolic mechanisms by which a maternal HFD adversely affects neurobehavioral and metabolic pathways in offspring.
Collapse
|
7
|
Kimmel CA, Garry MR, DeSesso JM. Relationship between bent long bones, bent scapulae, and wavy ribs: malformations or variations? ACTA ACUST UNITED AC 2014; 101:379-92. [PMID: 25250905 DOI: 10.1002/bdrb.21122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/07/2014] [Indexed: 01/18/2023]
Abstract
BACKGROUND Shortened and bent long bones and bent scapulae are sometimes reported in fetuses with wavy ribs (Carney and Kimmel, ). Wavy ribs are typically seen in the presence of maternal and developmental toxicity, are transient and reversible postnatally, and are considered to be variations rather than malformations. METHODS We further assessed the literature cited in Kimmel and Carney () as well as papers published since then to determine under what conditions bent long bones in the absence of gross limb defects and bent scapulae were reported and whether information was available on the transient or permanent nature of these effects. RESULTS Long bone and/or scapular changes almost always occurred at a lower incidence than wavy ribs. In every case, maternal and fetal toxicity occurred at the same dose levels. In a few studies, pups were followed sequentially after birth and bent long bones and scapulae were transient in nature and appeared normal by the time of weaning. Rabbits were much less likely to show wavy ribs or long bone and scapular changes at birth, even in the presence of severe maternal and fetal toxicity. This species difference may be due in part to the great increase in bone mass and remodeling that occurs during the first few postnatal weeks in rodents, but which takes place during the longer fetal period in rabbits. CONCLUSION Our conclusion from this review is that bent long bones and scapulae, like wavy ribs, appear to be secondary to maternal and developmental toxicity, are transient, and like wavy ribs should be considered variations rather than malformations.
Collapse
Affiliation(s)
- Carole A Kimmel
- Exponent, Inc, Toxicology and Mechanistic Biology, Alexandria, Virginia
| | | | | |
Collapse
|
8
|
Moore NP, Boogaard PJ, Bremer S, Buesen R, Edwards J, Fraysse B, Hallmark N, Hemming H, Langrand-Lerche C, McKee RH, Meisters ML, Parsons P, Politano V, Reader S, Ridgway P, Hennes C. Guidance on classification for reproductive toxicity under the globally harmonized system of classification and labelling of chemicals (GHS). Crit Rev Toxicol 2014; 43:850-91. [PMID: 24274377 DOI: 10.3109/10408444.2013.854734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Globally Harmonised System of Classification (GHS) is a framework within which the intrinsic hazards of substances may be determined and communicated. It is not a legislative instrument per se, but is enacted into national legislation with the appropriate legislative instruments. GHS covers many aspects of effects upon health and the environment, including adverse effects upon sexual function and fertility or on development. Classification for these effects is based upon observations in humans or from properly designed experiments in animals, although only the latter is covered herein. The decision to classify a substance based upon experimental data, and the category of classification ascribed, is determined by the level of evidence that is available for an adverse effect on sexual function and fertility or on development that does not arise as a secondary non-specific consequence of other toxic effect. This document offers guidance on the determination of level of concern as a measure of adversity, and the level of evidence to ascribe classification based on data from tests in laboratory animals.
Collapse
|
9
|
Short- and long-term effects of maternal perinatal undernutrition are lowered by cross-fostering during lactation in the male rat. J Dev Orig Health Dis 2014; 5:109-20. [DOI: 10.1017/s2040174413000548] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Undernutrition exposure during the perinatal period reduces the growth kinetic of the offspring and sensitizes it to the development of chronic adult metabolic diseases both in animals and in humans. Previous studies have demonstrated that a 50% maternal food restriction performed during the last week of gestation and during lactation has both short- and long-term consequences in the male rat offspring. Pups from undernourished mothers present a decreased intrauterine (IUGR) and extrauterine growth restriction. This is associated with a drastic reduction in their leptin plasma levels during lactation, and exhibit programming of their stress neuroendocrine systems (corticotroph axis and sympatho-adrenal system) in adulthood. In this study, we report that perinatally undernourished 6-month-old adult animals demonstrated increased leptinemia (at PND200), blood pressure (at PND180), food intake (from PND28 to PND168), locomotor activity (PND187) and altered regulation of glycemia (PND193). Cross-fostering experiments indicate that these alterations were prevented in IUGR offspring nursed by control mothers during lactation. Interestingly, the nutritional status of mothers during lactation (ad libitum feeding v. undernutrition) dictates the leptin plasma levels in pups, consistent with decreased leptin concentration in the milk of mothers subjected to perinatal undernutrition. As it has been reported that postnatal leptin levels in rodent neonates may have long-term metabolic consequences, restoration of plasma leptin levels in pups during lactation may contribute to the beneficial effects of cross-fostering IUGR offspring to control mothers. Collectively, our data suggest that modification of milk components may offer new therapeutic perspectives to prevent the programming of adult diseases in offspring from perinatally undernourished mothers.
Collapse
|
10
|
Rogers JM, Ellis-Hutchings RG, Grey BE, Zucker RM, Norwood J, Grace CE, Gordon CJ, Lau C. Elevated Blood Pressure in Offspring of Rats Exposed to Diverse Chemicals During Pregnancy. Toxicol Sci 2013; 137:436-46. [DOI: 10.1093/toxsci/kft248] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
11
|
Fowden AL, Jellyman JK, Valenzuela OA, Forhead AJ. Nutritional Programming of Intrauterine Development: A Concept Applicable to the Horse? J Equine Vet Sci 2013. [DOI: 10.1016/j.jevs.2013.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
12
|
Mossa F, Carter F, Walsh SW, Kenny DA, Smith GW, Ireland JLH, Hildebrandt TB, Lonergan P, Ireland JJ, Evans ACO. Maternal undernutrition in cows impairs ovarian and cardiovascular systems in their offspring. Biol Reprod 2013; 88:92. [PMID: 23426432 DOI: 10.1095/biolreprod.112.107235] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Severe prenatal undernutrition is usually associated with low birth weights in offspring and disorders including hypertension, obesity, and diabetes. Whether alterations in maternal nutrition insufficient to impair birth weight or prenatal growth impact the cardiovascular, stress, or metabolic systems is unknown. In addition, little is known about the effects of maternal dietary restriction on development of the reproductive system in mammals. Here, we use the bovine model, which has a gestational length and birth rate similar to humans, to show that offspring from nutritionally restricted dams (during the first trimester) were born with identical birth weights and had similar postnatal growth rates (to 95 wk of age), puberty, glucose metabolism, and responses to stress compared to offspring from control mothers. However, an increase in maternal testosterone concentrations was detected during dietary restriction, and these dams had offspring with a diminished ovarian reserve (as assessed by a reduction in antral follicle count, reduced concentrations of anti-Müllerian hormone, and increased follicle-stimulating hormone concentrations), enlarged aorta, and increased arterial blood pressure compared with controls. Our study links transient maternal undernutrition and enhanced maternal androgen production with a diminished ovarian reserve as well as potential suboptimal fertility, enlarged aortic trunk size, and enhanced blood pressure independent of alterations in birth weight, postnatal growth, or stress response and glucose tolerance. The implications are that relatively mild transient reductions in maternal nutrition during the first trimester of pregnancy (even those that do not affect gross development) should be avoided to ensure healthy development of reproductive and cardiovascular systems in offspring.
Collapse
Affiliation(s)
- Francesca Mossa
- School of Agriculture & Food Science, University College Dublin, Belfield, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Somm E, Vauthay DM, Guérardel A, Toulotte A, Cettour-Rose P, Klee P, Meda P, Aubert ML, Hüppi PS, Schwitzgebel VM. Early metabolic defects in dexamethasone-exposed and undernourished intrauterine growth restricted rats. PLoS One 2012; 7:e50131. [PMID: 23166830 PMCID: PMC3500352 DOI: 10.1371/journal.pone.0050131] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 10/16/2012] [Indexed: 01/03/2023] Open
Abstract
Poor fetal growth, also known as intrauterine growth restriction (IUGR), is a worldwide health concern. IUGR is commonly associated with both an increased risk in perinatal mortality and a higher prevalence of developing chronic metabolic diseases later in life. Obesity, type 2 diabetes or metabolic syndrome could result from noxious “metabolic programming.” In order to better understand early alterations involved in metabolic programming, we modeled IUGR rat pups through either prenatal exposure to synthetic glucocorticoid (dams infused with dexamethasone 100 µg/kg/day, DEX) or prenatal undernutrition (dams feeding restricted to 30% of ad libitum intake, UN). Physiological (glucose and insulin tolerance), morphometric (automated tissue image analysis) and transcriptomic (quantitative PCR) approaches were combined during early life of these IUGR pups with a special focus on their endocrine pancreas and adipose tissue development. In the absence of catch-up growth before weaning, DEX and UN IUGR pups both presented basal hyperglycaemia, decreased glucose tolerance, and pancreatic islet atrophy. Other early metabolic defects were model-specific: DEX pups presented decreased insulin sensitivity whereas UN pups exhibited lowered glucose-induced insulin secretion and more marked alterations in gene expression of pancreatic islet and adipose tissue development regulators. In conclusion, these results show that before any catch-up growth, IUGR rats present early physiologic, morphologic and transcriptomic defects, which can be considered as initial mechanistic basis of metabolic programming.
Collapse
Affiliation(s)
- Emmanuel Somm
- Department of Paediatrics, University of Geneva School of Medicine, Geneva, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|