1
|
Strzalka-Mrozik B, Paprzycka O, Gruszka O, Madej M, Kruszniewska-Rajs C, Gola JM, Turek A. Ranibizumab Modifies the Expression of Metalloproteinases and Their Tissue Inhibitors in Peripheral Blood Mononuclear Cells in Patients with Exudative Age-Related Macular Degeneration. J Clin Med 2024; 13:295. [PMID: 38202302 PMCID: PMC10780024 DOI: 10.3390/jcm13010295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD) is the leading cause of vision loss in people over 60 years of age. Despite research, the causes of AMD remain unclear. Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) are known to be involved in AMD development, and anti-vascular endothelial growth factor therapy has revolutionized its treatment. This study aims to analyze the changes in gene expression in MMPs and TIMPS in patients with neovascular AMD before and after three doses of ranibizumab. METHODS The study involved 29 patients with neovascular AMD treated with ranibizumab. Peripheral blood mononuclear cells were collected before treatment and 24 h after the third dose of ranibizumab. We assessed MMP and TIMP gene expression profiles through oligonucleotide microarrays and validated selected differential genes using RT-qPCR. RESULTS A statistically significant change in the expression of six MMP- and TIMP-related genes was observed using oligonucleotide microarray. The mRNA levels of the two genes with the most significant fold changes, MMP15 and TIMP2, were then quantified using RT-qPCR. The results confirmed a statistically significant increase in MMP15 expression and a decrease in TIMP2 levels, although this change was not statistically significant in the group before and after the third dose of ranibizumab. CONCLUSION Ranibizumab affects the systemic expression of MMP and TIMP-related genes in patients with neovascular AMD. Results from our exploratory study suggest that MMP15, in particular, may play a role in the treatment response, but further research is necessary.
Collapse
Affiliation(s)
- Barbara Strzalka-Mrozik
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (O.P.); (O.G.); (M.M.); (C.K.-R.); (J.M.G.)
| | - Olga Paprzycka
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (O.P.); (O.G.); (M.M.); (C.K.-R.); (J.M.G.)
| | - Oliwia Gruszka
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (O.P.); (O.G.); (M.M.); (C.K.-R.); (J.M.G.)
| | - Marcel Madej
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (O.P.); (O.G.); (M.M.); (C.K.-R.); (J.M.G.)
- Silesia LabMed, Centre for Research and Implementation, Medical University of Silesia, 40-752 Katowice, Poland
| | - Celina Kruszniewska-Rajs
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (O.P.); (O.G.); (M.M.); (C.K.-R.); (J.M.G.)
| | - Joanna Magdalena Gola
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (O.P.); (O.G.); (M.M.); (C.K.-R.); (J.M.G.)
| | - Artur Turek
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
| |
Collapse
|
2
|
Levitas A, Aspit L, Lowenthal N, Shaki D, Krymko H, Slanovic L, Yagev R, Parvari R. A Novel Mutation in the ADAMTS10 Associated with Weil-Marchesani Syndrome with a Unique Presentation of Developed Membranes Causing Severe Stenosis of the Supra Pulmonic, Supramitral, and Subaortic Areas in the Heart. Int J Mol Sci 2023; 24:8864. [PMID: 37240210 PMCID: PMC10219133 DOI: 10.3390/ijms24108864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Weill-Marchesani syndrome (WMS) is a rare genetic inherited disorder with autosomal recessive and dominant modes of inheritance. WMS is characterized by the association of short stature, brachydactyly, joint stiffness, eye anomalies, including microspherophakia and ectopia of the lenses, and, occasionally, heart defects. We investigated the genetic cause of a unique and novel presentation of heart-developed membranes in the supra-pulmonic, supramitral, and subaortic areas, creating stenosis that recurred after their surgical resection in four patients from one extended consanguineous family. The patients also presented ocular findings consistent with Weill-Marchesani syndrome (WMS). We used whole exome sequencing (WES) to identify the causative mutation and report it as a homozygous nucleotide change c. 232T>C causing p. Tyr78His in ADAMTS10. ADAMTS10 (ADAM Metallopeptidase with Thrombospondin Type 1 Motif 10) is a member of a family of zinc-dependent extracellular matrix protease family. This is the first report of a mutation in the pro-domain of ADAMTS10. The novel variation replaces a highly evolutionary conserved tyrosine with histidine. This change may affect the secretion or function of ADAMTS10 in the extracellular matrix. The compromise in protease activity may thus cause the unique presentation of the developed membranes in the heart and their recurrence after surgery.
Collapse
Affiliation(s)
- Aviva Levitas
- Department of Pediatric Cardiology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (A.L.); (H.K.); (L.S.)
| | - Liam Aspit
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Neta Lowenthal
- Pediatric Endocrinology Unit, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (N.L.); (D.S.)
| | - David Shaki
- Pediatric Endocrinology Unit, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (N.L.); (D.S.)
| | - Hanna Krymko
- Department of Pediatric Cardiology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (A.L.); (H.K.); (L.S.)
| | - Leonel Slanovic
- Department of Pediatric Cardiology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (A.L.); (H.K.); (L.S.)
| | - Ronit Yagev
- Ophthalmology Department, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel;
| | - Ruti Parvari
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
3
|
Matsuyama A, Kalargyrou AA, Smith AJ, Ali RR, Pearson RA. A comprehensive atlas of Aggrecan, Versican, Neurocan and Phosphacan expression across time in wildtype retina and in retinal degeneration. Sci Rep 2022; 12:7282. [PMID: 35508614 PMCID: PMC9068689 DOI: 10.1038/s41598-022-11204-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/07/2022] [Indexed: 11/08/2022] Open
Abstract
As photoreceptor cells die during retinal degeneration, the surrounding microenvironment undergoes significant changes that are increasingly recognized to play a prominent role in determining the efficacy of therapeutic interventions. Chondroitin Sulphate Proteoglycans (CSPGs) are a major component of the extracellular matrix that have been shown to inhibit neuronal regrowth and regeneration in the brain and spinal cord, but comparatively little is known about their expression in retinal degeneration. Here we provide a comprehensive atlas of the expression patterns of four individual CSPGs in three models of inherited retinal degeneration and wildtype mice. In wildtype mice, Aggrecan presented a biphasic expression, while Neurocan and Phosphacan expression declined dramatically with time and Versican expression remained broadly constant. In degeneration, Aggrecan expression increased markedly in Aipl1-/- and Pde6brd1/rd1, while Versican showed regional increases in the periphery of Rho-/- mice. Conversely, Neurocan and Phosphacan broadly decrease with time in all models. Our data reveal significant heterogeneity in the expression of individual CSPGs. Moreover, there are striking differences in the expression patterns of specific CSPGs in the diseased retina, compared with those reported following injury elsewhere in the CNS. Better understanding of the distinct distributions of individual CSPGs will contribute to creating more permissive microenvironments for neuro-regeneration and repair.
Collapse
Affiliation(s)
- A Matsuyama
- Ocular Cell and Gene therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, 8th Floor, Tower Wing, Guy's Hospital, London, SE1 9RT, UK.
- University College London Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK.
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan.
| | - A A Kalargyrou
- Ocular Cell and Gene therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, 8th Floor, Tower Wing, Guy's Hospital, London, SE1 9RT, UK
- University College London Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | - A J Smith
- Ocular Cell and Gene therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, 8th Floor, Tower Wing, Guy's Hospital, London, SE1 9RT, UK
- University College London Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | - R R Ali
- Ocular Cell and Gene therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, 8th Floor, Tower Wing, Guy's Hospital, London, SE1 9RT, UK
- University College London Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | - R A Pearson
- Ocular Cell and Gene therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, 8th Floor, Tower Wing, Guy's Hospital, London, SE1 9RT, UK.
- University College London Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK.
| |
Collapse
|
4
|
Yeast-produced fructosamine-3-kinase retains mobility after ex vivo intravitreal injection in human and bovine eyes as determined by Fluorescence Correlation Spectroscopy. Int J Pharm 2022; 621:121772. [PMID: 35487399 DOI: 10.1016/j.ijpharm.2022.121772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/20/2022]
Abstract
Globally, over 2 billion people suffer from vision impairment. Despite complex multifactorial etiology, advanced glycation end products are involved in the pathogenesis of many causative age- and diabetes-related eye diseases. Deglycating enzyme fructosamine-3-kinase (FN3K) was recently proposed as a potential therapeutic, but for further biopharmaceutical development, knowledge on its manufacturability and stability and mobility in the vitreous fluid of the eye is indispensable. We evaluated recombinant production of FN3K in two host systems, and its diffusion behavior in both bovine and human vitreous. Compared to Escherichia coli, intracellular production in Pichia pastoris yielded more and higher purity FN3K. The yeast-produced enzyme was used in a first attempt to use fluorescence correlation spectroscopy to study protein mobility in non-sonicated bovine vitreous, human vitreous, and intact bovine eyes. It was demonstrated that FN3K retained mobility upon intravitreal injection, although a certain delay in diffusion was observed. Alkylation of free cysteines was tolerated both in terms of enzymatic activity and vitreous diffusion. Ex vivo diffusion data gathered and the availability of yeast-produced high purity enzyme now clear the path for in vivo pharmacokinetics studies of FN3K.
Collapse
|
5
|
Upregulated NOTCH Signaling in the Lens of Patients with Pseudoexfoliation Syndrome Compared to Pseudoexfoliation Glaucoma Suggests Protective Role. J Glaucoma 2022; 31:e1-e9. [DOI: 10.1097/ijg.0000000000001975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 12/03/2021] [Indexed: 11/26/2022]
|
6
|
Liu S, Chen H, Ma W, Zhong Y, Liang Y, Gu L, Lu X, Li J. Non-coding RNAs and related molecules associated with form-deprivation myopia in mice. J Cell Mol Med 2021; 26:186-194. [PMID: 34841657 PMCID: PMC8742199 DOI: 10.1111/jcmm.17071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/01/2021] [Accepted: 11/15/2021] [Indexed: 01/18/2023] Open
Abstract
The role of miRNAs and its regulatory mechanism in myopia are indeterminate. Our study aimed to investigate potential myopia‐associated non‐coding RNAs and related molecules by performing a comprehensive bioinformatic analysis of miRNA expression profile of mice with form‐deprivation myopia (FDM). Differentially expressed miRNAs in two raw microarray data sets (GSE58124 and GSE84220) from Gene Expression Omnibus (GEO) database were comprehensively analysed using GEO2R. Target genes were predicted using miRDB and enriched with Metascape online tool. Protein‐protein interaction (PPI) networks were constructed utilizing STRING and Cytoscape. Significant differentially expressed miRNAs were validated by real‐time polymerase chain reaction (qRT‐PCR) using RNA extracted from monocular FDM ocular tissues. As result, we identified three upregulated miRNAs (mmu‐miR‐1936, mmu‐miR‐338‐5p, and mmu‐miR‐673‐3p) significantly associated with myopia in the two microarray data sets (p < 0.05 and |Log (Fold Change) |>1). GO functional analysis suggested these three miRNAs were targeted in genes mostly enriched in morphogenesis and developmental growth of retinal tissues. Enrichment analysis revealed top eight transcription factors, including PAX6 and Smad3, related to myopia. Ten hub genes, including Rbx1, Fbxl3, Fbxo27, Fbxl7, Fbxo4, Cul3, Cul2, Klhl5, Fbxl16 and Klhl42, associated with ubiquitin conjugation were identified. qRT‐PCR confirmed the increased expression of mmu‐miR‐1936 and mmu‐miR‐338‐5p (p < 0.05), but no statistical difference was observed in mmu‐miR‐673‐3p expression in myopic retinas. Our findings indicated mmu‐miR‐1936, mmu‐miR‐338‐5p and mmu‐miR‐673‐3p upregulation may be associated with myopia development via post‐transcriptional gene regulation, and identified potential molecules that could be further explored in future studies of the mechanism in myopia.
Collapse
Affiliation(s)
- Shanshan Liu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Huijie Chen
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wenbei Ma
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yanyan Zhong
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yingying Liang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Lishan Gu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaohe Lu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiali Li
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Decorin inhibits glucose-induced lens epithelial cell apoptosis via suppressing p22phox-p38 MAPK signaling pathway. PLoS One 2020; 15:e0224251. [PMID: 32339204 PMCID: PMC7185589 DOI: 10.1371/journal.pone.0224251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/13/2020] [Indexed: 01/09/2023] Open
Abstract
PURPOSE To determine the effect of decorin on oxidative stress and apoptosis of human lens epithelial (HLE) cells under high glucose condition. METHODS HLE cell line (HLEB3) was incubated in normal glucose (5.5 mM) or high glucose (60 mM) medium. Decorin (50 nM) was applied 2 hours before high glucose medium was added. Apoptosis detection was executed by flow cytometry and western blotting (analysis of bcl-2 and bax). Oxidative stress level was measured by the generation of reactive oxygen species (ROS), glutathione peroxidase (GSH) and superoxide dismutase (SOD). P38 mitogen-activated protein kinase (MAPK) phosphorylation, the expression of p22phox of HLE cells and human lens anterior capsules were detected by western blotting. Small interfering RNA transfection to p22phox and p38 MAPK was also carried out on HLEB3. RESULTS High glucose caused HLE cells oxidative stress and apoptosis exhibiting the increase of apoptotic cells and ROS production and decrease of bcl-2/bax ratio, GSH/GSSG ration and SOD activity. P22phox and phospho-p38 MAPK were upregulated in high glucose treated HLEB3 cells. Knocking down p22phox or p38 by siRNAs can reduce high glucose induced cell apoptosis and oxidative stress level. Silencing p22phox by siRNA can downregulate the phosphorylation of p38 MAPK. Decorin can inhibit the apoptosis, oxidative stress level and the induction of p22phox and phospho-p38 of HLEB3 induced by high glucose. Furthermore, the expression of p22phox and p38 were found significantly increased in lens anterior capsules of diabetic cataract patients compared to that of normal age-related cataract patients. CONCLUSIONS Results showed that p22phox-p38 pathway may be participated in high glucose induced lens epithelial cell injury, decorin may inhibit the high glucose induced apoptosis and oxidative stress injury by suppressing this pathway in part.
Collapse
|
8
|
Jaldín-Fincati JR, Actis Dato V, Díaz NM, Sánchez MC, Barcelona PF, Chiabrando GA. Activated α 2-Macroglobulin Regulates LRP1 Levels at the Plasma Membrane through the Activation of a Rab10-dependent Exocytic Pathway in Retinal Müller Glial Cells. Sci Rep 2019; 9:13234. [PMID: 31519919 PMCID: PMC6744500 DOI: 10.1038/s41598-019-49072-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022] Open
Abstract
Activated α2-macroglobulin (α2M*) and its receptor, low-density lipoprotein receptor-related protein 1 (LRP1), have been linked to proliferative retinal diseases. In Müller glial cells (MGCs), the α2M*/LRP1 interaction induces cell signaling, cell migration, and extracellular matrix remodeling, processes closely associated with proliferative disorders. However, the mechanism whereby α2M* and LRP1 participate in the aforementioned pathologies remains incompletely elucidated. Here, we investigate whether α2M* regulates both the intracellular distribution and sorting of LRP1 to the plasma membrane (PM) and how this regulation is involved in the cell migration of MGCs. Using a human Müller glial-derived cell line, MIO-M1, we demonstrate that the α2M*/LRP1 complex is internalized and rapidly reaches early endosomes. Afterward, α2M* is routed to degradative compartments, while LRP1 is accumulated at the PM through a Rab10-dependent exocytic pathway regulated by PI3K/Akt. Interestingly, Rab10 knockdown reduces both LRP1 accumulation at the PM and cell migration of MIO-M1 cells induced by α2M*. Given the importance of MGCs in the maintenance of retinal homeostasis, unravelling this molecular mechanism can potentially provide new therapeutic targets for the treatment of proliferative retinopathies.
Collapse
Affiliation(s)
- Javier R Jaldín-Fincati
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina.,Department of Biological Sciences, University of Toronto at Scarborough, Toronto, ON, Canada
| | - Virginia Actis Dato
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - Nicolás M Díaz
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - María C Sánchez
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - Pablo F Barcelona
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina.
| | - Gustavo A Chiabrando
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina.
| |
Collapse
|
9
|
Peng H, Hulleman JD. Prospective Application of Activity-Based Proteomic Profiling in Vision Research-Potential Unique Insights into Ocular Protease Biology and Pathology. Int J Mol Sci 2019; 20:ijms20163855. [PMID: 31398819 PMCID: PMC6720450 DOI: 10.3390/ijms20163855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022] Open
Abstract
Activity-based proteomic profiling (ABPP) is a powerful tool to specifically target and measure the activity of a family of enzymes with the same function and reactivity, which provides a significant advantage over conventional proteomic strategies that simply provide abundance information. A number of inherited and age-related eye diseases are caused by polymorphisms/mutations or abnormal expression of proteases including serine proteases, cysteine proteases, and matrix metalloproteinases, amongst others. However, neither conventional genomic, transcriptomic, nor traditional proteomic profiling directly interrogate protease activities. Thus, leveraging ABPP to probe the activity of these enzyme classes as they relate to normal function and pathophysiology of the eye represents a unique potential opportunity for disease interrogation and possibly intervention.
Collapse
Affiliation(s)
- Hui Peng
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9057, USA
| | - John D Hulleman
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9057, USA.
- Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA.
| |
Collapse
|
10
|
Cheng SC, Wu YH, Huang WC, Pang JHS, Huang TH, Cheng CY. Anti-inflammatory property of quercetin through downregulation of ICAM-1 and MMP-9 in TNF-α-activated retinal pigment epithelial cells. Cytokine 2019; 116:48-60. [PMID: 30685603 DOI: 10.1016/j.cyto.2019.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 12/29/2018] [Accepted: 01/02/2019] [Indexed: 12/24/2022]
Abstract
Quercetin is a flavonoid polyphenolic compound present in fruits and vegetables that has proven anti-inflammatory activity. The goal of the present investigation was to investigate the effects of quercetin on tumor necrosis factor-α (TNF-α)-induced inflammatory responses via the expression of ICAM-1 and MMP-9 in human retinal pigment epithelial cells (ARPE-19 cells). Real-time PCR, gelatin zymography, and Western blot analysis showed that TNF-α induced the expression of ICAM-1 and MMP-9 protein and mRNA in a time-dependent manner. These effects were attenuated by pretreatment of ARPE-19 cells with quercetin. Quercetin inhibited the TNF-α-induced phosphorylation of PKCδ, JNK1/2, ERK1/2. Quercetin, rottlerin, SP600125 and U0126 attenuated TNF-α-stimulated c-Jun phosphorylation and AP-1-Luc activity. Pretreatment with quercetin, rottlerin, SP600125, or Bay 11-7082 attenuated TNF-α-induced NF-κB (p65) phosphorylation, translocation and RelA/p65-Luc activity. TNF-α significantly increased MMP-9 promoter activity and THP-1 cell adherence, and these effects were attenuated by pretreatment with quercetin, rottlerin, SP600125, U0126, tanshinone IIA or Bay 11-7082. These results suggest that quercetin attenuates TNF-α-induced ICAM-1 and MMP-9 expression in ARPE-19 cells via the MEK1/2-ERK1/2 and PKCδ-JNK1/2-c-Jun or NF-κB pathways.
Collapse
Affiliation(s)
- Shu-Chen Cheng
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Hong Wu
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan; School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jong-Hwei S Pang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tse-Hung Huang
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Ching-Yi Cheng
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan; Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
11
|
Zhang J, Suo Y, Liu M, Xu X. Identification of genes related to proliferative diabetic retinopathy through RWR algorithm based on protein-protein interaction network. Biochim Biophys Acta Mol Basis Dis 2017; 1864:2369-2375. [PMID: 29237571 DOI: 10.1016/j.bbadis.2017.11.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/15/2017] [Accepted: 11/25/2017] [Indexed: 12/14/2022]
Abstract
Proliferative diabetic retinopathy (PDR) is one of the most common complications of diabetes and can lead to blindness. Proteomic studies have provided insight into the pathogenesis of PDR and a series of PDR-related genes has been identified but are far from fully characterized because the experimental methods are expensive and time consuming. In our previous study, we successfully identified 35 candidate PDR-related genes through the shortest-path algorithm. In the current study, we developed a computational method using the random walk with restart (RWR) algorithm and the protein-protein interaction (PPI) network to identify potential PDR-related genes. After some possible genes were obtained by the RWR algorithm, a three-stage filtration strategy, which includes the permutation test, interaction test and enrichment test, was applied to exclude potential false positives caused by the structure of PPI network, the poor interaction strength, and the limited similarity on gene ontology (GO) terms and biological pathways. As a result, 36 candidate genes were discovered by the method which was different from the 35 genes reported in our previous study. A literature review showed that 21 of these 36 genes are supported by previous experiments. These findings suggest the robustness and complementary effects of both our efforts using different computational methods, thus providing an alternative method to study PDR pathogenesis.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China; Shanghai Key Laboratory of Fundus Disease, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Yan Suo
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China; Shanghai Key Laboratory of Fundus Disease, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Min Liu
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China; Shanghai Key Laboratory of Fundus Disease, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.
| |
Collapse
|
12
|
Bardag-Gorce F, Hoft R, Meepe I, Garcia J, Tiger K, Wood A, Laporte A, Pan D, Makalinao A, Niihara R, Oliva J, Florentino A, Gorce AM, Stark J, Cortez D, French SW, Niihara Y. Proteasomes in corneal epithelial cells and cultured autologous oral mucosal epithelial cell sheet (CAOMECS) graft used for the ocular surface regeneration. Ocul Surf 2017; 15:749-758. [PMID: 28528957 DOI: 10.1016/j.jtos.2017.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/21/2017] [Accepted: 05/17/2017] [Indexed: 10/19/2022]
Abstract
PURPOSE This study focuses on characterizing proteasomes in corneal epithelial cells (CEC) and in cultured autologous oral mucosal epithelial cell sheets (CAOMECS) used to regenerate the ocular surface. METHODS Limbal stem cell deficiency (LSCD) was surgically induced in rabbit corneas. CAOMECS was engineered and grafted onto corneas with LSCD to regenerate the ocular surface. RESULTS LSCD caused an increase in inflammatory cells in the ocular surface, an increase in the formation of immunoproteasomes (IPR), and a decrease in the formation of constitutive proteasome (CPR). Specifically, LSCD-diseased CEC (D-CEC) showed a decrease in the CPR chymotrypsin-like, trypsin-like and caspase-like activities, while healthy CEC (H-CEC) and CAOMECS showed higher activities. Quantitative analysis of IPR inducible subunit (B5i, B2i, and B1i) were performed and compared to CPR subunit (B5, B2, and B1) levels. Results showed that ratios B5i/B5, B2i/B2 and B1i/B1 were higher in D-CEC, indicating that D-CEC had approximately a two-fold increase in the amount of IPR compared to CAOMECS and H-CEC. Histological analysis demonstrated that CAOMECS-grafted corneas had a re-epithelialized surface, positive staining for CPR subunits, and weak staining for IPR subunits. In addition, digital quantitative measurement of fluorescent intensity showed that the CPR B5 subunit was significantly more expressed in CAOMECS-grafted corneas compared to non-grafted corneas with LSCD. CONCLUSION CAOMECS grafting successfully replaced the D-CEC with oral mucosal epithelial cells with higher levels of CPR. The increase in constitutive proteasome expression is possibly responsible for the recovery and improvement in CAOMECS-grafted corneas.
Collapse
Affiliation(s)
- Fawzia Bardag-Gorce
- Los Angeles Biomedical Research Institute (LA BioMed) at Harbor-UCLA Medical Center, Torrance, CA 90502, USA.
| | - Richard Hoft
- Los Angeles Biomedical Research Institute (LA BioMed) at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Imara Meepe
- Los Angeles Biomedical Research Institute (LA BioMed) at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Julio Garcia
- Los Angeles Biomedical Research Institute (LA BioMed) at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Kumar Tiger
- Los Angeles Biomedical Research Institute (LA BioMed) at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Andrew Wood
- Los Angeles Biomedical Research Institute (LA BioMed) at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Amanda Laporte
- Los Angeles Biomedical Research Institute (LA BioMed) at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Derek Pan
- Los Angeles Biomedical Research Institute (LA BioMed) at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Andrew Makalinao
- Los Angeles Biomedical Research Institute (LA BioMed) at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Robert Niihara
- Los Angeles Biomedical Research Institute (LA BioMed) at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Joan Oliva
- Los Angeles Biomedical Research Institute (LA BioMed) at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Arjie Florentino
- Los Angeles Biomedical Research Institute (LA BioMed) at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Amber M Gorce
- Los Angeles Biomedical Research Institute (LA BioMed) at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Jeremy Stark
- Los Angeles Biomedical Research Institute (LA BioMed) at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Daileen Cortez
- Los Angeles Biomedical Research Institute (LA BioMed) at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Samuel W French
- Los Angeles Biomedical Research Institute (LA BioMed) at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Yutaka Niihara
- Los Angeles Biomedical Research Institute (LA BioMed) at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| |
Collapse
|
13
|
IGF-1R Regulates the Extracellular Level of Active MMP-2, Pathological Neovascularization, and Functionality in Retinas of OIR Mouse Model. Mol Neurobiol 2017; 55:1123-1135. [PMID: 28097474 DOI: 10.1007/s12035-017-0386-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/04/2017] [Indexed: 12/14/2022]
Abstract
In ischemic proliferative diseases such as retinopathies, persistent hypoxia leads to the release of numerous neovascular factors that participate in the formation of abnormal vessels and eventually cause blindness. The upregulation and activation of metalloproteinases (MMP-2 and MMP-9) represent a final common pathway in this process. Although many regulators of the neovascular process have been identified, the complete role of the insulin-like growth factor 1 (IGF-1) and its receptor (IGF-1R) appears to be significantly more complex. In this study, we used an oxygen-induced retinopathy (OIR) mouse model as well as an in vitro model of hypoxia to study the role of MMP-2 derived from Müller glial cells (MGCs) and its relation with the IGF-1/IGF-1R system. We demonstrated that MMP-2 protein expression increased in P17 OIR mice, which coincided with the active phase of the neovascular process. Also, glutamine synthetase (GS)-positive cells were also positive for MMP-2, whereas IGF-1R was expressed by GFAP-positive cells, indicating that both proteins were expressed in MGCs. In addition, in the OIR model a single intravitreal injection of the IGF-1R blocking antibody (αIR3) administered at P12 effectively prevented pathologic neovascularization, accelerated physiological revascularization, and improved retinal functionality at P17. Finally, in MGC supernatants, the blocking antibody abolished the IGF-1 effect on active MMP-2 under normoxic and hypoxic conditions without affecting the extracellular levels of pro-MMP-2. These results demonstrate, for the first time, that the IGF-1/IGF-1R system regulates active MMP-2 levels in MGCs, thus contributing to MEC remodeling during the retinal neovascular process.
Collapse
|
14
|
Ischemic optic neuropathy as a model of neurodegenerative disorder: A review of pathogenic mechanism of axonal degeneration and the role of neuroprotection. J Neurol Sci 2016; 375:430-441. [PMID: 28320183 DOI: 10.1016/j.jns.2016.12.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 02/07/2023]
Abstract
Optic neuropathy is a neurodegenerative disease which involves optic nerve injury. It is caused by acute or intermittent insults leading to visual dysfunction. There are number of factors, responsible for optic neuropathy, and the optic nerve axon is affected in all type which causes the loss of retinal ganglion cells. In this review we will highlight various mechanisms involved in the cell loss cascades during axonal degeneration as well as ischemic optic neuropathy. These mechanisms include oxidative stress, excitotoxicity, angiogenesis, neuroinflammation and apoptosis following retinal ischemia. We will also discuss the effect of neuroprotective agents in attenuation of the negative effect of factors involve in the disease occurrence and progression.
Collapse
|
15
|
Sawada K, Hiraoka M, Abe A, Kelly R, Shayman JA, Ohguro H. Prolonged Ocular Inflammation in Endotoxin-Induced Uveitis in Lysosomal Phospholipase A2-Deficient Mice. Curr Eye Res 2016; 42:611-616. [DOI: 10.1080/02713683.2016.1214967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kanako Sawada
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Miki Hiraoka
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Akira Abe
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Robert Kelly
- Division of Nephrology, Medical Center, University of Michigan, Ann Arbor, MI, USA
| | - James A. Shayman
- Division of Nephrology, Medical Center, University of Michigan, Ann Arbor, MI, USA
| | - Hiroshi Ohguro
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
16
|
Transitional Progenitors during Vertebrate Retinogenesis. Mol Neurobiol 2016; 54:3565-3576. [PMID: 27194297 DOI: 10.1007/s12035-016-9899-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 05/03/2016] [Indexed: 12/13/2022]
Abstract
The retina is a delicate neural tissue responsible for light signal capturing, modulating, and passing to mid-brain. The brain then translated the signals into three-dimensional vision. The mature retina is composed of more than 50 subtypes of cells, all of which are developed from a pool of early multipotent retinal progenitors, which pass through sequential statuses of oligopotent, bipotent, and unipotent progenitors, and finally become terminally differentiated retinal cells. A transitional progenitor model is proposed here to describe how intrinsic developmental programs, along with environmental cues, control the step-by-step differentiation during retinogenesis. The model could elegantly explain many current findings as well as predict roles of intrinsic factors during retinal development.
Collapse
|
17
|
De Groef L, Andries L, Lemmens K, Van Hove I, Moons L. Matrix metalloproteinases in the mouse retina: a comparative study of expression patterns and MMP antibodies. BMC Ophthalmol 2015; 15:187. [PMID: 26714639 PMCID: PMC4696081 DOI: 10.1186/s12886-015-0176-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/17/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Matrix metalloproteinases (MMPs), a family of Zn(2+)-dependent endoproteases, have been shown to act as fine regulators of both health and disease. Limited research revealed that they are essential to maintaining ocular physiology and inordinate MMP activities have been linked to several neurodegenerative disorders of the retina, including age-related macular degeneration, proliferative diabetic retinopathy and glaucomatous optic neuropathies (GONs). Nevertheless, a clear definition of their pathology-exacerbating and/or -resolving actions is lacking, especially in the context of GONs, as most studies thus far merely focused on expression profiling in human patients. Therefore, in an initial step towards an improved understanding of MMP functions in the retina, we studied the spatial expression pattern of MMP-2, -3, -9 and MT1-MMP in the healthy mouse retina. METHODS The spatial expression pattern of MMP-2, -3, -9 and MT1-MMP was studied in the healthy mouse retina via immunohistochemical stainings, and immunoreactivity profiles were compared to existing literature. Moreover, we considered sensitivity and specificity issues with commercially available MMP antibodies via Western blot. RESULTS Basal expression of MMP-2,-3, -9 and MT1-MMP was found in the retina of healthy, adult mice. MMP-2 expression was seen in Müller glia, predominantly in their end feet, which is in line with available literature. MMP-3 expression was described for the first time in the retina, and was observed in vesicle-like structures along the radial fibers of Müller glia. MMP-9 expression, about which still discords exists, was seen in microglia and in a sparse subset of (apoptosing) RGCs. MT1-MMP localization was for the first time studied in adult mice and was found in RGC axons and Müller glia, mimicking the MT1-MMP expression pattern seen in rabbits and neonatal mice. Moreover, one antibody was selected for each MMP, based on its staining pattern in Western blot. CONCLUSIONS The present MMP immunoreactivity profiles in the mouse retina and validation of MMP antibodies, can be instrumental to study MMP expression in mouse models of ocular pathologies and to compare these expression profiles to observations from clinical studies, which would be a first step in the disentanglement of the exact role MMPs in ocular/retinal diseases.
Collapse
Affiliation(s)
- Lies De Groef
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology; KU Leuven, Naamsestraat 61, Box 2464, B-3000, Leuven, Belgium.
| | - Lien Andries
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology; KU Leuven, Naamsestraat 61, Box 2464, B-3000, Leuven, Belgium.
| | - Kim Lemmens
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology; KU Leuven, Naamsestraat 61, Box 2464, B-3000, Leuven, Belgium.
| | - Inge Van Hove
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology; KU Leuven, Naamsestraat 61, Box 2464, B-3000, Leuven, Belgium.
| | - Lieve Moons
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology; KU Leuven, Naamsestraat 61, Box 2464, B-3000, Leuven, Belgium.
| |
Collapse
|
18
|
De Groef L, Salinas-Navarro M, Van Imschoot G, Libert C, Vandenbroucke RE, Moons L. Decreased TNF Levels and Improved Retinal Ganglion Cell Survival in MMP-2 Null Mice Suggest a Role for MMP-2 as TNF Sheddase. Mediators Inflamm 2015; 2015:108617. [PMID: 26451076 PMCID: PMC4586990 DOI: 10.1155/2015/108617] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/27/2015] [Indexed: 01/09/2023] Open
Abstract
Matrix metalloproteinases (MMPs) have been designated as both friend and foe in the central nervous system (CNS): while being involved in many neurodegenerative and neuroinflammatory diseases, their actions appear to be indispensable to a healthy CNS. Pathological conditions in the CNS are therefore often related to imbalanced MMP activities and disturbances of the complex MMP-dependent protease network. Likewise, in the retina, various studies in animal models and human patients suggested MMPs to be involved in glaucoma. In this study, we sought to determine the spatiotemporal expression profile of MMP-2 in the excitotoxic retina and to unravel its role during glaucoma pathogenesis. We reveal that intravitreal NMDA injection induces MMP-2 expression to be upregulated in the Müller glia. Moreover, MMP-2 null mice display attenuated retinal ganglion cell death upon excitotoxic insult to the retina, which is accompanied by normal glial reactivity, yet reduced TNF levels. Hence, we propose a novel in vivo function for MMP-2, as an activating sheddase of tumor necrosis factor (TNF). Given the pivotal role of TNF as a proinflammatory cytokine and neurodegeneration-exacerbating mediator, these findings generate important novel insights into the pathological processes contributing to glaucomatous neurodegeneration and into the interplay of neuroinflammation and neurodegeneration in the CNS.
Collapse
Affiliation(s)
- Lies De Groef
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Naamsestraat 61, 3000 Leuven, Belgium
| | - Manuel Salinas-Navarro
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Naamsestraat 61, 3000 Leuven, Belgium
| | - Griet Van Imschoot
- Inflammation Research Center, VIB, FSVM Building, Technologiepark 927, 9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, FSVM Building, Technologiepark 927, 9052 Ghent, Belgium
| | - Claude Libert
- Inflammation Research Center, VIB, FSVM Building, Technologiepark 927, 9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, FSVM Building, Technologiepark 927, 9052 Ghent, Belgium
| | - Roosmarijn E. Vandenbroucke
- Inflammation Research Center, VIB, FSVM Building, Technologiepark 927, 9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, FSVM Building, Technologiepark 927, 9052 Ghent, Belgium
| | - Lieve Moons
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Naamsestraat 61, 3000 Leuven, Belgium
| |
Collapse
|
19
|
Raju M, Mooney BP, Thakkar KM, Giblin FJ, Schey KL, Sharma KK. Role of αA-crystallin-derived αA66-80 peptide in guinea pig lens crystallin aggregation and insolubilization. Exp Eye Res 2015; 132:151-60. [PMID: 25639202 DOI: 10.1016/j.exer.2015.01.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 01/26/2015] [Accepted: 01/28/2015] [Indexed: 11/29/2022]
Abstract
Earlier we reported that low molecular weight (LMW) peptides accumulate in aging human lens tissue and that among the LMW peptides, the chaperone inhibitor peptide αA66-80, derived from α-crystallin protein, is one of the predominant peptides. We showed that in vitro αA66-80 induces protein aggregation. The current study was undertaken to determine whether LMW peptides are also present in guinea pig lens tissue subjected to hyperbaric oxygen (HBO) in vivo. The nuclear opacity induced by HBO in guinea pig lens is the closest animal model for studying age-related cataract formation in humans. A LMW peptide profile by mass spectrometry showed the presence of an increased amount of LMW peptides in HBO-treated guinea pig lenses compared to age-matched controls. Interestingly, the mass spectrometric data also showed that the chaperone inhibitor peptide αA66-80 accumulates in HBO-treated guinea pig lens. Following incubation of synthetic chaperone inhibitor peptide αA66-80 with α-crystallin from guinea pig lens extracts, we observed a decreased ability of α-crystallin to inhibit the amorphous aggregation of the target protein alcohol dehydrogenase and the formation of large light scattering aggregates, similar to those we have observed with human α-crystallin and αA66-80 peptide. Further, time-lapse recordings showed that a preformed complex of α-crystallin and αA66-80 attracted additional crystallin molecules to form even larger aggregates. These results demonstrate that LMW peptide-mediated cataract development in aged human lens and in HBO-induced lens opacity in the guinea pig may have common molecular pathways.
Collapse
Affiliation(s)
- Murugesan Raju
- Department of Ophthalmology, University of Missouri-Columbia, School of Medicine, Columbia 65212, MO, USA
| | - Brian P Mooney
- Department of Biochemistry, University of Missouri-Columbia, School of Medicine, Columbia 65212, MO, USA
| | - Kavi M Thakkar
- Department of Ophthalmology, University of Missouri-Columbia, School of Medicine, Columbia 65212, MO, USA
| | - Frank J Giblin
- Eye Research Institute, Oakland University, Rochester 48309, MI, USA
| | - Kevin L Schey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville 37232, USA
| | - K Krishna Sharma
- Department of Ophthalmology, University of Missouri-Columbia, School of Medicine, Columbia 65212, MO, USA; Department of Biochemistry, University of Missouri-Columbia, School of Medicine, Columbia 65212, MO, USA.
| |
Collapse
|
20
|
The amazing ubiquitin-proteasome system: structural components and implication in aging. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 314:171-237. [PMID: 25619718 DOI: 10.1016/bs.ircmb.2014.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Proteome quality control (PQC) is critical for the maintenance of cellular functionality and it is assured by the curating activity of the proteostasis network (PN). PN is constituted of several complex protein machines that under conditions of proteome instability aim to, firstly identify, and then, either rescue or degrade nonnative polypeptides. Central to the PN functionality is the ubiquitin-proteasome system (UPS) which is composed from the ubiquitin-conjugating enzymes and the proteasome; the latter is a sophisticated multi-subunit molecular machine that functions in a bimodal way as it degrades both short-lived ubiquitinated normal proteins and nonfunctional polypeptides. UPS is also involved in PQC of the nucleus, the endoplasmic reticulum and the mitochondria and it also interacts with the other main cellular degradation axis, namely the autophagy-lysosome system. UPS functionality is optimum in the young organism but it is gradually compromised during aging resulting in increasing proteotoxic stress; these effects correlate not only with aging but also with most age-related diseases. Herein, we present a synopsis of the UPS components and of their functional alterations during cellular senescence or in vivo aging. We propose that mild UPS activation in the young organism will, likely, promote antiaging effects and/or suppress age-related diseases.
Collapse
|
21
|
Gene profiling of postnatal Mfrprd6 mutant eyes reveals differential accumulation of Prss56, visual cycle and phototransduction mRNAs. PLoS One 2014; 9:e110299. [PMID: 25357075 PMCID: PMC4214712 DOI: 10.1371/journal.pone.0110299] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 09/18/2014] [Indexed: 12/02/2022] Open
Abstract
Mutations in the membrane frizzled-related protein (MFRP/Mfrp) gene, specifically expressed in the retinal pigment epithelium (RPE) and ciliary body, cause nanophthalmia or posterior microphthalmia with retinitis pigmentosa in humans, and photoreceptor degeneration in mice. To better understand MFRP function, microarray analysis was performed on eyes of homozygous Mfrprd6 and C57BL/6J mice at postnatal days (P) 0 and P14, prior to photoreceptor loss. Data analysis revealed no changes at P0 but significant differences in RPE and retina-specific transcripts at P14, suggesting a postnatal influence of the Mfrprd6 allele. A subset of these transcripts was validated by quantitative real-time PCR (qRT-PCR). In Mfrprd6 eyes, a significant 1.5- to 2.0-fold decrease was observed among transcripts of genes linked to retinal degeneration, including those involved in visual cycle (Rpe65, Lrat, Rgr), phototransduction (Pde6a, Guca1b, Rgs9), and photoreceptor disc morphogenesis (Rpgrip1 and Fscn2). Levels of RPE65 were significantly decreased by 2.0-fold. Transcripts of Prss56, a gene associated with angle-closure glaucoma, posterior microphthalmia and myopia, were increased in Mfrprd6 eyes by 17-fold. Validation by qRT-PCR indicated a 3.5-, 14- and 70-fold accumulation of Prss56 transcripts relative to controls at P7, P14 and P21, respectively. This trend was not observed in other RPE or photoreceptor mutant mouse models with similar disease progression, suggesting that Prss56 upregulation is a specific attribute of the disruption of Mfrp. Prss56 and Glul in situ hybridization directly identified Müller glia in the inner nuclear layer as the cell type expressing Prss56. In summary, the Mfrprd6 allele causes significant postnatal changes in transcript and protein levels in the retina and RPE. The link between Mfrp deficiency and Prss56 up-regulation, together with the genetic association of human MFRP or PRSS56 variants and ocular size, raises the possibility that these genes are part of a regulatory network influencing postnatal posterior eye development.
Collapse
|
22
|
Santhoshkumar P, Xie L, Raju M, Reneker L, Sharma KK. Lens crystallin modifications and cataract in transgenic mice overexpressing acylpeptide hydrolase. J Biol Chem 2014; 289:9039-52. [PMID: 24554718 PMCID: PMC3979366 DOI: 10.1074/jbc.m113.510677] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 02/11/2014] [Indexed: 12/28/2022] Open
Abstract
The accumulation of crystallin fragments in vivo and their subsequent interaction with crystallins are responsible, in part, for protein aggregation in cataracts. Transgenic mice overexpressing acylpeptide hydrolase (APH) specifically in the lens were prepared to test the role of protease in the generation and accumulation of peptides. Cataract development was seen at various postnatal days in the majority of mice expressing active APH (wt-APH). Cataract onset and severity of the cataracts correlated with the APH protein levels. Lens opacity occurred when APH protein levels were >2.6% of the total lens protein and the specific activity, assayed using Ac-Ala-p-nitroanilide substrate, was >1 unit. Transgenic mice carrying inactive APH (mt-APH) did not develop cataract. Cataract development also correlated with N-terminal cleavage of the APH to generate a 57-kDa protein, along with an increased accumulation of low molecular weight (LMW) peptides, similar to those found in aging human and cataract lenses. Nontransgenic mouse lens proteins incubated with purified wt-APH in vitro resulted in a >20% increase in LMW peptides. Crystallin modifications and cleavage were quite dramatic in transgenic mouse lenses with mature cataract. Affected lenses showed capsule rupture at the posterior pole, with expulsion of the lens nucleus and degenerating fiber cells. Our study suggests that the cleaved APH fragment might exert catalytic activity against crystallins, resulting in the accumulation of distinct LMW peptides that promote protein aggregation in lenses expressing wt-APH. The APH transgenic model we developed will enable in vivo testing of the roles of crystallin fragments in protein aggregation.
Collapse
Affiliation(s)
| | - Leike Xie
- From the Departments of Ophthalmology and
| | | | | | - K. Krishna Sharma
- From the Departments of Ophthalmology and
- Biochemistry, University of Missouri, Columbia, Missouri 65212
| |
Collapse
|
23
|
Spalton DJ, Russell SL, Evans-Gowing R, Eldred JA, Wormstone MI. Effect of total lens epithelial cell destruction on intraocular lens fixation in the human capsular bag. J Cataract Refract Surg 2014; 40:306-12. [DOI: 10.1016/j.jcrs.2013.06.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/26/2013] [Accepted: 06/28/2013] [Indexed: 11/15/2022]
|
24
|
Hariharapura R, Santhoshkumar P, Krishna Sharma K. Profiling of lens protease involved in generation of αA-66-80 crystallin peptide using an internally quenched protease substrate. Exp Eye Res 2013; 109:51-9. [PMID: 23410823 DOI: 10.1016/j.exer.2013.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/28/2013] [Accepted: 01/31/2013] [Indexed: 11/26/2022]
Abstract
Proteins of lens fiber cells are prone to accumulate extensive post-translational modifications because of very little protein turnover. Lens proteins are degraded via the lens proteolytic systems into peptides, which are subsequently hydrolyzed by downstream aminopeptidases. Inefficient degradation can lead to accumulation of protein fragments and subsequent aggregation. Previously we showed that αA-66-80 peptide and its truncated products accumulate in aging and cataract human lenses. These peptides interact with crystallins, causing crystallin aggregation and precipitation. N- and C-terminal-blocked peptides that have the cleavage sites to generate the αA-66-80 fragment were used to test lens extracts for sequence-specific proteases in lens extracts. An internally quenched fluorogenic peptide substrate containing the sequence-specific site for a lens protease to generate αA-66-80 peptide was designed, synthesized and used to characterize protease(s) that are capable of generating this peptide in bovine and human lenses. We show that proteases with the potential to generate αA-66-80 peptide are present in bovine and human lenses. We also show that the αA-66-80 peptides are resistant to hydrolysis by aminopeptidases present in the lenses and they can suppress the degradation of other peptides. Failure of complete hydrolysis of these peptides in vivo can lead to their accumulation in the lens and subsequent lens protein aggregation, which may ultimately lead to the formation of cataract.
Collapse
Affiliation(s)
- Raghu Hariharapura
- Department of Ophthalmology, University of Missouri-Columbia School of Medicine, Columbia, MO 65212, USA
| | | | | |
Collapse
|
25
|
Li Y, Jia Y, Zhou J, Huang K. Effect of methionine sulfoxide reductase B1 silencing on high-glucose-induced apoptosis of human lens epithelial cells. Life Sci 2012; 92:193-201. [PMID: 23270945 DOI: 10.1016/j.lfs.2012.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 10/31/2012] [Accepted: 11/23/2012] [Indexed: 11/16/2022]
Abstract
AIMS To determine roles of methionine sulfoxide reductase B1 (MsrB1) in protecting lens mitochondria against oxidative damage, the influences of MsrB1 gene silencing on high-glucose-induced apoptosis in human lens epithelial (HLE) cells were studied. MAIN METHODS Our study used four groups of cells: normal control, MsrB1 gene silenced, high glucose (30mM) exposed and MsrB1 gene silenced cells followed with high glucose exposure. In all cases we detected cell viability, cell apoptosis rate, intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) levels, alteration of mitochondrial membrane potential, release of mitochondrial cytochrome c as well as an increase in activity of caspase-3. KEY FINDINGS The results showed that MsrB1 gene silencing by short interfering RNA (siRNA) in HLE cells clearly resulted in oxidative stress, decrease in mitochondrial membrane potential and release of mitochondrial cytochrome c as well as an increase in activity of caspase-3 and the percentage of apoptotic cells. When MsrB1-silenced HLE cells were exposed to high glucose, characteristic of high-glucose-induced mitochondrial dysfunctions were further exacerbated. SIGNIFICANCE MsrB1 plays important roles in protecting HLE cell mitochondria against oxidative damage and inhibits oxidative stress-induced apoptosis in diabetic cataracts by scavenging ROS.
Collapse
Affiliation(s)
- Yi Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Hubei 430074, PR China; Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, PR China
| | | | | | | |
Collapse
|
26
|
Chondrogianni N, Petropoulos I, Grimm S, Georgila K, Catalgol B, Friguet B, Grune T, Gonos ES. Protein damage, repair and proteolysis. Mol Aspects Med 2012; 35:1-71. [PMID: 23107776 DOI: 10.1016/j.mam.2012.09.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/26/2012] [Indexed: 01/10/2023]
Abstract
Proteins are continuously affected by various intrinsic and extrinsic factors. Damaged proteins influence several intracellular pathways and result in different disorders and diseases. Aggregation of damaged proteins depends on the balance between their generation and their reversal or elimination by protein repair systems and degradation, respectively. With regard to protein repair, only few repair mechanisms have been evidenced including the reduction of methionine sulfoxide residues by the methionine sulfoxide reductases, the conversion of isoaspartyl residues to L-aspartate by L-isoaspartate methyl transferase and deglycation by phosphorylation of protein-bound fructosamine by fructosamine-3-kinase. Protein degradation is orchestrated by two major proteolytic systems, namely the lysosome and the proteasome. Alteration of the function for both systems has been involved in all aspects of cellular metabolic networks linked to either normal or pathological processes. Given the importance of protein repair and degradation, great effort has recently been made regarding the modulation of these systems in various physiological conditions such as aging, as well as in diseases. Genetic modulation has produced promising results in the area of protein repair enzymes but there are not yet any identified potent inhibitors, and, to our knowledge, only one activating compound has been reported so far. In contrast, different drugs as well as natural compounds that interfere with proteolysis have been identified and/or developed resulting in homeostatic maintenance and/or the delay of disease progression.
Collapse
Affiliation(s)
- Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| | - Isabelle Petropoulos
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Stefanie Grimm
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Konstantina Georgila
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Betul Catalgol
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Haydarpasa, Istanbul, Turkey
| | - Bertrand Friguet
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Tilman Grune
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Efstathios S Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| |
Collapse
|
27
|
Kästle M, Grune T. Interactions of the Proteasomal System with Chaperones. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 109:113-60. [DOI: 10.1016/b978-0-12-397863-9.00004-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Kyselova Z. Mass spectrometry-based proteomics approaches applied in cataract research. MASS SPECTROMETRY REVIEWS 2011; 30:1173-1184. [PMID: 22031278 DOI: 10.1002/mas.20317] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/12/2010] [Accepted: 07/12/2010] [Indexed: 05/31/2023]
Abstract
Cataract, the opacification of the eye lens, is the leading cause of blindness worldwide--it accounts for approximately 42% of all cases. The lens fibers have the highest protein content within the body, more than 35% of their wet weight. Given the eye lens pure composition of highly abundant structural proteins crystallins (up to 90%), it seems to be an ideal proteomic entity to study and might be also hypothesized to model the other protein conformational diseases. Crystallins are extremely long-lived, and there is virtually no protein turnover. This provides great opportunities for post-translational modifications (PTM) to occur and to predispose lens to the cataract formation. Despite recent progress in proteomics, the human lens proteome remains largely unknown. Mass spectrometry hold great promise to determine which crystallin modifications lead to a cataract. Quantitative analysis of PTMs at the peptide level with proteomics is a powerful bioanalytical tool for lens-tissue samples, and provides more comprehensive results. New mass spectrometry-based approaches that are being applied to lens research will be highlighted. Finally, the future directions of proteomics cataract research will be outlined.
Collapse
Affiliation(s)
- Z Kyselova
- Laboratory of Cell Cultures, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dubravska cesta 9, SK, 841 04 Bratislava, Slovak Republic.
| |
Collapse
|
29
|
Wride MA. Lens fibre cell differentiation and organelle loss: many paths lead to clarity. Philos Trans R Soc Lond B Biol Sci 2011; 366:1219-33. [PMID: 21402582 DOI: 10.1098/rstb.2010.0324] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The programmed removal of organelles from differentiating lens fibre cells contributes towards lens transparency through formation of an organelle-free zone (OFZ). Disruptions in OFZ formation are accompanied by the persistence of organelles in lens fibre cells and can contribute towards cataract. A great deal of work has gone into elucidating the nature of the mechanisms and signalling pathways involved. It is apparent that multiple, parallel and redundant pathways are involved in this process and that these pathways form interacting networks. Furthermore, it is possible that the pathways can functionally compensate for each other, for example in mouse knockout studies. This makes sense given the importance of lens clarity in an evolutionary context. Apoptosis signalling and proteolytic pathways have been implicated in both lens fibre cell differentiation and organelle loss, including the Bcl-2 and inhibitor of apoptosis families, tumour necrosis factors, p53 and its regulators (such as Mdm2) and proteolytic enzymes, including caspases, cathepsins, calpains and the ubiquitin-proteasome pathway. Ongoing approaches being used to dissect the molecular pathways involved, such as transgenics, lens-specific gene deletion and zebrafish mutants, are discussed here. Finally, some of the remaining unresolved issues and potential areas for future studies are highlighted.
Collapse
Affiliation(s)
- Michael A Wride
- Ocular Development and Neurobiology Research Group, Zoology Department, School of Natural Sciences, Trinity College Dublin, Dublin 2, Republic of Ireland.
| |
Collapse
|
30
|
Eldred JA, Dawes LJ, Wormstone IM. The lens as a model for fibrotic disease. Philos Trans R Soc Lond B Biol Sci 2011; 366:1301-19. [PMID: 21402588 DOI: 10.1098/rstb.2010.0341] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fibrosis affects multiple organs and is associated with hyperproliferation, cell transdifferentiation, matrix modification and contraction. It is therefore essential to discover the key drivers of fibrotic events, which in turn will facilitate the development of appropriate therapeutic strategies. The lens is an elegant experimental model to study the processes that give rise to fibrosis. The molecular and cellular organization of the lens is well defined and consequently modifications associated with fibrosis can be clearly assessed. Moreover, the avascular and non-innervated properties of the lens allow effective in vitro studies to be employed that complement in vivo systems and relate to clinical data. Using the lens as a model for fibrosis has direct relevance to millions affected by lens disorders, but also serves as a valuable experimental tool to understand fibrosis per se.
Collapse
Affiliation(s)
- J A Eldred
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | | | |
Collapse
|
31
|
Martinez G, de Iongh R. The lens epithelium in ocular health and disease. Int J Biochem Cell Biol 2010; 42:1945-63. [PMID: 20883819 DOI: 10.1016/j.biocel.2010.09.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/19/2010] [Accepted: 09/20/2010] [Indexed: 01/11/2023]
|
32
|
Su SP, McArthur JD, Andrew Aquilina J. Localization of low molecular weight crystallin peptides in the aging human lens using a MALDI mass spectrometry imaging approach. Exp Eye Res 2010; 91:97-103. [DOI: 10.1016/j.exer.2010.04.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 04/16/2010] [Accepted: 04/21/2010] [Indexed: 10/19/2022]
|
33
|
Morales J, Al-Sharif L, Khalil DS, Shinwari JMA, Bavi P, Al-Mahrouqi RA, Al-Rajhi A, Alkuraya FS, Meyer BF, Al Tassan N. Homozygous mutations in ADAMTS10 and ADAMTS17 cause lenticular myopia, ectopia lentis, glaucoma, spherophakia, and short stature. Am J Hum Genet 2009; 85:558-68. [PMID: 19836009 DOI: 10.1016/j.ajhg.2009.09.011] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 09/07/2009] [Accepted: 09/21/2009] [Indexed: 01/23/2023] Open
Abstract
Weill-Marchesani syndrome (WMS) is a well-characterized disorder in which patients develop eye and skeletal abnormalities. Autosomal-recessive and autosomal-dominant forms of WMS are caused by mutations in ADAMTS10 and FBN1 genes, respectively. Here we report on 13 patients from seven unrelated families from the Arabian Peninsula. These patients have a constellation of features that fall within the WMS spectrum and follow an autosomal-recessive mode of inheritance. Individuals who came from two families and met the diagnostic criteria for WMS were each found to have a different homozygous missense mutation in ADAMTS10. Linkage analysis and direct sequencing of candidate genes in another two families and a sporadic case with phenotypes best described as WMS-like led to the identification of three homozygous mutations in the closely related ADAMTS17 gene. Our clinical and genetic findings suggest that ADAMTS17 plays a role in crystalline lens zonules and connective tissue formation and that mutations in ADAMTS17 are sufficient to produce some of the main features typically described in WMS.
Collapse
Affiliation(s)
- Jose Morales
- King Khaled Eye Specialist Hospital, and College of Medicine, King Saud University, Riyadh 11462, Saudi Arabia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Keller KE, Aga M, Bradley JM, Kelley MJ, Acott TS. Extracellular matrix turnover and outflow resistance. Exp Eye Res 2008; 88:676-82. [PMID: 19087875 DOI: 10.1016/j.exer.2008.11.023] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 09/15/2008] [Accepted: 11/20/2008] [Indexed: 11/29/2022]
Abstract
Normal homeostatic adjustment of elevated intraocular pressure (IOP) involves remodeling the extracellular matrix (ECM) of the trabecular meshwork (TM). This entails sensing elevated IOP, releasing numerous activated proteinases to degrade existing ECM and concurrent biosynthesis of replacement ECM components. To increase or decrease IOP, the quantity, physical properties and/or organization of new components should be somewhat different from those replaced in order to modify outflow resistance. ECM degradation and replacement biosynthesis in the outflow pathway must be tightly controlled and focused to retain the complex structural organization of the tissue. Recently identified podosome- or invadopodia-like structures (PILS) may aid in the focal degradation of ECM and organization of replacement components.
Collapse
Affiliation(s)
- Kate E Keller
- Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239-4197, USA
| | | | | | | | | |
Collapse
|
35
|
Patel N, Solanki E, Picciani R, Cavett V, Caldwell-Busby JA, Bhattacharya SK. Strategies to recover proteins from ocular tissues for proteomics. Proteomics 2008; 8:1055-70. [PMID: 18324731 DOI: 10.1002/pmic.200700856] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We present here the results of protein extraction from different ocular regions using different detergents. Extraction strategies used to determine optimal protein extraction included: pressure cycling and aqueous-organic phase extraction in combination with electrophoretic fractionation for anterior, posterior, and peripapillary sclera. Detergent extraction of proteins from freshly enucleated porcine eyes (n = 8) showed significant differences for different eye regions. Protein yield ranged from 2.3 to 50.7 mug protein/mg for different ocular tissues, with the lens yielding the most protein. ASB-14 and Triton X-100 provided the best protein yields (n = 10) for anterior and posterior sclera. The spectrophotometric measurements for ASB-14 were not consistent with SDS-PAGE densitometry. A combination of 0.5% Triton X-100, 0.5% Tween-20, and 0.1% Genapol C-100 was found optimal for extraction from sclera. Proteins from different regions of the eye are best extracted with different detergents. The pressure cycling technology provided superior extraction compared to the other methods. Additional aqueous-organic phase partitioning enables superior fractionation when compared to SDS-PAGE alone. Organic phase fractionation is compatible with MS and allowed identification of 34, 71, and 77 proteins respectively from anterior, posterior, and peripapillary sclera. The extraction strategy may affect the final outcome in protein profiling by MS or by other methods.
Collapse
Affiliation(s)
- Nikhil Patel
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
| | | | | | | | | | | |
Collapse
|
36
|
Santhoshkumar P, Udupa P, Murugesan R, Sharma KK. Significance of interactions of low molecular weight crystallin fragments in lens aging and cataract formation. J Biol Chem 2008; 283:8477-85. [PMID: 18227073 PMCID: PMC2417163 DOI: 10.1074/jbc.m705876200] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 01/02/2008] [Indexed: 11/06/2022] Open
Abstract
Analysis of aged and cataract lenses shows the presence of increased amounts of crystallin fragments in the high molecular weight aggregates of water-soluble and water-insoluble fractions. However, the significance of accumulation and interaction of low molecular weight crystallin fragments in aging and cataract development is not clearly understood. In this study, 23 low molecular mass (<3.5-kDa) peptides in the urea-soluble fractions of young, aged, and aged cataract human lenses were identified by mass spectroscopy. Two peptides, alphaB-(1-18) (MDIAIHHPWIRRPFFPFH) and betaA3/A1-(59-74) (SD(N)AYHIERLMSFRPIC), present in aged and cataract lens but not young lens, and a third peptide, gammaS-(167-178) (SPAVQSFRRIVE) present in all three lens groups were synthesized to study the effects of interaction of these peptides with intact alpha-, beta-, and gamma-crystallins and alcohol dehydrogenase, a protein used in aggregation studies. Interaction of alphaB-(1-18) and betaA3/A1-(59-74) peptides increased the scattering of light by beta- and gamma-crystallin and alcohol dehydrogenase. The ability of alpha-crystallin subunits to function as molecular chaperones was significantly reduced by interaction with alphaB-(1-18) and betaA3/A1-(59-74) peptides, whereas gammaS peptide had no effect on chaperone-like activity of alpha-crystallin. The betaA3/A1-(59-74 peptide caused a 5.64-fold increase in alphaB-crystallin oligomeric mass and partial precipitation. Replacing hydrophobic residues in alphaB-(1-18) and betaA3/A1-(59-74) peptides abolished their ability to induce crystallin aggregation and light scattering. Our study suggests that interaction of crystallin-derived peptides with intact crystallins could be a key event in age-related protein aggregation in lens and cataractogenesis.
Collapse
Affiliation(s)
- Puttur Santhoshkumar
- Department of Ophthalmology, University of Missouri-Columbia School of Medicine, Columbia, MO 65212, USA
| | | | | | | |
Collapse
|
37
|
Weinstein WL, Dietrich UM, Sapienza JS, Carmichael KP, Moore PA, Krunkosky TM. Identification of ocular matrix metalloproteinases present within the aqueous humor and iridocorneal drainage angle tissue of normal and glaucomatous canine eyes. Vet Ophthalmol 2007; 10 Suppl 1:108-16. [DOI: 10.1111/j.1463-5224.2007.00586.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
|
39
|
Ducros E, Berthaut A, Mirshahi P, Lemarchand S, Soria J, Legeais JM, Mirshahi M. Expression of extracellular matrix proteins fibulin-1 and fibulin-2 by human corneal fibroblasts. Curr Eye Res 2007; 32:481-90. [PMID: 17612964 DOI: 10.1080/02713680701411269] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE The fibulins are a family of extracellular matrix (ECM) molecules that regulate the organ shape along with other growth factors and stromal cells. We report here the in vitro expression of ECM proteins fibulin-1 and fibulin-2 by human corneal fibroblasts. The ability of fibulin-1 to modulate cell motility was investigated. METHODS Fibulin-1 and fibulin-2 mRNA and proteins expression were analyzed in primary and immortalized human corneal fibroblasts (CHN) respectively by gene array, RT-PCR, and immunocytochemistry. The motility and adhesion of the cells transfected with fibulin-1 siRNA were analyzed on tissue culture polystyrene coated with Matrigel or ECM secreted by those fibroblasts. RESULTS (1) The microarray analysis shows the expression of fibulin-1, fibulin-2, and their binding partners (i.e., fibronectin, nidogen-1, aggrecan, fibrilin-1, endostatin, and laminin alpha-2 chain). Interestingly, a matrix metalloprotease, ADAMTS-1, for which fibulin-1 acts as a cofactor, was also detected in CHN. (2) The synthesis by CHN of fibulin-1 and 2 mRNA and proteins was confirmed respectively by RT-PCR and immunocytochemistry. (3) Transfection of CHN by fibulin-1 siRNA has no effect on cell adhesion but increases cell migration compared with that of the control cells. This observation suggests an important role of fibulin-1 on cell motility. CONCLUSIONS The expression of fibulins and that of their binding partners by human corneal fibroblasts indicate the important role of these proteins in the organization of supramolecular ECM structures of cornea. The variation of their expression and the structural changes of fibulins remain to be determined in corneal pathology.
Collapse
Affiliation(s)
- E Ducros
- UMRS 736 INSERM - Université Pierre et Marie Curie (Paris 6), Faculté de Médecine Paris VI, Paris, France
| | | | | | | | | | | | | |
Collapse
|
40
|
West-Mays JA, Pino G. Matrix Metalloproteinases as Mediators of Primary and Secondary Cataracts. EXPERT REVIEW OF OPHTHALMOLOGY 2007; 2:931-938. [PMID: 19018298 PMCID: PMC2583795 DOI: 10.1586/17469899.2.6.931] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The matrix metalloproteinases (MMPs) are a family of endopeptidases involved in numerous remodeling and fibrotic disorders. Although MMPs have been shown to play important roles in regenerative and disease processes in many parts of the eye, including the cornea, retina and trabecular meshwork, the role of MMPs in the normal and cataractous lens has only recently been studied. These investigations have shown that multiple MMPs are expressed in the lens and their expression is altered in a number of cataract phenotypes. However, anterior subcapsular cataract and posterior capsular opacification, cataracts of a fibrotic nature, show a particular involvement of MMPs. This review will highlight recent findings that suggest a causative role for MMPs in these fibrotic cataract phenotypes.
Collapse
Affiliation(s)
- Judith A West-Mays
- Judith A West-Mays, PhD Associate Professor, McMaster University, Department of Pathology and Molecular Medicine, Hamilton, ON, L8N3Z5 Canada Tel.: +1 905 525 9140 ext. 26237
| | | |
Collapse
|
41
|
Wederell ED, de Iongh RU. Extracellular matrix and integrin signaling in lens development and cataract. Semin Cell Dev Biol 2006; 17:759-76. [PMID: 17134921 DOI: 10.1016/j.semcdb.2006.10.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During development of the vertebrate lens there are dynamic interactions between the extracellular matrix (ECM) of the lens capsule and lens cells. Disruption of the ECM causes perturbation of lens development and cataract. Similarly, changes in cell signaling can result in abnormal ECM and cataract. Integrins are key mediators of ECM signals and recent studies have documented distinct repertoires of integrin expression during lens development, and in anterior subcapsular cataract (ASC) and posterior caspsule opacification (PCO). Increasingly, studies are being directed to investigating the signaling pathways that integrins modulate and have identified Src, focal adhesion kinase (FAK) and integrin-linked kinase (ILK) as downstream kinases that mediate proliferation, differentiation and morphological changes in the lens during development and cataract formation.
Collapse
Affiliation(s)
- Elizabeth D Wederell
- Department of Anatomy & Histology, Save Sight Institute, University of Sydney, NSW 2006, Australia
| | | |
Collapse
|
42
|
Sanders EJ, Parker E, Harvey S. Retinal ganglion cell survival in development: mechanisms of retinal growth hormone action. Exp Eye Res 2006; 83:1205-14. [PMID: 16893540 DOI: 10.1016/j.exer.2006.06.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 05/11/2006] [Accepted: 06/19/2006] [Indexed: 01/08/2023]
Abstract
Several variants of growth hormone (GH) are found in the retina and vitreous of the chick embryo, where they appear to act as cell survival factors, having neuroprotective effects on retinal ganglion cells (RGCs). Here, we investigate the molecular mechanisms of the anti-apoptotic effect of GH in cultured RGCs. GH treatment increased Akt phosphorylation in these cells, which is an anti-apoptotic event. Whereas unphosphorylated Akt was detected in both nucleus and cytoplasm of RGCs by immunocytochemistry, the phosphorylated form of Akt (Akt-phos) was located primarily in the cytoplasm of both normal and apoptotic cells, although levels were markedly lower in the latter. It was found that GH treatment of RGCs reduced Akt levels, while concomitantly raising Akt-phos levels, consistent with a role for Akt signaling pathways in GH neuroprotective action. This was substantiated using Wortmannin, which, like GH antiserum, inhibited Akt phosphorylation and initiated apoptosis. The addition of Wortmannin to RGC cultures simultaneously with GH significantly reduced the anti-apoptotic effect of GH. The induction of apoptosis by GH antiserum was clearly accompanied by an increase in caspase-3 activation and PARP-1 cleavage, both of which were significantly reduced in the presence of the broad spectrum caspase inhibitor, Q-VD-OPh, which itself had a dramatic neuroprotective effect on cultured RGCs. Calpain activation appeared to be a major caspase-independent pathway to PARP-1 cleavage and apoptosis in these cells. Calpain inhibitor III (MDL 28170) was able to reduce PARP-1 cleavage and abrogate the apoptogenic effect of GH antiserum. The results support the view that caspase and calpain inhibitors are major neuroprotective agents for RGCs, and that pathways that activate both caspases and calpains are important for the anti-apoptotic actions of GH in these cells.
Collapse
Affiliation(s)
- Esmond J Sanders
- Department of Physiology, University of Alberta, 755 Medical Sciences Building, Edmonton, Alberta T6G 2H7, Canada.
| | | | | |
Collapse
|